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Abstract
We discuss the existence of solutions of nonlinear third order ordinary differential
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1 Introduction
The purpose of this paper is to establish the existence of solutions for a class of nonlin-
ear third order ordinary differential equations with integral boundary conditions. More
specifically, we consider the following problem:

u′′′(t) + f
(
t,u(t),u′(t),u′′(t)

)
= , t ∈ [, ], ()

u() = , ()

u′() – au′′() =
∫ 


h

(
u(s),u′(s)

)
ds, ()

u′() =
∫ 


h

(
u(s),u′(s)

)
ds, ()

where f : [, ] × R
 → R, h,h : R → R are continuous functions, and a is a nonnega-

tive real number. Several papers have been devoted to the study of third order differential
equations with two-point and three-point boundary conditions. See [–], and [] for ref-
erences. Problems with integral boundary conditions have been used in the description
of many phenomena in the applied sciences. We refer the interested reader to [] and the
references therein. Very few papers have dealt with nonlocal conditions for third order
differential equations. We can mention [, ] and []. For higher order differential equa-
tions with functional boundary conditions the interested reader can consult []. In this
work we use the method of lower and upper solutions to generate a sequence of modified
nonlinear problems, each having a unique solution; in this way, we obtain a sequence of
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functions, which is uniformly bounded together with their first and second order deriva-
tives. We then extract a subsequence converging uniformly to a solution of our original
problem ()-(). Contrary to many works in the literature, we develop an iterative tech-
nique, which is not necessary monotone. We should point out that our approach is totally
different from that of [].

2 Preliminaries
Let I denote the real interval [, ]. C(I) is the Banach space of real-valued continuous
functions on I , equipped with the norm ‖u‖ := max{|u(t)|; tεI}, for u ∈ C(I). LetD denote
the set of all real-valued functions which are three times continuously differentiable on I .
We define the norm of u ∈D by

‖u‖D = ‖u‖ +
∥
∥u′∥∥

 +
∥
∥u′′∥∥

 +
∥
∥u′′′∥∥

.

Let D = {u ∈D;u() = }. Then (D,‖ · ‖D) is a Banach space.

Definition  A solution of problem ()-() is a function u ∈ D that satisfies () for every
t ∈ I and the conditions () and ().

Definition  Let α,β ∈ D satisfy α′(t) ≤ β ′(t) for every t ∈ I . We denote by [α′,β ′] the
set of all v ∈D such that α′(t)≤ v(t)≤ β ′(t) for every t ∈ I .

It is clear that if u′ ∈ [α′,β ′] and u ∈D, then u ∈ [α,β].

Definition  Let α,β ∈ D satisfy α′(t) ≤ β ′(t) for every t ∈ I . Let S(α,β) denote the set
of all functions u ∈D such that u ∈ [α,β] and u′ ∈ [α′,β ′].

Remark  It is clear that u ∈D and u′ ∈ [α′,β ′] imply that u ∈ S(α,β).

Definition  Let α,β ∈ D satisfy α′(t) ≤ β ′(t) for every t ∈ I . Define the operator p :
D → [α,β] by

(pu)(t) = max
{
α(t),min

(
u(t),β(t)

)}
, ∀t ∈ I,

and the operator q :D → [α′,β ′] by

(qv)(t) = max
{
α′(t),min

(
v(t),β ′(t)

)}
, ∀t ∈ I.

Remark  The operators p and q are continuous and bounded.

3 Main results
In this section we state and prove our main results. The first result is of independent in-
terest and plays a key role in the proof of our second result.

Theorem Let φ : I×R →R be continuous, bounded and satisfy the following condition:

(Hφ) (φ(t, v) – φ(t, v))(v – v) <  for all v, v ∈R such that v ≤ v and t ∈ I .
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Then for any δ, ρ the boundary value problem

⎧
⎪⎨

⎪⎩

–u′′′(t) = φ(t,u′(t)), t ∈ I,
u′() – au′′() = δ,
u′() = ρ

()

has a unique solution u.

Proof Uniqueness. Suppose that problem () has two solutions x and u inD. Put z = x′–u′.
Then z() = x′() – u′() = . We show that z() = . Suppose this is not true. Then either
z() >  or z() < .We consider the case z() > . From the condition at t =  it follows that
 < z() = az′(). Since a is nonnegativewe have z′() > , which implies that z is increasing
to the right of t = . Since z() =  there must exist ξ ∈ [, ) such that z(ξ ) = maxt∈I z(t).
Then

 < z(ξ ),  = z′(ξ ) and z′′(ξ )≤ .

The differential equation in () and (Hφ) imply

 ≥ z′′(ξ )z(ξ ) = –
(
φ
(
ξ ,x′(ξ )

)
– φ

(
ξ ,u′(ξ )

))(
x′(ξ ) – u′(ξ )

)
> .

This is a contradiction. Similarly, if we consider the case z() <  we will arrive at a con-
tradiction. Hence z() = . Now, we have a function z continuous on I with z() = z() = .
Then there exists τ ∈ I such that

z(τ ) = max
t∈I

z(t), z′(τ ) =  and z′′(τ )≤ .

Proceeding as before we show that z(τ ) = . So that z(t) =  for all t ∈ I . This shows that
x′(t) = u′(t) for all t ∈ I . Since x() = u() =  it follows that x(t) = u(t) for all t ∈ I , which
shows the uniqueness of the solution.
Existence. For λ ∈ [, ] consider the family of problems

⎧
⎪⎨

⎪⎩

–u′′′(t) = λφ(t,u′(t)), t ∈ I,
u′() – au′′() = λδ,
u′() = λρ.

()

For λ =  problem () has only the trivial solution. Thus, we consider the case λ ∈ (, ].
(i) u is a solution of () if and only if it satisfies, for all t ∈ I ,

u(t) =
λt

a + 

(
δ + aρ + a

∫ 


( – s)φ

(
s,u′(s)

)
ds

)

+
λt

(a + )

(
ρ – δ +

∫ 


( – s)φ

(
s,u′(s)

)
ds

)

– λ

∫ t



(t – s)


φ
(
s,u′(s)

)
ds. ()
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Indeed, it is clear that the differential equation in () implies

u(t) = u′()t + u′′()
t


– λ

∫ t



(t – s)


φ
(
s,u′(s)

)
ds. ()

Then

u′(t) = u′() + u′′()t – λ

∫ t


(t – s)φ

(
s,u′(s)

)
ds. ()

It follows that

λρ = u′() = u′() + u′′() – λ

∫ 


( – s)φ

(
s,u′(s)

)
ds.

But u′() = au′′() + λδ, so that

u′′() =
λ

a + 

[
ρ – δ +

∫ 


( – s)φ

(
s,u′(s)

)
ds

]
,

and consequently

u′() =
λ

a + 

[
δ + aρ + a

∫ 


( – s)φ

(
s,u′(s)

)
ds

]
.

Now, substitute the expressions of u′() and u′′() into () to get ().
(ii) We show that there exists a positive constant L, independent of λ, such that any

possible solution u of () satisfies

‖u‖D ≤ L. ()

The boundedness of φ implies that there exists Mφ >  such that |φ(t,u′(t))| ≤ Mφ for all
t ∈ I , so that ‖u′′′‖ ≤ Mφ . Then

∣∣u′()
∣∣ ≤ 

a + 

[
|δ| + a|ρ| + a

Mφ



]
()

and

∣
∣u′′()

∣
∣ ≤ 

a + 

[
|δ| + |ρ| + Mφ



]
. ()

Combining relations (), (), and () we see that

∥
∥u′∥∥

 ≤ M :=


a + 
[
|δ| + (a + )|ρ| + (a + )Mφ

]
. ()

Since u(t) =
∫ t
 u

′(s)ds it follows that

‖u‖ ≤ M.
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Also, ‖u′′′‖ ≤ Mφ and () imply

∥
∥u′′∥∥

 ≤ M :=


a + 

[
|δ| + |ρ| + (a + )Mφ



]
.

Let L =M + M +Mφ . Then any possible solution u of () satisfies ().
(iii) Define an operator � : D → D by (�u)(t) = the right-hand side of (). Let

� := {u ∈ D;‖u‖D ≤ L}. Then it is easily seen that (�(�)) is uniformly bounded and
equicontinuous. Ascoli-Arzela theorem implies that the operator � is compact. More-
over, the set of all solutions u of the equation u = λ�u is bounded (see ()). It follows
from Schaefer theorem (see []) that u = �u has at least one solution. Thus, () has at
least one solution for λ = , which is, in fact, unique from the previous step. Thus, u is a
solution of (). This completes the proof of the theorem. �

Remark  We should emphasize that, unlike Theorem  in [], our Theorem  gives the
uniqueness of the solution and this is essentially utilized in the proof of our Theorem 
below.

For our second main result we introduce the notion of lower and upper solutions of
problem (), (), (), ().

Definition  (a) We say that α ∈D is a lower solution of problem (), (), () if

⎧
⎪⎨

⎪⎩

–α′′′(t)≤ f (t,α(t),α′(t),α′′(t)) for all t ∈ I,
α′() – aα′′()≤ ∫ 

 h(α(s),α
′(s))ds,

α′()≤ ∫ 
 h(α(s),α

′(s))ds.

(b) We say that β ∈D is an upper solution of problem (), (), () if

⎧
⎪⎨

⎪⎩

–β ′′′(t) ≥ f (t,β(t),β ′(t),β ′′(t)) for all t ∈ I,
β ′() – aβ ′′()≥ ∫ 

 h(β(s),β
′(s))ds,

β ′() ≥ ∫ 
 h(β(s),β

′(s))ds.

To state and prove our second main result we introduce the following assumptions.

(Af ) f : I ×R
 →R is continuous and satisfies

() there exists C >  such that any solution u of (), with u ∈ S(α,β), satisfies
|u′′(t)| ≤ C, for all t ∈ I ;

() (f (t,u(t), v,w) – f (t,u(t), v,w))(v – v) <  for v, v ∈R such that v ≤ v,
u ∈D∩ [α,β], w ∈ R and t ∈ I ;

() f (t,α(t), v(t),α′′(t)) ≤ f (t,u(t), v(t),w)≤ f (t,β(t), v(t),β ′′(t)) for all u ∈D∩ [α,β],
v ∈ C ∩ [α′,β ′], w ∈R, and t ∈ I .

(Ah) h,h :R →R are continuous and nondecreasing with respect to both arguments.

Remark  There are several sufficient conditions that imply (Af )(). See for instance [,
Lemma ], [, Lemma ].

Theorem  Let α,β ∈ D be, respectively, a lower and an upper solution of problem (),
(), () such that α′ ≤ β ′ on I .Assume that the conditions (Af ) and (Ah) are satisfied for the

http://www.boundaryvalueproblems.com/content/2014/1/137
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pair (α,β),where α is a given lower solution and β is a given upper solution. Then problem
(), (), () has at least one solution u ∈ S(α,β).

Proof We modify problem (), (), (), () as follows. We define two functions fC ,F : I ×
R

 → R by

fC (t,u, v,w) =

⎧
⎪⎨

⎪⎩

f (t,p(u), v,C), w≥ C,
f (t,p(u), v,w), |w| ≤ C,
f (t,p(u), v, –C), w≤ –C

()

and

F(t,u, v,w) = fC

(
t,u,q(v),w

)
=

⎧
⎪⎨

⎪⎩

fC (t,u,α′,w), v < α′,
fC (t,u, v,w), α′ ≤ v ≤ β ′,
fC (t,u,β ′,w), v > β ′,

()

where C is the constant from condition (Af )(). Consider the modified problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–u′′′(t) = F(t,u(t),u′(t),u′′(t)) for t ∈ I,
u() = ,
u′() – au′′() =

∫ 
 h(u(s),u

′(s))ds,
u′() =

∫ 
 h(u(s),u

′(s))ds.

()

Define a sequence (uj)j∈N of functions in D as follows. Let

u(t) = γ t + β(t), t ∈ I,

where γ = maxt∈I(α′ – β ′)(t), and for j ≥ ,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–u′′′
j (t) = F(t,uj–(t),u′

j(t),u′′
j–(t)) for t ∈ I,

uj() = ,
u′
j() – au′′

j () =
∫ 
 h(uj–(s),u

′
j–(s))ds,

u′
j() =

∫ 
 h(uj–(s),u

′
j–(s))ds.

()

We shall show that the sequence ofmodified problems () is such that each problemhas
a unique solution, which is uniformly bounded, together with its first and second order
derivatives. Then we rely on Bolzano-Weierstrass theorem to extract a uniformly conver-
gent subsequence, whose limit is the solution of our original problem.
. The sequence (uj)j∈N is well defined. Indeed, for any t ∈ I and any z ∈ R we have

q(z) ∈ [α′,β ′] and p(uj–(t)) ∈ [α,β]. It follows that the function φ : I ×R→R, defined by

φ(t, z) = F
(
t,uj–(t), z,u′′

j–(t)
)
= f

(
t,p(uj–)(t),q(z),u′′

j–(t)
)
,

is continuous and bounded for all t ∈ I and z ∈R. Moreover, condition (Af )() shows that
φ satisfies condition (Hφ) in Theorem . It follows from this theorem that () has a unique
solution uj, for each j = , , . . . .
. For each j = , , . . . the functions uj satisfy uj ∈ S(α,β) and the sequence (u′′

j )j∈N is
uniformly bounded.

http://www.boundaryvalueproblems.com/content/2014/1/137
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It is clear that uj ∈ D for j = , , . . . . Since α′ ≤ β ′ it follows that γ ≤ , so that u′
 =

γ + β ′ ≤ β ′. On the other hand, we have γ ≥ –mint∈I(β ′ – α′)(t) ≥ –β ′(t) + α′(t); so that
u′
 ≥ α′. It follows that u′

 ∈ [α′,β ′], and consequently u ∈ S(α,β). Also, since u′′
 = β ′′

then ‖u′′
‖ ≤ ‖β ′′‖. Suppose, by induction, that we have u�– ∈ S(α,β) and there exists

K ≤ C such that ‖u′′
�–‖ ≤ K. Let

Mf := max
{∣∣f (t,u, v,w)

∣∣; t ∈ I,u ∈ [α,β], v ∈ [
α′,β ′], |w| ≤ C

}
,

h = max

{∫ 



∣∣h
(
u(s),u′(s)

)
– h

(
u(s),u′(s)

)∣∣ds;u ∈ S(α,β)
}
.

Claim . There existsK depending only onK,Mf , h, ‖α′′‖, and ‖β ′′‖ such that ‖u′′
�‖ ≤

K and u� ∈ S(α,β).
To prove the claim we start with

u′′
� (t) = u′′

� () –
∫ t


F
(
s,u�–(s),u′

�(s),u
′′
�–(s)

)
ds

= u′′
� () –

∫ t


f
(
s,p

(
u�–(s)

)
,q

(
u′

�(s)
)
,u′′

�–(s)
)
ds,

which leads to

∣∣u′′
� (t)

∣∣ ≤ ∣∣u′′
� ()

∣∣ +Mf . ()

The boundary conditions imply

u′
�() – u′

�() = –au′′
� () +

∫ 



(
h

(
u�–(s),u′

�–(s)
)
– h

(
u�–(s),u′

�–(s)
))
ds.

On the other hand

u′
�() – u′

�() =
∫ 


u′′

� (s)ds = u′′
� () –

∫ 


( – s)f

(
s,p

(
u�–(s)

)
,q

(
u′

�(s)
)
,u′′

�–(s)
)
ds.

It is readily seen that

(a + )
∣
∣u′′

� ()
∣
∣ ≤ Mf


+ h.

Since |u′′
�–()| ≤ K (by the induction hypothesis) it follows that

∣
∣u′′

� ()
∣
∣ ≤ 

a + 

(
Mf


+ h

)
= C. ()

It follows from () and () that

∣
∣u′′

� (t)
∣
∣ ≤ K := max

(
C +Mf ,

∥
∥α′′∥∥

,
∥
∥β ′′∥∥



)
for t ∈ I. ()

Claim . u� ∈ S(α,β). Sinceu�() =  it suffices to show that u′
� ∈ [α′,β ′], i.e. α′ ≤ u′

� ≤ β ′.
We, first, prove that α′ ≤ u′

�. For this purpose, set W (t) = u′
�(t) – α′(t), for t ∈ I . We show

http://www.boundaryvalueproblems.com/content/2014/1/137
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that W (t) ≥  for all t ∈ I . Suppose by contradiction, that there exists ξ ∈ I such that
W (ξ) < . Since W is continuous, it follows that there exists η ∈ I such that W (η) =
min{W (t); t ∈ I} < . Hence we haveW (η) < ,W ′(η) =  andW ′′(η) > . Thus,

W ′′(η) = u′′′
� (η) – α′′′(η) = –F

(
η,u�(η),u′

�–(η),u
′′
� (η)

)
– α′′′(η)

= –f
(
η,p

(
u�–(η)

)
,q

(
u′

�(η)
)
,u′′

�–(η)
)
– α′′′(η).

ButW (η) = u′
�(η)–α′(η) <  andW ′(η) = u′′

� (η)–α′′(η) = . Therefore, q(u′
�(η)) = α′(η) and

u′′
� (η) = α′′(η). Hence,

W ′′(η) = –f
(
η,

(
p(u�–)

)
(η),q

(
u′

�(η)
)
,u′′

�–(η)
)
– α′′′(η)

= –f
(
η,u�–(η),α′(η),u′′

�–(η)
)
– α′′′(η) > .

It follows that

f
(
η,u�–(η),α′(η),u′′

�–(η)
)
+ α′′′(η) < .

Since

α′′′(η)≥ –f
(
η,α(η),α′(η),α′′(η)

)
,

we infer that

f
(
η,u�–(η),α′(η),u′′

�–(η)
)
– f

(
η,α(η),α′(η),α′′(η)

)
< .

The above inequality is not possible by (Af )(). Now, if η = , then W () < , W ′() ≥ ,
andW ′′() ≥ . It follows that

W () = u′
�() – α′()

= au′′
� () +

∫ 


h

(
u�–(s),u′

�–(s)
)
ds – α′() < .

Since

W ′() = u′′
� () – α′′()≥ ,

we get

aα′′() – α′() +
∫ 


h

(
u�–(s),u′

�–(s)
)
ds < .

The monotonicity of h leads to

aα′′() – α′() +
∫ 


h

(
α(s),α′(s)

)
ds < .

http://www.boundaryvalueproblems.com/content/2014/1/137
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This is not possible by the properties of the lower solution α. Finally,W ()≥ . Indeed,

W () = u′
�() – α′() =

∫ 


h

(
u�–(s),u′

�–(s)
)
ds – α′()

≥
∫ 


h

(
α(s),α′(s)

)
ds – α′() ≥ ,

by definition of the lower solution α. Similarly we show that u′
� ≤ β ′. Thus, we have shown

that u′
� ∈ [α′,β ′], which implies that u� ∈ S(α,β). Therefore, we have proved that the se-

quences (u′′
j )j∈N, (u′

j)j∈N, and (uj)j∈N are uniformly bounded on the interval I . Bolzano-
Weierstrass theorem implies that we can extract subsequences (u′′

jm )jm∈N, (u′
jm )jm∈N and

(ujm )jm∈N that are uniformly convergent on I . Using the diagonalization process, if neces-
sary, we shall assume that limm→∞ u′′

jm = limm→∞ u′′
jm–

= w, limm→∞ u′
jm = limm→∞ u′

jm–
=

v and limm→∞ ujm = limm→∞ ujm– = u. To complete the proof of our second main result
we prove that u′ = v, u′′ = w and u is the desired solution of our original problem. Since
ujm (t) =

∫ t
 u

′
jm (s)ds, it follows from the uniform convergence of the two subsequences

that u(t) =
∫ t
 v(s)ds, and this equality implies that u() =  and u′ = v. Also, we have

ujm (t) = ujm () +u′
jm ()t +

∫ t
 (t – s)u′′

jm (s)ds = u′
jm ()t +

∫ t
 (t – s)u′′

jm (s)ds, which implies that
u(t) = u′()t +

∫ t
 (t – s)w(s)ds, from which we readily get u′′ = w. It is clear that

u ∈ S(α,β) and
∥
∥u′′∥∥

 ≤ K . ()

The differential equation –u′′′
jm (t) = F(t,ujm–(t),u′

jm (t),u
′′
jm–(t)), for t ∈ I , implies that

–u′′
jm (t) = –u′′

jm () +
∫ t
 F(s,ujm–(s),u′

jm (s),u
′′
jm–(s))ds. The continuity of F and the uniform

convergence of the respective subsequences imply that –u′′(t) = –u′′() +
∫ t
 F(s,u(s),u

′(s),
u′′(s))ds, so that

–u′′′(t) = F
(
t,u(t),u′(t),u′′(t)

)
for t ∈ I.

The definition of F and () show that

–u′′′(t) = f
(
t,u(t),u′(t),u′′(t)

)
for t ∈ I. ()

Similarly we can show that

u′() – au′′() =
∫ 


h

(
u(s),u′(s)

)
ds

and

u′() =
∫ 


h

(
u(s),u′(s)

)
ds.

We see that u is a solution of (), (), (), (). Moreover, u ∈ S(α,β). This completes the
proof of our main result. �
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