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Abstract
In this study, some new Lyapunov-type inequalities are presented for
Caputo-Hadamard fractional Langevin-type equations of the forms

C
HD

β
a+(

C
HD

α
a+ + p(t))x(t) + q(t)x(t) = 0, 0 < a < t < b,

and

C
HD

η
a+φp

[
(CHD

γ
a+ + u(t))x(t)

]
+ v(t)φp(x(t)) = 0, 0 < a < t < b,

subject to mixed boundary conditions, respectively, where p(t), q(t), u(t), v(t) are
real-valued functions and 0 < β < 1 < α < 2, 1 < γ , η < 2, φp(s) = |s|p–2s, p > 1. The
boundary value problems of fractional Langevin-type equations were firstly
converted into the equivalent integral equations with corresponding kernel
functions, and then the Lyapunov-type inequalities were derived by the analytical
method. Noteworthy, the Langevin-type equations are multi-term differential
equations, creating significant challenges and difficulties in investigating the
problems. Consequently, this study provides new results that can enrich the existing
literature on the topic.
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1 Introduction
The study of the Lyapunov inequality can be traced back to 1892 when Lyapunov proved
the following result:

Theorem 1.1 Let q(t) ∈ C([a, b],R). If the Hill differential equation

x′′(t) + q(t)x(t) = 0, t ∈ (a, b),
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subject to the Dirichlet boundary conditions

x(a) = x(b) = 0,

has a nontrivial solution, then q(t) satisfies the following inequality

∫ b

a

∣
∣q(s)

∣
∣ds >

4
b – a

. (1.1)

This striking inequality is known as a Lyapunov inequality [1]. The inequality (1.1) and
its generalizations have been applied in various mathematical problems, involving stabil-
ity problems, oscillation theory, and eigenvalue bounds for ordinary differential equations
[2–4]. For some improved and generalized forms, such as Lyapunov-type inequalities for
higher-order differential equations, p-Laplacian differential equations, partial differential
equations, difference equations, impulsive differential equations, dynamic equations on
time scales, fractional differential equations, some literature studies [5–10] and the mono-
graphs [11, 12] should be referred to for better comprehensive understanding. Notewor-
thy, a result of fractional Lyapunov-type inequality was first presented by Ferreira. In 2013,
Ferreira [9] extended inequality (1.1) to the fractional case in the sense of the Riemann-
Liouville fractional derivative and obtained the following classical result:

Theorem 1.2 Let q(t) ∈ C([a, b],R). If the fractional boundary value problem (BVP)

⎧
⎨

⎩
(aDαx)(t) + q(t)x(t) = 0, t ∈ (a, b),

x(a) = x(b) = 0,

has a nontrivial solution, where aDα is the Riemann-Liouville fractional derivative of order
α, 1 < α ≤ 2, then q(t) satisfies the following inequality

∫ b

a

∣∣q(s)
∣∣ds > �(α)

(
4

b – a

)α–1

. (1.2)

One year later, the same author obtained the analogous Lyapunov-type inequality for
the fractional BVP, involving Caputo fractional derivative (see [10]).

Theorem 1.3 Let q(t) ∈ C([a, b],R). If the fractional BVP

⎧
⎨

⎩
(C
a Dαx)(t) + q(t)x(t) = 0, t ∈ (a, b),

x(a) = x(b) = 0,

has a nontrivial solution, where C
a Dα is the Caputo fractional derivative of order α, 1 < α ≤

2, then q(t) satisfies the following inequality

∫ b

a

∣∣q(s)
∣∣ds >

αα�(α)
[(α – 1)(b – a)]α–1 . (1.3)

Inequalities (1.2) and (1.3) are the generalizations of inequality (1.1) in the sense of frac-
tional derivative.
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Based on the above-mentioned two studies, the subject of fractional Lyapunov-type in-
equalities has received significant research attention, and a variety of interesting results
have been established. For some recent works on the topic, we refer the reader to the works
[13–26], the survey paper [27] and the references cited therein. For example, according to
the literature report [13], the authors generalized Lyapunov-type inequality (1.2) to the
p-Laplacian problem:

⎧
⎨

⎩
Dβ

a+(φp(Dα
a+x(t))) + q(t)φp(x(t)) = 0, t ∈ (a, b),

x(a) = x′(a) = x′(b) = 0, Dα
a+x(a) = Dα

a+x(b) = 0,
(1.4)

where Dk
a+ is the Riemann-Liouville fractional derivative of order k (k = α,β), 2 < α ≤ 3,

1 < β ≤ 2; φp(s) = |s|p–2s, p > 1 is the p-Laplacian operator. The Lyapunov-type inequality
for the BVP (1.4) is stated in the following result.

Theorem 1.4 Let q(t) ∈ C([a, b],R). If there exists a nontrivial continuous solution of the
fractional BVP (1.4), then

∫ b

a
(b – s)β–1(s – a)β–1∣∣q(s)

∣
∣ds

≥ [
�(α)

]p–1
�(β)(b – a)β–1

(∫ b

a
(b – s)α–2(s – a) ds

)1–p

.

Recently, Laadjal et al. [15] established Lyapunov-type inequalities for the following
Hadamard fractional differential equation with Dirichlet boundary conditions:

⎧
⎨

⎩

HDα
a+x(t) – q(t)x(t) = 0, 1 ≤ a < t < b, 1 < α ≤ 2,

x(a) = x(b) = 0,
(1.5)

where HDα
a+ is the Hadamard fractional derivative of order α, and q : [a, b] → R is a con-

tinuous function. The Lyapunov-type inequality for the BVP (1.5) is described in the fol-
lowing theorem.

Theorem 1.5 If a nontrivial continuous solution to the Hadamard fractional BVP (1.5)
exists, then

∫ b

a

∣∣q(s)
∣∣ds ≥ 4α–1�(α + 1)

(
ln

b
a

)1–α

.

Recently, Wang et al. [16] have derived new Lyapunov-type inequality for the fractional
BVP involving Caputo-Hadamard fractional derivative subject to m-point boundary con-
ditions:

⎧
⎨

⎩

C
HDα

a+x(t) + q(t)x(t) = 0, 0 < a < t < b, 1 < α < 2,

x(a) = 0, x(b) =
∑m–2

i=1 βix(ξi),
(1.6)

where C
HDα

a+ denotes the Caputo-Hadamard fractional derivative of order α; βi ≥ 0, a < ξi <
b, (i = 1, 2, . . . , m – 2), with a < ξ1 < ξ2 < · · · < ξm–2 < b, 0 ≤ ∑m–2

i=1 βi < 1. The Lyapunov-type
inequality for the BVP (1.6) is expressed in the following theorem.
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Theorem 1.6 Let q(t) ∈ C([a, b],R). If there exists a nontrivial continuous solution of the
Caputo-Hadamard fractional BVP (1.6), then

∫ b

a

∣∣q(s)
∣∣ds ≥ aαα�(α)

[(α – 1)(ln b – ln a)]α–1 · ln b
a –

∑m–2
i=1 βi ln ξi

a

ln b
a +

∑m–2
i=1 βi ln b

ξi

.

Although the fractional Lyapunov-type inequalities have been studied by many authors,
the fractional multi-term differential equations have rarely been studied to date [17, 18].
Pourhadi and Mursaleen [17] analyzed a Lyapunov-type inequality for a multi-term dif-
ferential equation involving Caputo fractional derivative subject to mixed boundary con-
ditions:

⎧
⎨

⎩
(C
a Dαy)(t) + p(t)y′(t) + q(t)y(t) = 0, a < t < b,

y(a) = y′(a) = y(b) = 0,
(1.7)

where C
a Dα denotes the Caputo fractional derivative of order α, 2 < α ≤ 3. The Lyapunov-

type inequality for the BVP (1.7) is given as follows.

Theorem 1.7 Let p(t) ∈ C1([a, b]) and q(t) ∈ C([a, b]). If there exists a nontrivial continu-
ous solution of the fractional BVP (1.7), then

∫ b

a

(∣∣p(s)
∣
∣ +

∣
∣q(s)

∣
∣ +

∣
∣p′(s)

∣
∣)ds ≥ �(α)(b – a)1–α

max{g(α), h(α), A(α + 1)}

if α ≤ b – a + 1 and

∫ b

a

(∣∣p(s)
∣∣ +

∣∣q(s)
∣∣ +

∣∣p′(s)
∣∣)ds ≥ �(α)(b – a)2–α

(α – 1) max{g(α), h(α), A(α + 1)}

if α ≥ b – a + 1, where

g(α) =
1
4

(4 – α)2, A(α) = 4α–α(α – 2)α–2,

h(α) =
(

α – 2
2

) (α–2)(3–α)
(4–α)

–
(

α – 2
2

) 2–(α–2)2
4–α

.

On the other hand, in 1908, Langevin proposed the following differential equation in
the study of particle Brownian motion:

m
d2x(t)

dt2 = –ζ
dx(t)

dt
+ F(t), (1.8)

where –ζ ẋ(t) represents dynamical friction experienced by the particle, x is the displace-
ment and ζ denotes the coefficient of friction, m is the mass of particle, and F(t) is the fluc-
tuating force. The Eq. (1.8) is called the Langevin equation, which is found to be an essen-
tial tool to describe the evolution of physical phenomena in fluctuating environments [28].
However, for systems with complex phenomena, it has been realized that the conventional
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integer Langevin equation does not provide an accurate description of the dynamical sys-
tems. Therefore, one way to overcome this disadvantage is to replace the integer derivative
by the fractional derivative [29]. This gives rise to fractional Langevin-type equations. In
recent years, fractional Langevin-type equations have been studied extensively, and fur-
ther systematic explorations are still carried out [30–32]. For example, Ahmad et al. [31]
proposed the investigation of Langevin-type equation involving two fractional orders:

CDβ
0+

(CDα
0+ + λ

)
x(t) = f

(
t, x(t)

)
, t ∈ (0, 1),

where CDρ
0+ is the Caputo fractional derivative of order ρ (ρ = α,β), 0 < α ≤ 1, 1 < β ≤ 2,

λ ∈R.
In the past decades, in order to meet the research needs, the p-Laplacian equation was

introduced into some BVPs [32, 33]. In particular, Zhou et al. [32] discussed the following
fractional Langevin-type equation with the p-Laplacian operator of the form:

CDβ
0+φp

[(CDα
0+ + λ

)
x(t)

]
= f

(
t, x(t), CDα

0+x(t)
)
, t ∈ (0, 1),

where CD�

0+ is the Caputo fractional derivative of order � (� = α,β), 0 < α,β ≤ 1, λ ≥ 0.
The above-mentioned studies indicate that the Langevin-type equations are multi-term

differential equations. Since there is no result available in the literature that is concerned
with the Lyapunov-type inequalities for fractional Langevin-type equations, the main
objective of this study is to bridge the gap and establish Lyapunov-type inequalities for
the fractional Langevin-type equations involving Caputo-Hadamard fractional derivative
subject to mixed boundary conditions. Precisely, the Lyapunov-type inequalities for the
following problems are investigated herein:

⎧
⎨

⎩

C
HDβ

a+(C
HDα

a+ + p(t))x(t) + q(t)x(t) = 0, 0 < a < t < b,

x(a) = C
HDα

a+x(a) = 0, x(b) = 0,
(1.9)

and
⎧
⎨

⎩

C
HDη

a+φp[(C
HDγ

a+ + u(t))x(t)] + v(t)φp(x(t)) = 0, 0 < a < t < b,

x(a) = C
HDγ

a+x(a) = 0, x(b) = C
HDγ

a+x(b) = 0,
(1.10)

where C
HDκ

a+ denotes the Caputo-Hadamard fractional derivative of order κ (κ = α,β ,γ ,η),
0 < β < 1 < α < 2, 1 < γ , η < 2, p(t), q(t), u(t), v(t)∈C([a, b],R). Clearly, there are two special
cases of Eqs. (1.9) and (1.10), respectively; one is the p(t) ≡ 0 in Eq. (1.9) and p = 2, u(t)≡0
in Eq. (1.10), and then Eqs. (1.9) and (1.10) degenerate to the sequential fractional BVPs
[24–26]; the other is the p(t) = u(t) = λ∈R, and then Eqs. (1.9) and (1.10) degenerate to the
classical fractional Langevin-type equations (see [30–32]).

The remaining part of the paper is organized as follows: In Sect. 2, we recall some def-
initions on the fractional integral and derivative, and related basic properties which are
needed later. In Sect. 3, we transform the problems (1.9) and (1.10) into equivalent integral
equations with kernel functions, respectively, and give the properties of kernel functions.
In Sect. 4, we present the Lyapunov-type inequalities for problem (1.9) and (1.10), respec-
tively. Finally, we summarize our results and specify new directions for the future works
in Sect. 5.
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2 Preliminaries
In this section, we recall some definitions and lemmas about fractional integral and frac-
tional derivative that will be used in the rest of this paper. Let x(t) be a function defined
on (a, b), where 0 < a < b < ∞. Define the space ACn

δ [a, b] as follows

ACn
δ [a, b] =

{
x : [a, b] 	→R|δn–1x(t) ∈ AC[a, b], δ = t

d
dt

}
,

and AC[a, b] denote the space of all absolutely continuous real valued function on [a, b].

Definition 2.1 ([34]) The left-sided Hadamard fractional integral of order α > 0 for a
function x : [a, b] →R, (0 < a < b < ∞) is defined by

HIα
a+x(t) =

1
�(α)

∫ t

a

(
ln

t
s

)α–1

x(s)
ds
s

,

provided that the integral exists.

Definition 2.2 ([34]) Let α > 0, n = [α] + 1. The left-side Hadamard fractional derivative
of order α for a function x : [a, b] →R, (0 < a < b < ∞) is defined by

HDα
a+x(t) =

1
�(n – α)

(
t

d
dt

)n∫ t

a

(
ln

t
s

)n–α–1

x(s)
ds
s

ds.

Definition 2.3 ([35]) Let α > 0, n = [α] + 1. The left-side Caputo-Hadamard fractional
derivative of order α for a function x(t) ∈ ACn

δ [a, b] is defined by

C
HDα

a+x(t) =
(H In–α

a+ δnx
)
(t) =

1
�(n – α)

∫ t

a

(
ln

t
s

)n–α–1

δnx(s)
ds
s

ds.

Lemma 2.1 ([34]) Let α,β > 0, for Hadamard fractional integrals, the semigroup property
holds:

(HIα
a+

HIβ
a+x

)
(t) =

(HIα+β
a+ x

)
(t).

Lemma 2.2 ([35]) Let α > 0, n = [α] + 1, x(t) ∈ ACn
δ [a, b]. Then

(HIα
a+

C
HDα

a+x
)
(t) = x(t) –

n–1∑

k=0

δkx(a)
k!

(
ln

t
a

)k

.

3 Green’s functions of BVPs (1.9) and (1.10)
In this subsection, we discuss Green’s functions of problems (1.9) and (1.10) and present
some of their properties.

Lemma 3.1 x(t)∈C[a, b] is a solution of the BVP (1.9) if and only if x(t) satisfies the integral
equation

x(t) =
∫ b

a
G1(t, s)q(s)x(s) ds +

∫ b

a
G2(t, s)p(s)x(s) ds, (3.1)
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where kernel functions G1(t, s) and G2(t, s) are given by

G1(t, s) =
1

s�(α + β)

⎧
⎨

⎩

ln(t/a)
ln(b/a) (ln b

s )α+β–1 – (ln t
s )α+β–1, 0 < a ≤ s ≤ t ≤ b,

ln(t/a)
ln(b/a) (ln b

s )α+β–1, 0 < a ≤ t ≤ s ≤ b,

and

G2(t, s) =
1

s�(α)

⎧
⎨

⎩

ln(t/a)
ln(b/a) (ln b

s )α–1 – (ln t
s )α–1, 0 < a ≤ s ≤ t ≤ b,

ln(t/a)
ln(b/a) (ln b

s )α–1, 0 < a ≤ t ≤ s ≤ b.

Proof Applying the operator HIβ
a+ to both sides of Eq. (1.9) and using Lemma 2.2, we get

C
HDα

a+x(t) + p(t)x(t) = –HIβ
a+q(t)x(t) + c0,

for some c0 ∈ R. From the boundary conditions x(a) = C
HDα

a+x(a) = 0, we obtain c0 = 0, then

C
HDα

a+x(t) + p(t)x(t) = –HIβ
a+q(t)x(t). (3.2)

In view of Lemma 2.1 and Lemma 2.2, a general solution of the fractional Eq. (3.2) is given
by

x(t) = –HIα
a+p(t)x(t) – HIα+β

a+ q(t)x(t) + c1 + c2 ln(t/a), (3.3)

for some c1, c2 ∈R. Now using the conditions x(a) = 0 and x(b) = 0, we obtain

c1 = 0, c2 =
1

ln(b/a)
[HIα

a+p(t)x(t)|t=b + HIα+β
a+ y(t)|t=b

]
.

Substituting the values c1 and c2 in (3.3), we have

x(t) = –HIα
a+p(t)x(t) – HIα+β

a+ q(t)x(t) +
ln(t/a)
ln(b/a)

[HIα
a+p(t)x(t)|t=b + HIα+β

a+ q(t)x(t)|t=b
]

=
ln(t/a)
ln(b/a)

HIα+β
a+ q(t)x(t)|t=b – HIα+β

a+ q(t)x(t)

+
ln(t/a)
ln(b/a)

HIα
a+p(t)x(t)|t=b – HIα

a+p(t)x(t)

=
ln(t/a)
ln(b/a)

1
�(α + β)

∫ b

a

(
ln

b
s

)α+β–1

q(s)x(s)
ds
s

–
1

�(α + β)

∫ t

a

(
ln

t
s

)α+β–1

q(s)x(s)
ds
s

+
ln(t/a)
ln(b/a)

1
�(α)

∫ b

a

(
ln

b
s

)α–1

p(s)x(s)
ds
s

–
1

�(α)

∫ t

a

(
ln

t
s

)α–1

p(s)x(s)
ds
s

=
∫ b

a
G1(t, s)q(s)x(s) ds +

∫ b

a
G2(t, s)p(s)x(s) ds.

By direct computation, one can obtain the converse of the lemma. The proof is com-
pleted. �
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Lemma 3.2 Let 1
p + 1

q = 1, then x(t)∈C[a, b] is a solution of the BVP (1.10) if and only if
x(t) satisfies the integral equation

x(t) =
∫ b

a
G(t, s)u(s)x(s) ds–

∫ b

a
G(t, s)φq

(∫ b

a
H(s, τ )v(τ )φp

(
x(τ )

)
dτ

)
ds, (3.4)

where kernel function G(t, s) and H(s, τ ) are defined by

G(t, s) =
1

s�(γ )

⎧
⎨

⎩

ln(t/a)
ln(b/a) (ln b

s )γ –1 – (ln t
s )γ –1, 0 < a ≤ s ≤ t ≤ b,

ln(t/a)
ln(b/a) (ln b

s )γ –1, 0 < a ≤ t ≤ s ≤ b,

and

H(s, τ ) =
1

τ�(η)

⎧
⎨

⎩

ln(s/a)
ln(b/a) (ln b

τ
)η–1 – (ln s

τ
)η–1, 0 < a ≤ τ ≤ s ≤ b,

ln(s/a)
ln(b/a) (ln b

τ
)η–1, 0 < a ≤ s ≤ τ ≤ b.

Proof Let y(t) = φp[(C
HDγ

a+ + u(t))x(t)]. Then BVP (1.10) can be turned into the following
coupled BVPs:

⎧
⎨

⎩

C
HDη

a+y(t) = –v(t)φp(x(t)), 0 < a < t < b,

y(a) = y(b) = 0,
(3.5)

and
⎧
⎨

⎩

C
HDγ

a+x(t) + u(t)x(t) = φq(y(t)), 0 < a < t < b.

x(a) = x(b) = 0.
(3.6)

As in the proof of Lemma 3.1, we see that BVP (3.5) has a unique solution, which is given
by

y(t) =
∫ b

a
H(t, s)v(s)φp

(
x(s)

)
ds, (3.7)

and BVP (3.6) has a unique solution, which is given by

x(t) =
∫ b

a
G(t, s)u(s)x(s) ds–

∫ b

a
G(t, s)φq

(
y(s)

)
ds. (3.8)

Substitute (3.7) into (3.8), we see that BVP (1.10) has a unique solution that is given by (3.4).
Conversely, by direct computation, it can be established that (3.4) satisfies the problem
(1.10). This completes the proof. �

Lemma 3.3 ([16]) Let 1 < ρ < 2, t, s ∈ [a, b] then the function

K(t, s) =
1

s�(ρ)

⎧
⎨

⎩

ln(t/a)
ln(b/a) (ln b

s )ρ–1 – (ln t
s )ρ–1, 0 < a ≤ s ≤ t ≤ b,

ln(t/a)
ln(b/a) (ln b

s )ρ–1, 0 < a ≤ t ≤ s ≤ b,
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satisfies the following property:

∣
∣K(t, s)

∣
∣ ≤ 1

a
(ρ – 1)ρ–1

ρρ�(ρ)

(
ln

b
a

)ρ–1

.

Lemma 3.4 The function G1(t, s) given by Lemma 3.1 satisfies the following properties:
(i) G1(t, s) is a nonnegative continuous function in [a, b]×[a, b];

(ii) G1(t, s)≤ (ln(b/a))α+β–1

a�(α+β) for any (t, s)∈[a, b]×[a, b].

Proof (i) Continuity is obvious. We now prove nonnegativity. To this end, we define

g11(t, s) =
ln(t/a)
ln(b/a)

(
ln

b
s

)α+β–1

–
(

ln
t
s

)α+β–1

, 0 < a ≤ s ≤ t ≤ b,

g12(t, s) =
ln(t/a)
ln(b/a)

(
ln

b
s

)α+β–1

, 0 < a ≤ t ≤ s ≤ b.

Clearly, we have

0 ≤ g12(t, s) ≤ g12(s, s) =
ln(s/a)
ln(b/a)

(
ln

b
s

)α+β–1

,

for any t, s ∈ [a, b]. On the other hand, for a ≤ s ≤ t ≤ b, it is easy to see that ln(t/a) ·
ln(b/s) ≥ ln(b/a) · ln(t/s). Hence,

g11(t, s) =
ln(t/a)
ln(b/a)

(
ln

b
s

)α+β–1

–
(

ln
t
s

)α+β–1

≥
[

ln(t/a)
ln(b/a)

(
ln

b
s

)]α+β–1

–
(

ln
t
s

)α+β–1

≥ 0.

As a consequence, we get G1(t, s) ≥ 0. Now we show that property (ii) holds. Let v = α + β ,
then 2 < v < 3. In this way, the function g11(t, s) can be rewritten as follows:

g11(t, s) =
ln(t/a)
ln(b/a)

(
ln

b
s

)v–1

–
(

ln
t
s

)v–1

, a ≤ s ≤ t ≤ b.

Differentiating g11(t, s) with respect to t for every fixed s ∈ [a, b], we obtain

∂tg11(t, s) =
1
t

[
(ln(b/s))v–1

ln(b/a)
– (v – 1)

(
ln

t
s

)v–2]
.

It follows that

∂tg11(t, s) = 0 ⇔ t∗
s = s exp

[
(ln(b/s))v–1

(v – 1) ln(b/a)

]1/(v–2)

∈ [s, b].

Easily, we can check that

∂tg11(t, s)

⎧
⎨

⎩
≥ 0, if t ≤ t∗

s ,

≤ 0, if t ≥ t∗
s .
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This implies

max
t∈[s,b]

g11(t, s) = g11
(
t∗
s , s

)

=
ln(t∗

s /a)
ln(b/a)

(
ln

b
s

)v–1

–
(

ln
t∗
s
s

)v–1

=
(ln(s/a))(ln(b/s))v–1

ln(b/a)
+

(ln(b/s))v–1

ln(b/a)

[
(ln(b/s))v–1

(v – 1) ln(b/a)

]1/(v–2)

–
[

(ln(b/s))v–1

(v – 1) ln(b/a)

](v–1)/(v–2)

=
(ln(s/a))(ln(b/s))v–1

ln(b/a)
+ (v – 2)

[
(ln(b/s))v–1

(v – 1) ln(b/a)

](v–1)/(v–2)

=
(

ln
b
s

)v–1[ ln(s/a)
ln(b/a)

+
(v – 2)(ln(b/s))(v–1)/(v–2)

[(v – 1) ln(b/a)](v–1)/(v–2)

]

≥ g12(s, s) =
ln(s/a)
ln(b/a)

(
ln

b
s

)v–1

. (3.9)

Denote

m1 =
1

ln(b/a)
, m2 =

v – 2
[(v – 1) ln(b/a)](v–1)/(v–2) ,

g(s) = m1 ln
s
a

+ m2

(
ln

b
s

)(v–1)/(v–2)

, s ∈ [a, b].

Differentiating g(s) on (a, b), we get

g ′(s) =
1
s

[
m1 – m2

v – 1
v – 2

(
ln

b
s

)1/(v–2)]
.

From which we can derive that

g ′(s) = 0 ⇔ s∗ =
av–1

bv–2 < a and g ′(s) ≥ 0, on
[
s∗, +∞)

.

This means, g(s) is a monotone increasing function on [a, b], that is,

max
s∈[a,b]

g(s) ≤ g(b) = 1. (3.10)

From Eqs. (3.9) and (3.10), we get that

max
s∈[a,b]

g11
(
t∗
s , s

) ≤ max
s∈[a,b]

(
ln

b
s

)v–1

=
(

ln
b
a

)v–1

.

Hence, for any t, s ∈ [a, b],

0 ≤ G1(t, s) ≤ (ln(b/a))α+β–1

s�(α + β)
≤ (ln(b/a))α+β–1

a�(α + β)
.

The lemma is proved. �
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4 Lyapunov-type inequalities for BVP (1.9) and (1.10)
In this section, we present the Lyapunov-type inequalities for problems (1.9) and (1.10),
respectively. To show this, we define X = C[a, b] as the Banach space endowed with norm
‖x‖∞ = maxt∈[a,b]|x(t)|.

Theorem 4.1 If the BVP (1.9) has a nontrivial continuous solution x(t)∈X, where q(t) is a
real and continuous function in [a, b], then

∫ b

a

(∣∣q(s)
∣
∣ +

∣
∣p(s)

∣
∣)ds ≥ a(ln(b/a))1–α

max{ (ln(b/a))β
�(α+β) , (α–1)α–1

αα�(α) }
. (4.1)

Proof According to Lemma 3.1 and Eq. (3.1), if x(t)∈X is a nontrivial solution of the BVP
(1.9), then

∣
∣x(t)

∣
∣ ≤

∫ b

a
G1(t, s)

∣
∣q(s)x(s)

∣
∣ds +

∫ b

a

∣
∣G2(t, s)

∣
∣
∣
∣p(s)x(s)

∣
∣ds.

Hence, we derive immediately,

∣
∣x(t)

∣
∣ ≤

[∫ b

a
G1(t, s)

∣
∣q(s)

∣
∣ds +

∫ b

a

∣
∣G2(t, s)

∣
∣
∣
∣p(s)

∣
∣ds

]
‖x‖∞.

This in combination with the Lemma 3.3 and Lemma 3.4 shows that

‖x‖∞ ≤
[

(ln(b/a))α+β–1

a�(α + β)

∫ b

a

∣∣q(s)
∣∣ds +

(α – 1)α–1

aαα�(α)

(
ln

b
a

)α–1 ∫ b

a

∣∣p(s)
∣∣ds

]
‖x‖∞

≤ (ln(b/a))α–1

a
max

{
(ln(b/a))β

�(α + β)
,

(α – 1)α–1

αα�(α)

}∫ b

a

(∣∣q(s)
∣∣ +

∣∣p(s)
∣∣)ds‖x‖∞,

from which the inequality (4.1) follows. Thus, Theorem 4.1 is proved. �

Theorem 4.2 If the BVP (1.10) has a nontrivial continuous solution x(t)∈X, where q(t) is
a real and continuous function in [a, b], then either

(I)
∫ b

a |u(s)|ds ≥ aγ γ �(γ )
[(γ –1) ln(b/a)]γ –1 , or

(II)
∫ b

a |v(s)|ds ≥ φp{ aγ γ �(γ )–[(γ –1) ln(b/a)]γ –1 ∫ b
a |u(s)|ds

(b–a)[(α–1) ln(b/a)]γ –1 } aηη�(η)
[(η–1) ln(b/a)]η–1 .

Proof From Lemma 3.2 and Eq. (3.4), we know that if x(t)∈X is a nontrivial solution of the
BVP (1.10), then

∣
∣x(t)

∣
∣ ≤

∫ b

a

∣
∣G(t, s)

∣
∣
∣
∣u(s)x(s)

∣
∣ds +

∫ b

a

∣
∣G(t, s)

∣
∣φq

(∫ b

a

∣
∣H(s, τ )

∣
∣
∣
∣v(τ )φp

(
x(τ )

)∣∣dτ

)
ds,

from which we deduce that

∣
∣x(t)

∣
∣ ≤

[∫ b

a

∣
∣G(t, s)

∣
∣
∣
∣u(s)

∣
∣ds +

∫ b

a

∣
∣G(t, s)

∣
∣φq

(∫ b

a

∣
∣H(s, τ )

∣
∣
∣
∣v(τ )

∣
∣dτ

)
ds

]
‖x‖∞.
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Combining this with Lemma 3.3 gives

‖x‖∞ ≤
{

(γ – 1)γ –1

aγ γ �(γ )

(
ln

b
a

)γ –1 ∫ b

a

∣∣u(s)
∣∣ds

+
b – a

a
(γ – 1)γ –1

γ γ �(γ )

(
ln

b
a

)γ –1

× φq

[
(η – 1)η–1

aηη�(η)

(
ln

b
a

)η–1]
φq

(∫ b

a

∣
∣v(τ )

∣
∣dτ

)}
‖x‖∞

≤
{

(γ – 1)γ –1

aγ γ �(γ )

(
ln

b
a

)γ –1 ∫ b

a

∣
∣u(s)

∣
∣ds

+
b – a

a
(γ – 1)γ –1

γ γ �(γ )

(
ln

b
a

)γ –1

× φq

[
(η – 1)η–1

aηη�(η)

(
ln

b
a

)η–1]
φq

(∫ b

a

∣∣v(τ )
∣∣dτ

)}
‖x‖∞. (4.2)

In order to prove the inequality (4.2), now we divide the proof into two cases.
Case 1. If the following inequality holds

(γ – 1)γ –1

aγ γ �(γ )

(
ln

b
a

)γ –1 ∫ b

a

∣
∣u(s)

∣
∣ds ≥ 1, (4.3)

then inequality (4.2) holds for any v(t)∈C[a, b], which implies (I).
Case 2. If the inequality (4.3) is untenable, that is,

(γ – 1)γ –1

aγ γ �(γ )

(
ln

b
a

)γ –1 ∫ b

a

∣
∣u(s)

∣
∣ds < 1,

then from Eq. (4.2), we get (II) immediately. Therefore, we finish the proof of Theo-
rem 4.2. �

As special cases of Theorem 4.1 and Theorem 4.2, we have the following corollaries:

Corollary 4.1 Consider the following fractional Langevin equation:
⎧
⎨

⎩

C
HDβ

a+(C
HDα

a+ + λ)x(t) + μx(t) = 0, 0 < a < t < b, 0 < β < 1 < α < 2,

x(a) = C
HDα

a+x(a) = 0, x(b) = 0,
(4.4)

where C
H Dκ

a+ denotes the Caputo-Hadamard fractional derivative of order κ (κ = α,β),
λ,μ ∈R. If (4.4) has a nontrivial continuous solution, then

|λ| + |μ| ≥ a(ln(b/a))1–α

(b – a) max{ (ln(b/a))β
�(α+β) , (α–1)α–1

αα�(α) }
.

Corollary 4.2 Consider the following p-Laplacian fractional Langevin equation:
⎧
⎨

⎩

C
HDη

a+φp[(C
HDγ

a+ + λ)x(t)] + μφp(x(t)) = 0, 0 < a < t < b, 1 < γ ,η < 2,

x(a) = C
HDγ

a+x(a) = 0, x(b) = C
HDγ

a+x(b) = 0,
(4.5)
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where C
H Dκ

a+ denotes the Caputo-Hadamard fractional derivative of order κ (κ = γ ,η),
λ,μ ∈R. If (4.5) has a nontrivial continuous solution, then either

(III) |λ| ≥ aγ γ �(γ )
(b–a)[(γ –1) ln(b/a)]γ –1 , or

(IV) |μ| ≥ φp{ aγ γ �(γ )–(b–a)[(γ –1) ln(b/a)]γ –1|λ|
(b–a)[(γ –1) ln(b/a)]γ –1 } aηη�(η)

(b–a)[(η–1) ln(b/a)]η–1 .
Especially for λ = 0, if (4.5) has a nontrivial continuous solution, then

|μ| ≥ φp

{
aγ γ �(γ )

(b – a)[(γ – 1) ln(b/a)]γ –1

}
aηη�(η)

(b – a)[(η – 1) ln(b/a)]η–1 .

5 Conclusion
In this study, Lyapunov-type inequalities were obtained for the two types of fractional
Langevin-type equations in the frame of Caputo-Hadamard fractional derivative. In recent
years, the fractional Langevin-type equations and Lyapunov-type inequalities are one of
the research hot spots on fractional calculus theory. Therefore, this research is valuable
and meaningful. Noteworthy, this is the first article to consider Lyapunov-type inequalities
for fractional Langevin-type equations. However, a lot more explorations are still required
in the future, such as discussing the Lyapunov-type inequalities for nonlinear fractional
Langevin-type equations associated with the anti-periodic boundary conditions or other
general boundary conditions.
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