Positive solutions for a class of superlinear semipositone systems on exterior domains

Abraham Abebe ${ }^{1}$, Maya Chhetri1 ${ }^{1 *}$, Lakshmi Sankar ${ }^{2}$ and R Shivaji ${ }^{1}$

Correspondence: maya@uncg.edu Department of Mathematics and Statistics, The University of North Carolina at Greensboro, Greensboro, USA
Full list of author information is available at the end of the article

Abstract

We study the existence of a positive radial solution to the nonlinear eigenvalue problem $-\Delta u=\lambda K_{1}(|x|) f(v)$ in $\Omega_{e}, \Delta v=\lambda K_{2}(|x|) g(u)$ in $\Omega_{e}, u(x)=v(x)=0$ if $|x|=r_{0}$ $(>0), u(x) \rightarrow 0, v(x) \rightarrow 0$ as $|x| \rightarrow \infty$, where $\lambda>0$ is a parameter, $\Delta u=\operatorname{div}(\nabla u)$ is the Laplace operator, $\Omega_{e}=\left\{x \in \mathbb{R}^{n}| | x \mid>r_{0}, n>2\right\}$, and $K_{i} \in C^{1}\left(\left[r_{0}, \infty\right),(0, \infty)\right) ; i=1,2$ are such that $K_{i}(|x|) \rightarrow 0$ as $|x| \rightarrow \infty$. Here $f, g:[0, \infty) \rightarrow \mathbb{R}$ are C^{1} functions such that they are negative at the origin (semipositone) and superlinear at infinity. We establish the existence of a positive solution for λ small via degree theory and rescaling arguments. We also discuss a non-existence result for $\lambda \gg 1$ for the single equations case. MSC: 34B16; 34B18

Keywords: superlinear; semipositone; positive solutions; existence; non-existence; exterior domains

1 Introduction

We consider the nonlinear elliptic boundary value problem

$$
\left.\begin{array}{ll}
-\Delta u=\lambda K_{1}(|x|) f(v) & \text { in } \Omega_{e}, \tag{1.1}\\
-\Delta v=\lambda K_{2}(|x|) g(u) & \text { in } \Omega_{e}, \\
u(x)=v(x)=0 & \text { if }|x|=r_{0}(>0), \\
u(x) \rightarrow 0, v(x) \rightarrow 0 & \text { as }|x| \rightarrow \infty,
\end{array}\right\}
$$

where $\lambda>0$ is a parameter, $\Delta u=\operatorname{div}(\nabla u)$ is the Laplace operator, and $\Omega_{e}=\left\{x \in \mathbb{R}^{n}| | x \mid>\right.$ $\left.r_{0}, n>2\right\}$ is an exterior domain. Here the nonlinearities $f, g:[0, \infty) \rightarrow \mathbb{R}$ are C^{1} functions which satisfy:
$\left(\mathrm{H}_{1}\right) f(0)<0$ and $g(0)<0$ (semipositone).
$\left(\mathrm{H}_{2}\right)$ For $i=1,2$ there exist $b_{i}>0$ and $q_{i}>1$ such that $\lim _{s \rightarrow \infty} \frac{f(s)}{s^{q 1}}=b_{1}$, and $\lim _{s \rightarrow \infty} \frac{g(s)}{s^{q 2}}=b_{2}$.
Further, for $i=1,2$, the weight functions $K_{i} \in C^{1}\left(\left[r_{0}, \infty\right),(0, \infty)\right)$ are such that $K_{i}(|x|) \rightarrow 0$ as $|x| \rightarrow \infty$. In particular, we are interested in the challenging case, where K_{i} do not decay too fast. Namely, we assume
$\left(\mathrm{H}_{3}\right)$ There exist $\tilde{d}_{1}>0, \tilde{d}_{2}>0, \rho \in(0, n-2)$ such that for $i=1,2$

$$
\frac{\tilde{d}_{1}}{|x|^{n+\rho}} \leq K_{i}(|x|) \leq \frac{\tilde{d}_{2}}{|x|^{n+\rho}} \quad \text { for }|x| \gg 1
$$

Springer

We then establish the following.

Theorem 1.1 Let $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{3}\right)$ hold. Then (1.1) has a positive radial solution $(u, v)(u>0$, $v>0$ in Ω_{e}) when λ is small, and $\|u\|_{\infty} \rightarrow \infty,\|v\|_{\infty} \rightarrow \infty$ as $\lambda \rightarrow 0$.

We prove this result via the Leray-Schauder degree theory, by arguments similar to those used in [1] and [2]. The study of such eigenvalue problems with semipositone structure has been documented to be mathematically challenging (see [3, 4]), yet a rich history is developing starting from the 1980s (see [5-7]) until recently (see [8-12]). In [1, 2] the authors studied such superlinear semipositone problems on bounded domains. In particular, in [12] the authors studied the system

$$
\left.\begin{array}{ll}
-\Delta u=\lambda f(v) & \text { in } \Omega, \\
-\Delta v=\lambda g(u) & \text { in } \Omega, \\
u=v=0 & \text { on } \partial \Omega,
\end{array}\right\}
$$

where Ω is a bounded domain in $\mathbb{R}^{n}, n \geq 1$, and establish an existence result when λ is small. The main motivation of this paper is to extend this study in the case of exterior domains (see Theorem 1.1).
We also discuss a non-existence result for the single equation model:

$$
\left.\begin{array}{ll}
-\Delta u=\lambda K_{1}(|x|) \tilde{f}(u) & \text { in } \Omega_{e}, \\
u(x)=0 & \text { if }|x|=r_{0}(>0), \tag{1.2}\\
u(x) \rightarrow 0 & \text { as }|x| \rightarrow \infty
\end{array}\right\}
$$

for large values of λ, when \tilde{f}, K_{1} satisfy the following hypotheses:
$\left(\mathrm{H}_{4}\right) \tilde{f} \in C^{1}([0, \infty), \mathbb{R}), \tilde{f}^{\prime}(z)>0$ for all $z>0, \tilde{f}(0)<0$, and there exists $m_{0}>0$ such that $\lim _{z \rightarrow \infty} \frac{\tilde{f}(z)}{z} \geq m_{0}$.
$\left(\mathrm{H}_{5}\right)$ The weight function $K_{1} \in C^{1}\left(\left[r_{0}, \infty\right),(0, \infty)\right)$ is such that $s^{\frac{-2(n-1)}{n-2}} K_{1}\left(r_{0} s^{\frac{1}{2-n}}\right)$ is decreasing for $s \in(0,1]$.

We establish the following.

Theorem 1.2 Let $\left(\mathrm{H}_{3}\right)-\left(\mathrm{H}_{5}\right)$ hold. Then (1.2) has no nonnegative radial solution for $\lambda \gg 1$.

We establish Theorem 1.2 by recalling various useful properties of solutions established in [13], where the authors prove a uniqueness result for $\lambda \gg 1$ for such an equation in the case when \tilde{f} is sublinear at ∞. However, the properties we recall from [13] are independent of the growth behavior of \tilde{f} at ∞. Non-existence results for such superlinear semipositone problems on bounded domain also have a considerable history starting from the work in the 1980s in [14] leading to the recent work in [15]. Here we discuss such a result for the first time on exterior domains.

Finally, we note that the study of radial solutions $(u(r), v(r))$ (with $r=|x|$) of (1.1) corresponds to studying

$$
\begin{array}{ll}
-\left(r^{n-1} u^{\prime}(r)\right)^{\prime}=\lambda r^{n-1} K_{1}(r) f(v(r)) & \text { for } r>r_{0}, \\
-\left(r^{n-1} v^{\prime}(r)\right)^{\prime}=\lambda r^{n-1} K_{2}(r) g(u(r)) & \text { for } r>r_{0}, \\
u(r)=v(r)=0 & \text { if } r=r_{0}(>0), \\
u(r) \rightarrow 0, v(r) \rightarrow 0 & \text { as } r \rightarrow \infty,
\end{array}
$$

which can be reduced to the study of solutions $(u(s), v(s)) ; s \in[0,1]$ to the singular system:

$$
\left.\begin{array}{ll}
-u^{\prime \prime}(s)=\lambda h_{1}(s) f(v(s)), & 0<s<1, \tag{1.3}\\
-v^{\prime \prime}(s)=\lambda h_{2}(s) g(u(s)), & 0<s<1, \\
u(0)=u(1)=0, v(0)=v(1)=0, &
\end{array}\right\}
$$

via the Kelvin transformation $s=\left(\frac{r}{r_{0}}\right)^{2-n}$, where $h_{i}(s)=\frac{r_{0}^{2}}{(n-2)^{2}} s^{\frac{-2(n-1)}{(n-2)}} K_{i}\left(r_{0} s^{\frac{1}{2-n}}\right), i=1,2$ (see [16]).

Remark 1.3 The assumption $\left(\mathrm{H}_{3}\right)$ implies that $\lim _{s \rightarrow 0^{+}} h_{i}(s)=\infty$, for $i=1,2$, $\hat{h}=\inf _{t \in(0,1)}\left\{h_{1}(t), h_{2}(t)\right\}>0$, and there exist $d>0, \eta \in(0,1)$ such that $h_{i}(s) \leq \frac{d}{s^{\eta}}$ for $s \in(0,1]$, and for $i=1,2$. When in addition $\left(\mathrm{H}_{5}\right)$ is satisfied, h_{1} is decreasing in $(0,1]$.

We will prove Theorem 1.1 in Section 2 by studying the singular system (1.3), and Theorem 1.2 in Section 3 by studying the corresponding single equation

$$
\left.\begin{array}{l}
-u^{\prime \prime}(s)=\lambda h_{1}(s) \tilde{f}(u(s)), \quad 0<s<1, \tag{1.4}\\
u(0)=u(1)=0 .
\end{array}\right\}
$$

2 Existence result

We first establish some useful results for solutions to the system

$$
\left.\begin{array}{ll}
-u^{\prime \prime}(s)=b_{1} h_{1}(s)|v(s)+l|^{q_{1}}, & 0<s<1, \tag{2.1}\\
-v^{\prime \prime}(s)=b_{2} h_{2}(s)|u(s)+l|^{q_{2}}, & 0<s<1, \\
u(0)=u(1)=0, v(0)=v(1)=0, &
\end{array}\right\}
$$

where $l \geq 0$ is a parameter. (Clearly, any solution $\left(u_{l}, v_{l}\right)$ of (2.1) for $l>0$ must satisfy $u_{l}(s)>0, v_{l}(s)>0$ for $s \in(0,1)$. This is also true for any nontrivial solution when $l=0$.) We prove the following.

Lemma 2.1

(i) There exists $l_{0}>0$ such that 2.1 has no solution if $l \geq l_{0}$.
(ii) For each $l \in\left[0, l_{0}\right)$, there exists $M>0$ (independent of l) such that if $\left(u_{l}, v_{l}\right)$ is a solution of (2.1), then $\max \left\{\left\|u_{l}\right\|_{\infty},\left\|v_{l}\right\|_{\infty}\right\} \leq M$.

Proof of (i) Let $\lambda_{1}:=\pi^{2}, \phi_{1}:=\sin (\pi s)$. Here λ_{1} is the principal eigenvalue and ϕ_{1} a corresponding eigenfunction of $-\phi^{\prime \prime}(s)=\lambda \phi(s)$ in $(0,1)$ with $\phi(0)=0=\phi(1)$. Let $a>\frac{\lambda_{1}}{\sqrt{b_{1} b_{2} \hat{h}}}, c>0$ be such that $(s+l)^{q_{i}} \geq a s-c$ for all $s \geq 0$ and for $i=1,2$. Now let $\left(u_{l}, v_{l}\right)$ be a solution of
(2.1). Multiplying (2.1) by ϕ_{1} and integrating, we obtain

$$
\lambda_{1} \int_{0}^{1} u_{l} \phi_{1} d s=b_{1} \int_{0}^{1} h_{1}(s)\left(v_{l}+l\right)^{q_{1}} \phi_{1} d s \geq b_{1} \int_{0}^{1} h_{1}(s)\left(a v_{l}-c\right) \phi_{1} d s
$$

and

$$
\lambda_{1} \int_{0}^{1} v_{l} \phi_{1} d s=b_{2} \int_{0}^{1} h_{2}(s)\left(u_{l}+l\right)^{q_{2}} \phi_{1} d s \geq b_{2} \int_{0}^{1} h_{2}(s)\left(a u_{l}-c\right) \phi_{1} d s
$$

By Remark 1.3, $\hat{h}=\inf _{t \in(0,1)}\left\{h_{1}(t), h_{2}(t)\right\}>0$, and $\left\|h_{i}\right\|_{1}:=\int_{0}^{1} h_{i}(s) d s<\infty$ for $i=1,2$. Then from the above inequalities we obtain

$$
\int_{0}^{1} v_{l} \phi_{1} d s \leq \frac{1}{a b_{1} \hat{h}}\left(\lambda_{1} \int_{0}^{1} u_{l} \phi_{1} d s+b_{1} c\left\|h_{1}\right\|_{1}\right)
$$

and

$$
\int_{0}^{1} u_{l} \phi_{1} d s \leq \frac{1}{a b_{2} \hat{h}}\left(\lambda_{1} \int_{0}^{1} v_{l} \phi_{1} d s+b_{2} c\left\|h_{2}\right\|_{1}\right) .
$$

Hence we deduce that

$$
\int_{0}^{1} u_{l} \phi_{1} d s \leq \frac{m_{1}}{m}:=m_{2}
$$

where $m:=\left(a b_{2} \hat{h}-\frac{\lambda_{1}^{2}}{a b_{1} \hat{h}}\right)$, and $m_{1}:=\frac{\lambda_{1} c\left\|h_{1}\right\|_{1}}{a \hat{h}}+b_{2} c\left\|h_{2}\right\|_{1}$. This implies

$$
\int_{0}^{1}\left(v_{l}+l\right)^{q_{1}} \phi_{1} d s \leq \frac{\lambda_{1} m_{2}}{b_{1} \hat{h}}:=m_{3} .
$$

In particular, this implies $\int_{\frac{1}{4}}^{\frac{3}{4}} l^{q_{1}} \mathrm{~d} s \leq \frac{m_{3}}{\inf _{\left[\frac{1}{4}, \frac{3}{4}\right]} \phi_{1}}$. Since m_{3} is independent of l, clearly this is a contradiction for $l \gg 1$, and hence there must exists an $l_{0}>0$ such that for $l \geq l_{0}$, (2.1) has no solution.

Proof of (ii) Assume the contrary. Then without loss of generality we can assume there exists $\left\{l_{n}\right\} \subset\left(0, l_{0}\right)$ such that $\left\|u_{l_{n}}\right\|_{\infty} \rightarrow \infty$ as $n \rightarrow \infty$. Clearly $u_{l_{n}}^{\prime \prime}(s)<0$, and $v_{l_{n}}^{\prime \prime}(s)<0$ for all $s \in(0,1)$. Let $s_{1\left(l_{n}\right)} \in(0,1), s_{2\left(l_{n}\right)} \in(0,1)$ be the points at which $u_{l_{n}}$ and $v_{l_{n}}$ attain their maximums. Now since $u_{l_{n}}^{\prime \prime}(s)<0$ for all $s \in(0,1)$, we have

$$
u_{l_{n}}(s) \geq \begin{cases}\frac{s u_{n}\left(s_{1}\left(l_{n}\right)\right.}{\left(s_{1}\left(l_{n}\right)\right.} & \text { for } s \in\left(0, s_{1\left(l_{n}\right)}\right), \\ \frac{(1-s) u_{l_{n}}\left(s_{1}\left(l_{n}\right)\right)}{1-s_{1\left(l_{n}\right)}} & \text { for } s \in\left(s_{1\left(l_{n}\right)}, 1\right) .\end{cases}
$$

Hence $u_{l_{n}}(s) \geq \min \left\{\frac{s\left\|u_{l_{n}}\right\|_{\infty}}{s_{1\left(l_{n}\right)}}, \frac{(1-s)\left\|u_{l_{n}}\right\|_{\infty}}{1-s_{1\left(l_{n}\right)}}\right\}$, and in particular, for $s \in\left[\frac{1}{4}, \frac{3}{4}\right]$,

$$
u_{l_{n}}(s) \geq \min \left\{\frac{1}{4}\left\|u_{l_{n}}\right\|_{\infty}, \frac{1}{4}\left\|u_{l_{n}}\right\|_{\infty}\right\}=\frac{1}{4}\left\|u_{l_{n}}\right\|_{\infty} .
$$

Let $\tilde{s_{n}}, \bar{s}_{l_{n}} \in\left[\frac{1}{4}, \frac{3}{4}\right]$ be such that $\min _{\left[\frac{1}{4}, \frac{3}{4}\right]} u_{l_{n}}(s)=u_{l_{n}}\left(\tilde{s_{n}}\right)$, and $\min _{\left[\frac{1}{4}, \frac{3}{4}\right]} v_{l_{n}}(s)=v_{l_{n}}\left(\overline{s_{n}}\right)$. Now for $s \in\left[\frac{1}{4}, \frac{3}{4}\right]$,

$$
v_{l_{n}}(s) \geq b_{2} \hat{h} \tilde{m} \int_{\frac{1}{4}}^{\frac{3}{4}}\left|u_{l_{n}}(t)+l\right|^{q_{2}} d t
$$

where $\tilde{m}:=\min _{\left[\frac{1}{4}, \frac{3}{4}\right] \times\left[\frac{1}{4}, \frac{3}{4}\right]} G(s, t)(>0)$, and G is the Green's function of $-Z^{\prime \prime}$ with $Z(0)=0=$ $Z(1)$. In particular, $v_{l_{n}}\left(\overline{l_{n}}\right) \geq b_{2} \hat{h} \frac{\tilde{m}}{2}\left(u_{l_{n}}\left(\tilde{l_{n}}\right)\right)^{q_{2}}$. Similarly $u_{l_{n}}\left(\tilde{l_{n}}\right) \geq b_{1} \hat{h} \frac{m}{2}\left(v_{l_{n}}\left(\overline{l_{n}}\right)\right)^{q_{1}}$. Hence, there exists a constant $A>0$ such that

$$
u_{l_{n}}\left(\tilde{s_{n}}\right) \geq A\left(u_{l_{n}}\left(\tilde{s_{l_{n}}}\right)\right)^{q_{1} q_{2}} .
$$

This is a contradiction since $q_{1} q_{2}>1$ and $u_{l_{n}}\left(\tilde{s_{n}}\right) \geq \frac{1}{4}\left\|u_{l_{n}}\right\|_{\infty} \rightarrow \infty$ as $n \rightarrow \infty$. Thus (ii) holds.

Proof of Theorem 1.1 We first extend f and g as even functions on \mathbb{R} by setting $f(-s)=f(s)$ and $g(-s)=g(s)$. Then we use the rescaling, $\lambda=\gamma^{\delta}, w_{1}=\gamma u$, and $w_{2}=\gamma^{\theta} v$ with $\gamma>0$, $\theta=\frac{q_{2}+1}{q_{1}+1}$, and $\delta=\frac{q_{1} q_{2}-1}{q_{1}+1}$. With this rescaling, (1.3) reduces to

$$
\left.\begin{array}{ll}
-w_{1}^{\prime \prime}(s)=F\left(s, \gamma, w_{2}\right), & 0<s<1, \tag{2.2}\\
-w_{2}^{\prime \prime}(s)=G\left(s, \gamma, w_{1}\right), & 0<s<1, \\
w_{1}(0)=w_{1}(1)=0, w_{2}(0)=w_{2}(1)=0, &
\end{array}\right\}
$$

where

$$
\begin{aligned}
& F\left(s, \gamma, w_{2}\right):=\gamma^{1+\delta} h_{1}(s)\left(f\left(\frac{w_{2}}{\gamma^{\theta}}\right)-b_{1}\left|\frac{w_{2}}{\gamma^{\theta}}\right|^{q_{1}}\right)+b_{1}\left|w_{2}\right|^{q_{1}} h_{1}(s), \quad \text { and } \\
& G\left(s, \gamma, w_{1}\right):=\gamma^{\theta+\delta} h_{2}(s)\left(g\left(\frac{w_{1}}{\gamma}\right)-b_{2}\left|\frac{w_{1}}{\gamma}\right|^{q_{2}}\right)+b_{2}\left|w_{1}\right|^{q_{2}} h_{2}(s) .
\end{aligned}
$$

Note that by our hypothesis $\left(\mathrm{H}_{2}\right), F\left(s, \gamma, w_{2}\right) \rightarrow b_{1}\left|w_{2}\right|^{q_{1}} h_{1}(s)$ and $G\left(s, \gamma, w_{1}\right) \rightarrow b_{2}\left|w_{1}\right|^{q_{2}} \times$ $h_{2}(s)$ as $\gamma \rightarrow 0$. Hence we can continuously extend $F\left(s, \gamma, w_{2}\right)$ and $G\left(s, \gamma, w_{1}\right)$ to $F\left(s, 0, w_{2}\right)=$ $b_{1}\left|w_{2}\right|^{q_{1}} h_{1}(s)$ and $G\left(s, 0, w_{1}\right)=b_{2}\left|w_{1}\right|^{q_{2}} h_{2}(s)$, respectively. Note that proving (1.3) has a positive solution for λ small is equivalent to proving (2.2) has a solution (w_{1}, w_{2}) with $w_{1}>0$, $w_{2}>0$ in $(0,1)$ for small $\gamma>0$. We will achieve this by establishing that the limiting equation (when $\gamma=0$)

$$
\left.\begin{array}{ll}
-w_{1}^{\prime \prime}(s)=F\left(s, 0, w_{2}\right)=b_{1} h_{1}(s)\left|w_{2}\right|^{q_{1}}, & 0<s<1, \tag{2.3}\\
-w_{2}^{\prime \prime}(s)=G\left(s, 0, w_{1}\right)=b_{2} h_{2}(s)\left|w_{1}\right|^{q_{2}}, & 0<s<1, \\
w_{1}(0)=w_{1}(1)=0, w_{2}(0)=w_{2}(1)=0 &
\end{array}\right\}
$$

(which is the same as (2.1) with $l=0$) has a positive solution $w_{1}>0, w_{2}>0$ in $(0,1)$ that persists for small $\gamma>0$.
Let $X=C_{0}[0,1] \times C_{0}[0,1]$ be the Banach space equipped with $\|\underline{w}\|_{X}=\left\|\left(w_{1}, w_{2}\right)\right\|_{X}=$ $\max \left\{\left\|w_{1}\right\|_{\infty},\left\|w_{2}\right\|_{\infty}\right\}$, where $\|\cdot\|_{\infty}$ denotes the usual supremum norm in $C_{0}([0,1])$. Then for fixed $\gamma \geq 0$, we define the map $S(\gamma, \cdot): X \rightarrow X$ by

$$
S(\gamma, \underline{w}):=\underline{w}-\left(K\left(F\left(s, \gamma, w_{2}\right)\right), K\left(G\left(s, \gamma, w_{1}\right)\right)\right),
$$

where $K(H(s, \gamma, Z(s)))=\int_{0}^{1} G(t, s) H(t, \gamma, Z(t)) d t$. Note that $F(s, \gamma, \cdot), G(s, \gamma, \cdot): C_{0}([0,1]) \rightarrow$ $L^{1}(0,1)$ are continuous and $K: L^{1}(0,1) \rightarrow C_{0}^{1}([0,1])$ is compact. Hence $S(\gamma, \cdot)$ is a compact perturbation of the identity. Clearly for $\gamma>0$, if $S(\gamma, \underline{w})=\underline{0}$, then $\underline{w}=\left(w_{1}, w_{2}\right)$ is a solution of (2.2), and if $S(0, \underline{w})=\underline{0}$, then $\underline{w}=\left(w_{1}, w_{2}\right)$ is a solution of (2.3).

We first establish the following.

Lemma 2.2 There exists $R>0$ such that $S(0, \underline{w}) \neq \underline{0}$ for all $\underline{w}=\left(w_{1}, w_{2}\right) \in X$ with $\|\underline{w}\|_{X}=R$ and $\operatorname{deg}\left(S(0, \cdot), B_{R}(\underline{0}), \underline{0}\right)=0$.

Proof Define $S^{l}(0, \underline{w}): X \rightarrow X$ by

$$
S^{l}(0, \underline{w}):=\underline{w}-\left(K\left(b_{1} h_{1}(s)\left|w_{2}+l\right|^{q_{1}}\right), K\left(b_{2} h_{2}(s)\left|w_{1}+l\right|^{q_{2}}\right)\right)
$$

for $l \geq 0$. (Note $S^{0}(0, \underline{w})=S(0, \underline{w})$.) By Lemma 2.1, if $l \geq l_{0}$ then $S^{l}(0, \underline{w}) \neq \underline{0}$ and if $S^{l}(0, \underline{w})=\underline{0}$ for $l \in\left[0, l_{0}\right)$, then $\|w\|_{X} \leq M$. This implies that there exists $R \gg 1$ such that $S^{l}(0, \underline{w}) \neq \underline{0}$ for $\underline{w} \in \partial B_{R}(\underline{0})$ for any $l \geq 0$. Also, since (2.1) has no solution for $l \geq l_{0}$, $\operatorname{deg}\left(S^{l_{0}}(0, \cdot), B_{R}(\underline{0}), \underline{0}\right)=0$. Hence, using the homotopy invariance of degree with the parameter $l \in\left[0, l_{0}\right]$ we get

$$
\operatorname{deg}\left(S(0, \cdot), B_{R}(\underline{0}), \underline{0}\right)=\operatorname{deg}\left(S^{l_{0}}(0, \cdot), B_{R}(\underline{0}), \underline{0}\right)=0 .
$$

Next we establish the following.

Lemma 2.3 There exists $r \in(0, R)$ small enough such that $S(0, \underline{w}) \neq \underline{0}$ for all $\underline{w}=\left(w_{1}, w_{2}\right) \in$ X with $\|\underline{w}\|_{X}=r$ and $\operatorname{deg}\left(S(0, \cdot), B_{r}(\underline{0}), \underline{0}\right)=1$.

Proof Define $T^{\tau}(0, \underline{w}): X \rightarrow X$ by

$$
T^{\tau}(0, \underline{w}):=\underline{w}-\left(K\left(\tau b_{1} h_{1}(s)\left|w_{2}\right|^{q_{1}}\right), K\left(\tau b_{2} h_{2}(s)\left|w_{1}\right|^{q_{2}}\right)\right)
$$

for $\tau \in[0,1]$. Clearly $T^{1}(0, \underline{w})=S(0, \underline{w})$, and $T^{0}(0, \underline{w})=I$ is the identity operator. Note that $T^{\tau}(0, \underline{w})=0$ if $\underline{w}=\left(w_{1}, w_{2}\right)$ is a solution of

$$
\left.\begin{array}{ll}
-w_{1}^{\prime \prime}(s)=\tau b_{1} h_{1}(s)\left|w_{2}\right|^{q_{1}}, & 0<s<1, \tag{2.4}\\
-w_{2}^{\prime \prime}(s)=\tau b_{2} h_{2}(s)\left|w_{1}\right|^{q_{2}}, & 0<s<1, \\
w_{1}(0)=w_{1}(1)=0, w_{2}(0)=w_{2}(1)=0, &
\end{array}\right\}
$$

and for $\tau=1$, (2.4) coincides with (2.3). Assume to the contrary that (2.4) has a solution $\underline{w}=\left(w_{1}, w_{2}\right)$ with $\|\underline{w}\|_{X}=\tilde{r}>0$. Without loss of generality assume $\left\|w_{1}\right\|_{\infty}=\tilde{r}$. Now,

$$
w_{1}(s)=\tau \int_{0}^{1} G(s, t) b_{1} h_{1}(s)\left|w_{2}\right|^{q_{1}} d s .
$$

Then $\left\|w_{1}\right\|_{\infty} \leq \tilde{C}\left\|w_{2}\right\|_{\infty}^{q_{1}}$ for some constant $\tilde{C}>0$ independent of $\tau \in[0,1]$. Similarly $\left\|w_{2}\right\|_{\infty} \leq \hat{C}\left\|w_{1}\right\|_{\infty}^{q_{2}}$ for some constant $\hat{C}>0$. This implies that

$$
\tilde{r}=\left\|w_{1}\right\|_{\infty} \leq C\left\|w_{1}\right\|_{\infty}^{q_{1} q_{2}}=C \tilde{r}^{q_{1} q_{2}}
$$

for some constant $C>0$. But $q_{1} q_{2}>1$, and hence this is a contradiction if $\tilde{r}>0$ is small. Thus there exists small $r>0$ such that (2.4) has no solution \underline{w} with $\|\underline{w}\|_{X}=r$ for all $\tau \in[0,1]$. Now using the homotopy invariance of degree with the parameter $\tau \in[0,1]$, in particular using the values $\tau=1$ and $\tau=0$, we obtain

$$
\operatorname{deg}\left(S(0, \cdot), B_{r}(\underline{0}), \underline{0}\right)=\operatorname{deg}\left(T^{1}(0, \cdot), B_{r}(\underline{0}), \underline{0}\right)=\operatorname{deg}\left(T^{0}(0, \cdot), B_{r}(\underline{0}), \underline{0}\right)=1 .
$$

By Lemma 2.2 and Lemma 2.3, with $0<r<R$, we conclude that

$$
\operatorname{deg}\left(S(0, \cdot), B_{R}(\underline{0}) \backslash \overline{B_{r}}(\underline{0}), \underline{0}\right)=-1
$$

and hence (2.3) has a solution $\underline{w}=\left(w_{1}, w_{2}\right)$ with $w_{1}>0, w_{2}>0$ in $(0,1)$, and $r<\|w\|_{X}<R$. Now we show that the solution obtained above (when $\gamma=0$) persists for small $\gamma>0$ and remains positive componentwise.

Lemma 2.4 Let R, r be as in Lemmas 2.2, 2.3, respectively. Then there exists $\gamma_{0}>0$ such that:
(i) $\operatorname{deg}\left(S(\gamma, \cdot), B_{R}(\underline{0}) \backslash \overline{B_{r}}(\underline{0}), \underline{0}\right)=-1$ for all $\gamma \in\left[0, \gamma_{0}\right]$.
(ii) If $S(\gamma, \underline{w})=\underline{0}$ for $\gamma \in\left[0, \gamma_{0}\right]$ with $r<\|\underline{w}\|_{X}<R$, then $w_{1}>0, w_{2}>0$ in $(0,1)$.

Proof of (i) We first show that there exists $\gamma_{0}>0$ such that $S(\gamma, \underline{w}) \neq \underline{0}$ for all $\underline{w}=\left(w_{1}, w_{2}\right) \in$ X with $\|\underline{w}\|_{X} \in\{R, r\}$, for all $\gamma \in\left[0, \gamma_{0}\right]$. Suppose to the contrary that there exists $\left\{\gamma_{n}\right\}$ with $\gamma_{n} \rightarrow 0, S\left(\gamma_{n}, \underline{w_{n}}\right)=\underline{0}$ and $\left\|\underline{w_{n}}\right\|_{X} \in\{r, R\}$. Since $\underline{K}=(K, K): L^{1}(0,1) \times L^{1}(0,1) \rightarrow$ $C_{0}^{1}([0,1]) \times C_{0}^{1}([0,1])$ is compact, and $\left\{F\left(s, \gamma_{n}, w_{2 n}\right), G\left(s, \gamma_{n}, w_{1 n}\right)\right\}$ are bounded in $L^{1}(0,1) \times$ $L^{1}(0,1), \underline{w}_{n} \rightarrow \underline{Z}=\left(Z_{1}, Z_{2}\right) \in C_{0}^{1}([0,1]) \times C_{0}^{1}([0,1])$ (up to a subsequence) with $\|\underline{Z}\|_{X}=R$ or r and $S(0, \underline{Z})=\underline{0}$. This is a contradiction to Lemma 2.2 or 2.3 and hence there exists a small $\gamma_{0}>0$ satisfying the assertions. Now, by the homotopy invariance of degree with respect to $\gamma \in\left[0, \gamma_{0}\right]$,

$$
\operatorname{deg}\left(S(\gamma, \cdot), B_{R}(\underline{0}) \backslash \overline{B_{r}}(\underline{0}), \underline{0}\right)=\operatorname{deg}\left(S(0, \cdot), B_{R}(\underline{0}) \backslash \overline{B_{r}}(\underline{0}), \underline{0}\right)=-1
$$

for all $\gamma \in\left[0, \gamma_{0}\right]$.

Proof of (ii) Assume to the contrary that there exists $\gamma_{n} \rightarrow 0$ and a corresponding solution $\underline{w_{n}}=\left(w_{1 n}, w_{2 n}\right)$ such that $r<\left\|\underline{w_{n}}\right\|_{X}<R$ and

$$
\Omega_{n}:=\left\{x \in(0,1) \mid w_{1 n}(x) \leq 0 \text { or } w_{2 n}(x) \leq 0\right\} \neq \emptyset .
$$

Arguing as before, $\underline{w}_{n} \rightarrow \underline{Z} \in C_{0}^{1}([0,1]) \times C_{0}^{1}([0,1])$ with $S(0, \underline{Z})=\underline{0}$ (up to a subsequence). Note that $\underline{Z} \not \equiv \underline{0}$ since $\|\underline{Z}\|_{X} \geq r>0$. By the strong maximum principle $Z_{1}>0, Z_{2}>0$, $Z_{1}^{\prime}(0)>0, Z_{2}^{\prime}(0)>0, Z_{1}^{\prime}(1)<0$ and $Z_{2}^{\prime}(1)<0$. Now suppose there exists $\left\{x_{n}\right\} \in(0,1)$ with $\left\{x_{n}\right\} \in \Omega_{n}$ and $w_{1 n}\left(x_{n}\right) \leq 0$. Then $\left\{x_{n}\right\}$ must have a subsequence (renamed as $\left\{x_{n}\right\}$ itself) such that $x_{n} \rightarrow \tilde{x} \in[0,1]$. But $Z_{1}>0$ in $(0,1)$ implies that $\tilde{x} \in\{0,1\}$. Suppose $\tilde{x}=0$. Since $w_{1 n}\left(x_{n}\right) \leq 0$ and $w_{1 n}(0)=0$, there exists $y_{n} \in\left(0, x_{n}\right)$ such that $w_{1 n}^{\prime}\left(y_{n}\right) \leq 0$, and hence taking the limit as $n \rightarrow \infty$ we will have $Z_{1}^{\prime}(0) \leq 0$, which is a contradiction since $Z_{1}^{\prime}(0)>0$. A similar contradiction follows if $\tilde{x}=1$, using the fact that $Z_{1}^{\prime}(1)<0$. Further, contradictions can
be achieved if there exists $\left\{x_{n}\right\} \in \Omega$ with $\left\{x_{n}\right\} \in \Omega_{n}$ and $w_{2 n}\left(x_{n}\right) \leq 0$ using the facts that $Z_{2}^{\prime}(0)>0$ and $Z_{2}^{\prime}(1)<0$. This completes the proof of the lemma.

We now easily conclude the proof of Theorem 1.1. From Lemma 2.4, since $\underline{w}=\left(w_{1}, w_{2}\right)$ is a positive solution of (2.2) for γ small, $(u, v)=\left(\gamma^{-1} w_{1}, \gamma^{-\theta} w_{2}\right)$ with $\theta=\frac{q_{2}+1}{q_{1}+1}$ is a positive solution of (1.3) for $\lambda=\gamma^{\delta}$ where $\delta=\frac{q_{1} q_{2}-1}{q_{1}+1}$. Further, since $w_{1}>0$ and $w_{2}>0$ in $(0,1)$ for $\gamma \in\left[0, \gamma_{0}\right],\|u\|_{\infty} \rightarrow \infty$ and $\|v\|_{\infty} \rightarrow \infty$ as $\lambda\left(=\gamma^{\delta}\right) \rightarrow 0$. This completes the proof of Theorem 1.1.

3 Non-existence result

We first recall from [13] that, when $\left(\mathrm{H}_{5}\right)$ is satisfied, one can prove via an energy analysis that a nonnegative solution u of $(1,4)$ must be positive in $(0,1)$ and have a unique interior maximum with maximum value greater than θ, where θ is the unique positive zero of $\tilde{F}(s)=\int_{0}^{s} \tilde{f}(y) d y$. Further, for $\lambda \gg 1$ and $s_{1}, \hat{s_{1}} \in(0,1)$ such that $\hat{s_{1}}>s_{1}, u\left(s_{1}\right)=u\left(\hat{s_{1}}\right)=\beta$ (see Figure 1), where $\beta>0$ is the unique zero of \tilde{f}, there exists a constant C such that $s_{1} \leq C \lambda^{-\frac{1}{2}}$ and $\left(1-\hat{s_{1}}\right) \leq C \lambda^{-\frac{1}{2}}$. Hence we can assume $\left(\hat{s_{1}}-s_{1}\right)>\frac{1}{2}$ for $\lambda \gg 1$. Now we provide the proof of Theorem 1.2.

Proof of Theorem 1.2 Let $v:=u-\beta$. Then $v>0$ in $\left(s_{1}, \hat{s_{1}}\right)$ and satisfies

$$
\left.\begin{array}{l}
-v^{\prime \prime}=\lambda h_{1}(s) \frac{\tilde{f}(u)}{u-\beta} v, \quad s_{1}<s<\hat{s_{1}}, \\
v\left(s_{1}\right)=v\left(\hat{s_{1}}\right)=0 .
\end{array}\right\}
$$

Note that $\phi(s)=-\left(\sin \left(\frac{\pi\left(s-s_{1}\right)}{\left(s_{1}-s_{1}\right)}\right)\right)>0$ in $\left(s_{1}, \hat{s_{1}}\right), \phi\left(s_{1}\right)=\phi\left(\hat{s_{1}}\right)=0$, and it satisfies $-\phi^{\prime \prime}=\frac{\pi^{2}}{\left(\hat{s}_{1}-s_{1}\right)^{2}} \phi$ in $\left(s_{1}, \hat{s_{1}}\right)$. Hence using the fact that $\int_{s_{1}}^{s_{1}}\left(-\phi v^{\prime \prime}+v \phi^{\prime \prime}\right) d s=0$, we obtain

$$
\int_{s_{1}}^{\hat{s}_{1}}\left(\lambda \frac{\tilde{f}(u)}{u-\beta} h_{1}(s)-\frac{\pi^{2}}{\left(\hat{s_{1}}-s_{1}\right)^{2}}\right) v \phi d s=0 .
$$

In particular,

$$
\begin{equation*}
\lambda \frac{\tilde{f}\left(u\left(s_{\lambda}\right)\right)}{u\left(s_{\lambda}\right)-\beta} h_{1}\left(s_{\lambda}\right)=\frac{\pi^{2}}{\left(\hat{s_{1}}-s_{1}\right)^{2}}, \quad \text { for some } s_{\lambda} \in\left(s_{1}, \hat{s_{1}}\right) \tag{3.1}
\end{equation*}
$$

Figure 1 Graph of u.

But $\hat{h}=\inf _{(0,1)} h_{1}(s)>0$, and $\left(\hat{s_{1}}-s_{1}\right)>\frac{1}{2}$ for $\lambda \gg 1$. Thus clearly (3.1) can hold when $\lambda \rightarrow \infty$, only if $Z=u\left(s_{\lambda}\right) \rightarrow \infty$ with $\frac{\tilde{f}\left(u\left(s_{\lambda}\right)\right)}{u\left(s_{\lambda}\right)-\beta} \rightarrow 0$. But by $\left(\mathrm{H}_{4}\right)$, this is not possible since $\lim _{Z \rightarrow \infty} \frac{\tilde{f}(Z)}{Z} \geq m_{0}>0$. Hence the nonnegative solution cannot exist for $\lambda \gg 1$.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details

'Department of Mathematics and Statistics, The University of North Carolina at Greensboro, Greensboro, USA.
${ }^{2}$ Department of Mathematics \& NTIS, University of West Bohemia, Univerzitní 22, Plzeň, 30614, Czech Republic.

Acknowledgements

The third author is funded by the project EXLIZ - CZ.1.07/2.3.00/30.0013, which is co-financed by the European Socia Fund and the state budget of the Czech Republic.

Received: 8 May 2014 Accepted: 5 August 2014 Published online: 25 September 2014

References

1. Ambrosetti, A, Arcoya, D, Buffoni, B: Positive solutions for some semi-positone problems via bifurcation theory. Differ. Integral Equ. 7(3-4), 655-663 (1994)
2. Maya, C, Girg, P: Existence and nonexistence of positive solutions for a class of superlinear semipositone systems. Nonlinear Anal. 71(10), 4984-4996 (2009)
3. Berestycki, H, Caffarelli, LA, Nirenberg, L: Inequalities for second-order elliptic equations with applications to unbounded domains. I. Duke Math. J. 81(2), 467-494 (1996). A celebration of John F. Nash, Jr
4. Lions, P-L: On the existence of positive solutions of semilinear elliptic equations. SIAM Rev. 24(4), 441-467 (1982)
5. Brown, KJ, Shivaji, R: Simple proofs of some results in perturbed bifurcation theory. Proc. R. Soc. Edinb., Sect. A 93(1-2), 71-82 (1982/1983)
6. Castro, A, Shivaji, R: Nonnegative solutions for a class of nonpositone problems. Proc. R. Soc. Edinb., Sect. A 108(3-4), 291-302 (1988)
7. Castro, A, Shivaji, R: Nonnegative solutions to a semilinear Dirichlet problem in a ball are positive and radially symmetric. Commun. Partial Differ. Equ. 14(8-9), 1091-1100 (1989)
8. Hai, DD, Sankar, L, Shivaji, R: Infinite semipositone problems with asymptotically linear growth forcing terms. Differ. Integral Equ. 25(11-12), 1175-1188 (2012)
9. Lee, EK, Sankar, L, Shivaji, R: Positive solutions for infinite semipositone problems on exterior domains. Differ. Integral Equ. 24(9-10), 861-875 (2011)
10. Lee, EK, Shivaji, R, Ye, J: Classes of infinite semipositone systems. Proc. R. Soc. Edinb., Sect. A 139(4), 853-865 (2009)
11. Sankar, L, Sasi, S, Shivaji, R: Semipositone problems with falling zeros on exterior domains. J. Math. Anal. Appl. 401(1), 146-153 (2013)
12. Maya, C, Girg, P: Existence of positive solutions for a class of superlinear semipositone systems. J. Math. Anal. Appl. 408(2), 781-788 (2013)
13. Castro, A, Sankar, L, Shivaji, R: Uniqueness of nonnegative solutions for semipositone problems on exterior domains. J. Math. Anal. Appl. 394(1), 432-437 (2012)
14. Brown, KJ, Castro, A, Shivaji, R: Nonexistence of radially symmetric nonnegative solutions for a class of semi-positone problems. Differ. Integral Equ. 2(4), 541-545 (1989)
15. Shivaji, R, Ye, J: Nonexistence results for classes of 3×3 elliptic systems. Nonlinear Anal. 74(4), 1485-1494 (2011)
16. Ko, E, Lee, EK, Shivaji, R: Multiplicity results for classes of singular problems on an exterior domain. Discrete Contin. Dyn. Syst. 33(11-12), 5153-5166 (2013)

doi:10.1186/s13661-014-0198-z

Cite this article as: Abebe et al.: Positive solutions for a class of superlinear semipositone systems on exterior domains. Boundary Value Problems 2014 2014:198.

