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Abstract
In this paper, we propose a modified proximal point algorithm based on the Thakur
iteration process to approximate the common element of the set of solutions of
convex minimization problems and the fixed points of two nearly asymptotically
quasi-nonexpansive mappings in the framework of CAT(0) spaces. We also prove the
�-convergence of the proposed algorithm. We also provide an application and
numerical result based on our proposed algorithm as well as the computational result
by comparing our modified iteration with previously known Sahu’s modified iteration.

MSC: 47H10; 47H09; 54H25

Keywords: CAT(0) space; Nearly asymptotically quasi-nonexpansive mappings;
�-convergence

1 Introduction
In this article, we assume that N denotes the set of all positive integers and R stands for
the set of all real numbers. Let C be a nonempty subset of a CAT(0) space, (X , d) and F (T )
denote the set all fixed points of a mapping T : C → C .

Fixed point theory in CAT(0) spaces was introduced by Kirk, afterward it attracted so
many researchers of this field and has become a delightful topic of research for the past
few years. Kirk proved the existence of a fixed point for a nonexpansive mapping defined
on a bounded convex closed subset of a complete CAT(0) space (see [23]).

Let ζ : X → (–∞,∞] be a proper convex function defined on (X , d). One of the vital
problems of optimization is to find the minimizers of convex functional ζ over X , i.e., find
χ∗ ∈X such that

ζ
(
χ∗) = min

ϕ∈X
ζ (ϕ).

We denote by argminϕ∈X ζ (ϕ) the set of minimizers of ζ .
In 1970, Martinet [27] initiated the proximal point algorithm (shortly PPA) which is a

capable tool for solving this minimization problem, and after that Rockafellar [32] devel-
oped the PPA in a Hilbert space and proved that this method converges to a solution of the
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convex minimization problem. Recently, it has become a fascinating topic to extend the
PPA for solving an optimization problem in the setting of manifolds which are an exten-
sion of Hilbert, Banach, and linear spaces. For more details on convex optimization and
proximal point algorithms, see ([7–9, 13, 15, 35, 38, 41–46]).

In 2013, Bačák [6] introduced the concept of PPA in CAT(0) spaces, where the sequence
{χn} is generated as follows:

⎧
⎨

⎩
χ1 ∈ C,

χn+1 = argminϕ∈C(ζ (ϕ) + 1
2νn

d2(ϕ,χn)), ∀n ∈N,

where νn > 0. Later, it was proved by Ariza-Ruiz et al. [5] that if ζ has a minimizer and
∑∞

n=1 νn = ∞, then the sequence {χn} converges to the minimizer of ζ . This tremendous
result became the reason for the success of convex analysis in CAT(0) spaces during past
two decades by fascinating research in this direction.

In 2015, Cholamjiak [11] proposed a modified PPA by using the Halpern iteration pro-
cedure in CAT(0) spaces, where the sequence {χn} is generated as follows:

⎧
⎪⎪⎨

⎪⎪⎩

χ1 ∈ C,

ϕn = argminϕ∈C(ζ (ϕ) + 1
2νn

d2(ϕ,χn)),

χn+1 = (1 – ρn)υ ⊕ ρnT ϕn, ∀n ∈N,

where νn > 0, limn→∞ ρn = 0, and
∑∞

n=1 ρn = ∞, and proved that {χn} converges to the
minimizer.

In the same year, Cholamjiak et al. [12] proposed a modified PPA by adopting the S-
iteration procedure in CAT(0) spaces, where the sequence {χn} is generated as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

χ1 ∈ C,

	n = argminϕ∈C(ζ (ϕ) + 1
2νn

d2(ϕ,χn)),

ϕn = (1 – σn)χn ⊕ σnT1	n,

χn+1 = (1 – ρn)T1χn ⊕ ρnT2ϕn, ∀n ∈N.

They proved some convergence theorems and showed that the above algorithm converges
to the common fixed points of T1 and T2 and to the minimizers of a convex function ζ .

In the background of iteration processes, Mann [26], Ishikawa [21], and Halpern [20]
are the three basic iterations utilized to approximate the fixed points of a nonexpansive
mapping.

After these three basic iterative schemes, several researchers came up with the idea of
generalized iterative schemes for the approximation of fixed points of nonlinear mappings.
Here, we have a few iterations among the number of new iterative schemes: Noor itera-
tion [28], Agarwal et al. iteration (S-iteration) [3], Abbas and Nazir iteration [2], Thakur’s
iteration [39, 40], SP-iteartion [31], M-iteration [26], and so on.

In 2016, Chang et al. [10] established some strong convergence theorems for the PPA
with S-iteration process to the common fixed points of asymptotically nonexpansive map-
pings and to the minimizer of a convex function in CAT(0) spaces.
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In 2018, Pakkaranang et al. [30] proposed a modified PPA with SP iteration process for
three asymptotically quasi-nonexpansive mappings in CAT(0) spaces and proved some
convergence theorems.

Recently, Sahu et al. [34] introduced a modified PPA based on the S-iterative scheme to
approximate a common element of the set of solutions of convex minimization problems
and the set of fixed points of nearly asymptotically quasi-nonexpansive mappings in the
setting of CAT(0) spaces, where the sequence {χn} is generated as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ1 ∈ C,

υn = argmin	∈C(τ (	) + 1
2δn

d2(	,χn)).

	n = argminϕ∈C(ζ (ϕ) + 1
2νn

d2(ϕ,υn)),

ϕn = (1 – σn)χn + σnT n	n,

χn+1 = (1 – ρn)T nχn ⊕ ρnSnϕn.

Motivated by the above work, we propose a modified PPA based on the Thakur iterative
scheme, where the sequence {χn} is generated as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ1 ∈ C,

ωn = argmin	∈C(τ (	) + 1
2δn

d2(	,χn)),

υn = argminϕ∈C(ζ (ϕ) + 1
2νn

d2(ϕ,ωn)),

	n = (1 – ςn)χn ⊕ ςnT nυn,

ϕn = (1 – σn)	n ⊕ σnSn	n,

χn+1 = (1 – ρn)T n	n ⊕ ρnSnϕn,

(1.1)

for all n ≥ 1, where {ρn}, {σn}, and {ςn} are appropriate real sequences in the interval
(0, 1), and {νn} and {δn} are sequences in (0,∞) such that 0 < ν ≤ νn and 0 < δ ≤ δn for all
n ∈ N. ζ , τ : C → (–∞,∞] are proper convex and lower semi-continuous functions. We
also prove that the sequence {χn} �-converges to a common element of the set of solutions
of convex minimization problems and the set of fixed points of two nearly asymptotically
quasi-nonexpansive mappings in the framework of CAT(0) spaces. We also provide a nu-
merical example and application to show the efficiency of our main result, and by using
MATLAB R2018a, we also add the comparison tables for our proposed iteration and pre-
viously known Sahu’s modified iteration process.

2 Preliminaries
In this section, we recall some frequently used lemmas and concepts in our main results.
A self-mapping T defined on C is said to be

(i) nonexpansive if

d(T χ ,T ϕ) ≤ d(χ ,ϕ) for all χ ,ϕ ∈ C;

(ii) asymptotically nonexpansive [19] if there exists a sequence of real numbers {ϒn} in
[1,∞) with limn→∞ ϒn = 1 such that

d
(
T nχ ,T nϕ

) ≤ ϒnd(χ ,ϕ) for all χ ,ϕ ∈ C and n ∈ N;
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(iii) nearly uniformly ϒ-Lipschitzian [33] if there exist a fix sequence {an} in [0,∞) with
limn→∞ an = 0 and a constant ϒn ≥ 0 with ϒn ≤ ϒ for some ϒ ∈ [0,∞) such that

d
(
T nχ ,T nϕ

) ≤ ϒd(χ ,ϕ) + an for all χ ,ϕ ∈ C and n ∈N;

(iv) nearly asymptotically nonexpansive [33] if there exist ϒn ≥ 1 for all n ∈N,
limn→∞ ϒn = 1, and a fix sequence {an} in [0,∞) with limn→∞ an = 0 such that

d
(
T nχ ,T nϕ

) ≤ ϒnd(χ ,ϕ) + an for all χ ,ϕ ∈ C and n ∈N;

(v) nearly asymptotically quasi-nonexpansive [1, 36] if there exist ϒn ≥ 1 for all n ∈N,
limn→∞ ϒn = 1, and a fix sequence {an} in [0,∞) with limn→∞ an = 0 and F(T ) 
= ∅
such that

d
(
T nχ , p

) ≤ ϒnd(χ , p) + an for all χ ∈ C, p ∈ F(T ) and n ∈N.

A metric space (X , d) is called a CAT(0) space if it is geodesically connected, and every
geodesic triangle in X is at least as “thin” as its comparison triangle in the Euclidean plane.

Lemma 2.1 ([17]) Let X be a CAT(0) space, χ ,ϕ,	 ∈X , and t ∈ [0, 1]. Then

d
(
tχ ⊕ (1 – t)ϕ,	

) ≤ td(χ ,	) + (1 – t)d(ϕ,	).

A geodesic space X is a CAT(0) space if and only if it satisfies the following inequality:

d2(tχ ⊕ (1 – t)ϕ,	
) ≤ td2(χ ,	) + (1 – t)d2(ϕ,	) – t(1 – t)d2(χ ,ϕ)

for all χ ,ϕ,	 ∈X and t ∈ [0, 1].
Let {χn} be a bounded sequence in X , a complete CAT(0) space. For χ ∈X , set

r
(
χ , {χn}

)
= lim sup

n→∞
d(χ ,χn).

The asymptotic radius r({χn}) is given by

r
({χn}

)
= inf

{
r(χ ,χn) : χ ∈X

}
,

and the asymptotic center A({χn}) of {χn} is defined as follows:

A
({χn}

)
=

{
χ ∈X : r(χ ,χn) = r

({χn}
)}

.

It is known that if C is a nonempty closed convex subset of a complete CAT(0) space X ,
then A({χn}) consists of exactly one point see [16].

In 2008, Kirk and Panyanak [24] gave a concept of convergence in CAT(0) spaces which
is an analogue of weak convergence in Banach spaces and restriction of Lim’s concepts of
convergence [25] to CAT(0) spaces.

A sequence {χn} in X is said to �-converge to χ ∈X if χ is the unique asymptotic center
for every subsequence {υn} of {χn}. In this case, we write � – limn χn = χ and read as χ is
the �-limit of {χn}.
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Lemma 2.2 ([16]) Suppose that (X , d) is a complete CAT(0) space. Let {χn} be a bounded
sequence in X . If A({χn}) = {p}, {υn} is a subsequence of {χn} such that A({υn}) = {υ} and
d(χn,υ) converges, then p = υ .

Lemma 2.3 ([24]) In a complete CAT(0) space, every bounded sequence admits a �-
convergent subsequence.

Definition 2.1 Let C be a nonempty closed convex subset of a complete CAT(0) space
X and T : C → C be a mapping. We say that the mapping T satisfies the demiclosedness
principle if for any bounded sequence {χn} in C with d(χn,T χn) → 0 and for any its �-
limit, 	 ∈ C , it holds that T 	 = 	.

Lemma 2.4 ([1]) Let C be a nonempty closed convex subset of a complete CAT(0) space X
and T : C → C be a uniformly continuous nearly asymptotically nonexpansive mapping.
Then T satisfies the demiclosedness principle.

Lemma 2.5 ([37]) Let X be a complete CAT(0) space and υ ∈ X . Suppose that {tn} is
a sequence in [b, c] for some b, c ∈ (0, 1) and {χn}, {ϕn} are sequences in X such that
lim supn→∞ d(χn,υ) ≤ r, lim supn→∞ d(ϕn,υ) ≤ r, and limn→∞ d((1 – tn)χn ⊕ tnϕn,υ) = r
for some r ≥ 0. Then

lim
n→∞ d(χn,ϕn) = 0.

Let C be a convex subset of a CAT(0) space, X . A function ζ : C → (–∞,∞] is said to
be convex if, for any geodesic [χ ,ϕ] := {ςχ ,ϕ(ν) : 0 ≤ ν ≤ 1} := {νχ ⊕ (1 – ν)ϕ : 0 ≤ ν ≤ 1}
joining χ ,ϕ ∈ C , the function (ζ ◦ ς ) is convex, i.e.,

ζ
(
ςχ ,y(ν)

)
:= ζ

(
νχ ⊕ (1 – ν)y

) ≤ νζ (χ ) + (1 – ν)ζ (y).

A function ζ defined on C is said to be lower continuous at ϕ ∈ C if

ζ (ϕ) ≤ lim inf
n→∞ ζ (χn) for each χn → ϕ

and lower semi-continuous on C if it is lower semi-continuous at each point of C .
Let X be a CAT(0) space and ζ : X → (–∞,∞] be a proper convex and lower semi-

continuous function. The Moreau–Yosida resolvent of ζ in CAT(0) spaces is defined as
follows:

proxνζ (χ ) = argmin
ϕ∈C

(
ζ (ϕ) +

1
2ν

d2(ϕ,χ )
)

for all χ ∈ X and ν > 0. The mapping proxνζ defined above is well defined for all ν > 0
which is called the proximal operator of ζ with parameter ν > 0 (see [22]).

Lemma 2.6 ([4]) Let (X , d) be a complete CAT(0) space and ζ : C → (–∞,∞] be a proper
convex and lower semi-continuous function. Then, for all χ ,ϕ ∈X and ν > 0, the following
identity holds:

1
2ν

d2(proxνζ (χ ),ϕ
)

–
1

2ν
d2(χ ,ϕ) +

1
2ν

d2(χ , proxνζ (χ )
)

+ ζ
(
proxνζ (χ )

) ≤ ζ (ϕ).
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Lemma 2.7 ([22]) Let (X , d) be a complete CAT(0) space and ζ : C → (–∞,∞] be a proper
convex and lower semi-continuous function. Then the following identity holds:

proxνζ (χ ) = proxμζ

(
ν – μ

ν
proxνζ (χ ) ⊕ μ

ν
χ

)

for all χ ∈X and 0 < μ < ν .

Lemma 2.8 ([5]) Let (X , d) be a complete CAT(0) space and ζ : C → (–∞,∞] be proper
convex and lower semi-continuous. Then, for any ν > 0,

(a) the proximal operator proxνζ of ζ is firmly nonexpansive, i.e.,

d
(
proxνζ (χ ), proxνζ (ϕ)

) ≤ d
(
(1 – t)χ ⊕ t proxνζ (χ ), (1 – t)ϕ ⊕ t proxνζ (ϕ)

)

for all χ ,ϕ ∈X and t ∈ (0, 1);
(b) the set F (proxνζ ) of fixed points of proxνζ coincides with the set argminϕ∈X ζ (ϕ) of

minimizers of ζ .

Remark 1 Every firmly nonexpansive mapping is nonexpansive mapping.

Lemma 2.9 ([29]) Let {sn} be the sequences of nonnegative numbers such that

sn+1 ≤ ςnsn + ξn,

where {ςn} and {ξn} are sequences of nonnegative numbers such that ςn ⊆ [1,∞) and
∑∞

n=1(ςn – 1) < ∞ and
∑∞

n=1(ξn) < ∞. Then limn→∞ sn = 0 exists.

3 Main results
We begin with the following proposition.

Proposition 3.1 Let C be a nonempty closed convex subset of a complete CAT (0) space
(X , d). Let ζ , τ : C → (–∞,∞] be proper convex and lower semi-continuous functions, and
T ,S : C → C be two uniformly continuous mappings satisfying the following:

(a) T and S are nearly asymptotically quasi-nonexpansive mappings with sequence
{(an,ϒn)} such that

∑∞
n=1 an < ∞ and

∑∞
n=1(ϒn – 1) < ∞;

(b) T and S are nearly uniformly �-Lipschitzian mappings with sequence {(qn,�)}.
Let P = F (T ) ∩F (S) ∩ argminϕ∈C ζ (ϕ) ∩ argmin	∈C τ (	) 
= ∅. Let {ρn}, {σn}, and {ςn} be

sequences in (0, 1) such that 0 < ρ ≤ ρn, σn,ςn ≤ σ < 1 for all n ∈ N. Let {νn} and {δn} be
sequences in (0,∞) such that 0 < ν ≤ νn and 0 < δ ≤ δn for all n ∈N. For χ1 ∈ C , let {χn} be
a sequence in C defined by (1.1). Then we have the following:

(D1) limn→∞ d(χn, p) exists for each p ∈ P;
(D2) limn→∞ d(χn,T χn) = limn→∞ d(χn,Sχn) = 0.

Proof Let p ∈ P. Then p = T p and ζ (p) ≤ ζ (ϕ) and τ (p) ≤ τ (	) for all ϕ,	 ∈ C. Since,
ζ (p) ≤ ζ (ϕ), it follows that

ζ (p) +
1

2νn
d2(p, p) ≤ ζ (ϕ) +

1
2νn

d2(ϕ, p)
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for all ϕ ∈ C and hence p = proxνnζ (p) for all n ∈ N. Similarly, we have p = proxδnτ (p) for
all n ∈N.

First, we prove that limn→∞ d(χn, p) exists. Note that υn = proxνnζ (ωn) and ωn =
proxδnτ (χn) for all n ∈N. By Lemma 2.8, it follows that

d(υn, p) = d
(
proxνnζ (ωn), proxνnζ (p)

) ≤ d(ωn, p)

and

d(ωn, p) = d
(
proxδnτ (χn), proxδnτ (p)

) ≤ d(χn, p).

Hence,

d(υn, p) ≤ d(χn, p). (3.1)

By using the definition of nearly asymptotically quasi-nonexpansive mapping and (1.1),
we have

d(	n, p) = d
(
(1 – ςn)χn ⊕ ςnT nυn, p

)

≤ (1 – ςn)d(χn, p) + ςnd
(
T nυn, p

)

≤ (1 – ςn)d(χn, p) + ςn
[
ϒnd(υn, p) + an

]

≤ (1 – ςn)d(χn, p) + ςn
[
ϒnd(υn, p) + an

]

≤ (1 – ςn)d(χn, p) + ςn
[
ϒnd(χn, p) + an

]

≤ ϒnd(χn, p) + an.

(3.2)

d(ϕn, p) = d
(
(1 – σn)	n ⊕ σnSn	n, p

)

≤ (1 – σn)d(	n, p) + σnd
(
Sn	n, p

)

≤ (1 – σn)d(	n, p) + σn
[
ϒnd(	n, p) + an

]

≤ ϒnd(	n, p) + an

≤ ϒn
[
ϒnd(χn, p) + an

]
+ an

≤ ϒ2
n d(χn, p) + (1 + ϒn)an.

(3.3)

Also we have

d(χn+1, p) = d
(
(1 – ρn)T n	n ⊕ ρnSnϕn, p

)

≤ (1 – ρn)d
(
T n	n, p

)
+ ρnd

(
Snϕn, p

)

≤ (1 – ρn)
[
ϒnd(	n, p) + an

]
+ ρn

[
ϒnd(ϕn, p) + an

]

≤ (1 – ρn)ϒnd(	n, p) + ρnϒnd(ϕn, p) + an

≤ (1 – ρn)ϒnd(	n, p) + ρnϒn
[
ϒnd(	n, p) + an

]
+ an

≤ ϒn
[
1 + ρn(ϒn – 1)

]
d(	n, p) + (ρnϒn + 1)an

≤ ϒ2
n d(	n, p) + (ϒn + 1)an

(3.4)
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≤ ϒ2
n
[
ϒnd(χn, p) + an

]
+ (ϒn + 1)an

≤ ϒ3
n d(χn, p) +

(
ϒ2

n + ϒn + 1
)
an

≤ [
1 +

(
ϒ3

n – 1
)]

d(χn, p) +
(
ϒ2

n + ϒn + 1
)
an

≤ [
1 + (ϒn – 1)

(
1 + ϒn + ϒ2

n
)]

d(χn, p) +
(
1 + ϒn + ϒ2

n
)
an

≤ [
1 + (ϒn – 1)M1

]
d(χn, p) + M1an,

where M1 = supn∈N(1 + ϒn + ϒ2
n ). By Lemma 2.9, limn→∞ d(χn, p) exists.

(ii) Next we will prove that limn→∞ d(χn,ωn) = 0 and limn→∞ d(χn,υn) = 0. Assume that

lim
n→∞ d(χn, p) = r (3.5)

for some r > 0. By Lemma 2.6, we have

1
2δn

d2(proxδnτ (χn), p
)

–
1

2δn
d2(χn, p) +

1
2δn

d2(χn, proxδnτ (χn)
)

≤ τ (p) – τ (χn).

Since τ (p) ≤ τ (χn) for all n ∈N, it follows that

d2(χn,ωn) ≤ d2(χn, p) – d2(ωn, p) (3.6)

and

1
2νn

d2(proxςnζ (ωn), p
)

–
1

2νn
d2(ωn, p) +

1
2δn

d2(ωn, proxςnζ (ωn)
)

≤ ζ (p) – ζ (ωn).

Since ζ (p) ≤ ζ (ωn) for all n ∈N, it follows that

d2(ωn,υn) ≤ d2(ωn, p) – d2(υn, p). (3.7)

From (3.4), we have

d(χn+1, p) ≤ (1 – ρn)ϒnd(	n, p) + ρnϒnd(ϕn, p) + an

≤ (1 – ρn)ϒn
[
ϒnd(χn, p) + an

]
+ ρnϒnd(ϕn, p) + an

≤ ϒ2
n d(χn, p) – ρnϒ

2
n d(χn, p) + ρnϒnd(ϕn, p) +

[
1 + (1 – ρn)ϒn

]
an.

This implies that

d(χn, p) ≤ 1
ρn

d(χn, p) –
1

ρnϒ2
n

d(χn+1, p) +
1

ϒn
d(ϕn, p) +

1
ρnϒ2

n

[
1 + (1 – ρn)ϒn

]
an.

By our assumption and taking lim infn→∞ on both sides, we have

r = lim inf
n→∞ d(χn, p) ≤ lim inf

n→∞ d(ϕn, p).
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From (3.3), we have lim supn→∞ d(ϕn, p) ≤ lim supn→∞ d(χn, p) = r. Thus,

lim
n→∞ d(ϕn, p) = r. (3.8)

From (3.3), we also have

d(ϕn, p) ≤ ϒnd(	n, p) + an.

By taking lim infn→∞ on both sides, we have

r = lim inf
n→∞ d(ϕn, p) ≤ lim inf

n→∞ d(	n, p).

From (3.2), we have lim supn→∞ d(	n, p) ≤ lim supn→∞ d(χn, p) = r. Thus,

lim
n→∞ d(	n, p) = r. (3.9)

From (3.2), this implies that

ρnd(χn, p) ≤ d(χn, p) – d(	n, p) + ρnϒnd(υn, p) + ρnan,

d(χn, p) ≤ 1
ρn

(
d(χn, p) – d(	n, p)

)
+ ϒnd(ωn, p) + an.

(3.10)

Using (3.5), (3.9) and our assumptions, we get r = lim infn→∞ d(χn, p) ≤ lim infn→∞ d(ωn,
p), which together with lim supn→∞ d(ωn, p) ≤ lim supn→∞ d(χn, p) = r gives us that

lim
n→∞ d(ωn, p) = r. (3.11)

Hence, from (3.6), we have

lim
n→∞ d(χn,ωn) = 0. (3.12)

From (3.2), we have

d(	n, p) ≤ (1 – ρn)d(χn, p) + ρn
[
ϒnd(υn, p) + an

]

d(	n, p) ≤ d(χn, p) – ρnd(χn, p) + ρnϒnd(υn, p) + ρnan

ρnd(χn, p) ≤ d(χn, p) – d(	n, p) + ρnϒnd(υn, p) + ρnan

d(χn, p) ≤ 1
ρn

(
d(χn, p) – d(	n, p)

)
+ ϒnd(υn, p) + an

d(χn, p) ≤ 1
ρ

(
d(χn, p) – d(	n, p)

)
+ ϒnd(υn, p) + an.

(3.13)

Using (3.5) and (3.9), we get r = lim infn→∞ d(χn, p) ≤ lim infn→∞ d(υn, p), which together
with lim supn→∞ d(υn, p) ≤ lim supn→∞ d(χn, p) = r gives us that

lim
n→∞ d(υn, p) = r. (3.14)
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Hence, from (3.7), (3.11), and (3.14), we have

lim
n→∞ d(ωn,υn) = 0. (3.15)

From (3.12) and (3.15), we get

d(χn,υn) ≤ d(χn,ωn) + d(ωn,υn),

lim
n→∞ d(χn,υn) = 0.

(3.16)

From (3.1), we have

d2(	n, p) = d2((1 – ρn)χn ⊕ ρnT nυn, p
)

≤ (1 – ρn)d2(χn, p) + ρnd2(T nυn, p
)

– ρn(1 – ρn)d2(χn,T nυn
)

≤ (1 – ρn)d2(χn, p) + ρn
(
ϒnd(υn, p) + an

)2 – ρn(1 – ρn)d2(χn,T nυn
)

= (1 – ρn)d2(χn, p) + ρn
(
ϒ2

n d2(υn, p) +
(
an + 2ϒnd(υn, p)

)
an

)

– ρn(1 – ρn)d2(χn,T nυn
)

≤ ϒ2
n (1 – ρn)d2(χn, p) + ρn

(
ϒ2

n d2(χn, p) + M2an
)

– ρn(1 – ρn)d2(χn,T nυn
)

= ϒ2
n d2(χn, p) + M2an – ρn(1 – ρn)d2(χn,T nυn

)
,

(3.17)

where M2 = supn∈N(an + 2ϒnd(υn, p)). This implies that

ρn(1 – ρn)d2(χn,T nυn
) ≤ (

ϒ2
n d2(χn, p) – d2(	n, p)

)
+ M2an.

Hence, from (3.5), (3.9) and our assumption, we have

lim
n→∞ d

(
χn,T nυn

)
= 0. (3.18)

By using (3.16) and (3.18),

d
(
χn,T nχn

) ≤ d
(
χn,T nυn

)
+ d

(
T nυn,T nχn

)

≤ d
(
χn,T nυn

)
+ �d(υn,χn) + qn

→ 0 as n → ∞.

(3.19)

From (3.2), we have

d2(ϕn, p) = d2((1 – σn)	n ⊕ σ n
n 	n, p

)

≤ (1 – σn)d2(	n, p) + σnd2(Sn	n, p
)

– σn(1 – σn)d2(	n,Sn	n
)

≤ (1 – σn)d2(	n, p) + σn
(
ϒnd(	n, p) + an

)2 – σn(1 – σn)d2(	n,Sn	n
)

= (1 – σn)d2(	n, p) + σn
(
ϒ2

n d2(	n, p) +
(
an + 2ϒnd(	n, p)

)
an

)

– σn(1 – σn)d2(	n,Sn	n
)

(3.20)
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≤ ϒ2
n (1 – σn)d2(	n, p) + σn

(
ϒ2

n d2(	n, p) + M2an
)

– σn(1 – σn)d2(	n,Sn	n
)

≤ ϒ2
n (1 – σn)d2(	n, p) + σnϒ

2
n d2(	n, p) + M2an – σn(1 – σn)d2(	n,Sn	n

)

= ϒ2
n d2(	n, p) + M2an – σn(1 – σn)d2(	n,Sn	n

)
,

where M2 = supn∈N(an + 2ϒnd(	n, p)). This implies that

ρn(1 – ρn)d2(	n,Sn	n
) ≤ (

ϒ2
n d2(	n, p) – d2(ϕn, p)

)
+ M2an.

Hence, from (3.8) and (3.9), we have

lim
n→∞ d2(	n,Sn	n

)
= 0. (3.21)

By using (3.18), we have

d(χn,	n) = d
(
χn, (1 – ςn)χn ⊕ ςnT nυn

)

≤ (1 – ςn)d(χn,χn) + ςnd
(
χn,T nυn

)
(3.22)

→ 0 as n → ∞,

and from (3.21) and (3.23),

d(χn,ϕn) = d
(
χn, (1 – σn)	n ⊕ σnSn	n

)

≤ (1 – σn)d(χn,	n) + σnd
(
χn,Sn	n

)

≤ (1 – σn)d(χn,	n) + σnd(χn,	n) + σnd
(
	n,Sn	n

)

→ 0 as n → ∞.

(3.23)

Since S and T are nearly uniformly �-Lipschitzian mappings, we obtain

lim
n→∞ d

(
Snχn,Sn	n

)
= 0 and lim

n→∞ d
(
T nχn,T n	n

)
= 0. (3.24)

lim
n→∞ d

(
Snχn,Snϕn

)
= 0 and lim

n→∞ d
(
T nχn,T nϕn

)
= 0. (3.25)

By using (3.21), (3.23), and (3.24), we have

d
(
χn,Snχn

) ≤ d(χn,	n) + d
(
	n,Sn	n

)
+ d

(
Sn	n,Snχn

)

→ 0 as n → ∞.
(3.26)

From (3.19), (3.24), (3.25), and (3.26), we have

d(χn,χn+1) = d
(
χn, (1 – ρn)T n	n ⊕ ρnSnϕn

)

≤ (1 – ρn)d
(
χn,T n	n

)
+ ρnd

(
χn,Snϕn

)

≤ (1 – ρn)
[
d
(
χn,T nχn

)
+ d

(
T nχn,T n	n

)]
(3.27)
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+ ρn
[
d
(
χn,Snχn

)
+ d

(
Snχn,Snϕn

)]

→ 0 as n → ∞.

Using the uniform continuity of T in (3.19) and the definition of nearly uniformly
�-Lipschitzian mapping T in (3.28), we have limn→∞ d(T χn,T n+1χn) = 0 and
limn→∞ d(T n+1χn,T n+1χn+1) = 0.

From (3.19) and (3.28),

d(χn,T χn) ≤ d(χn,χn+1) + d
(
χn+1,T n+1χn + 1

)

+ d
(
T n+1χn+1,T n+1χn

)
+ d

(
T n+1χn,T χn

)
(3.28)

→ 0 as n → ∞.

Using the uniform continuity of S in (3.26) and the definition of nearly uniformly
�-Lipschitzian mapping S in (3.28), we have limn→∞ d(Sχn,Sn+1χn) = 0 and
limn→∞ d(Sn+1χn,Sn+1χn+1) = 0.

From (3.26) and (3.28),

d(χn,Sχn) ≤ d(χn,χn+1) + d
(
χn+1,Sn+1χn + 1

)
+ d

(
Sn+1χn+1,Sn+1χn

)

+ d
(
Sn+1χn,Sχn

)
(3.29)

→ 0 as n → ∞.

This completes the proof. �

Now, we are ready to prove the main result.

Theorem 3.1 Let C be a nonempty closed convex subset of a complete CAT (0) space (X , d).
Let ζ , τ : C → (–∞,∞] be proper convex and lower semi-continuous functions, and let
T ,S : C → C be uniformly continuous mappings satisfying the following:

(a) T and S are nearly asymptotically quasi-nonexpansive mappings with sequence
{(an,ϒn)} such that

∑∞
n=1 an < ∞ and

∑∞
n=1(ϒn – 1) < ∞;

(b) T and S are nearly uniformly �-Lipschitzian mappings with sequence {(qn,�)}.
Let T andS satisfy the demiclosedness principle and P = F (T )∩F (S)∩argminϕ∈C ζ (ϕ)∩

argmin	∈C τ (	) 
= ∅. Let {ρn}, {σn}, and {ςn} be sequences in (0, 1) such that 0 < ρ ≤ ρn,
σn,ςn ≤ σ < 1 for all n ∈ N. Let {νn} and {δn} be sequences in (0,∞) such that 0 < ν ≤ νn

and 0 < δ ≤ δn for all n ∈ N. For χ1 ∈ C, let {χn} be a sequence in C defined by (1.1). Then
the sequence {χn} �-converges to an element of P.

Proof Since 0 < ν ≤ νn, therefore from Lemma 2.7 and (3.12), (3.15), and (3.16), we have

d(proxνζ χn,χn) ≤ d(proxνζ χn,υn) + d(υn,ωn) + d(ωn,χn)

= d(proxνζ χn, proxνnζ ωn) + d(υn,ωn) + d(ωn,χn)

= d
(

proxνζ χn, proxνζ

(
νn – ν

νn
proxνnζ ωn ⊕ ν

νn
ωn

))

+ d(υn,ωn) + d(ωn,χn)
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≤ d
(

χn,
νn – ν

νn
proxνnζ ωn ⊕ ν

νn
ωn

)
+ d(υn,ωn) + d(ωn,χn)

=
(

1 –
ν

νn

)
d(χn, proxνnζ ωn) +

ν

νn
d(χn,ωn)

+ d(υn,ωn) + d(ωn,χn)

=
(

1 –
ν

νn

)
d(χn,υn) +

ν

νn
d(χn,ωn) + d(υn,ωn) + d(ωn,χn)

=
(

1 –
ν

νn

)
d(χn,υn) +

(
1 +

ν

νn

)
d(χn,ωn) + d(υn,ωn)

→ 0 as n → ∞. (3.30)

Proceeding in the same manner as above and using (3.12), we have

d(proxδτ χn,χn) ≤ d(proxδτ χn,ωn) + d(ωn,χn)

= d(proxδτ χn, proxδnτ χn) + d(ωn,χn)

= d
(

proxδτ χn, proxδτ

(
δn – δ

δn
proxδnτ χn ⊕ δ

δn
χn

))
+ d(ωn,χn)

≤ d
(

χn,
δn – δ

δn
proxδnτ χn ⊕ δ

δn
χn

)

+ d(ωn,χn)

=
(

1 –
δ

δn

)
d(χn, proxδnτ χn) +

δ

δn
d(χn,χn) + d(ωn,χn)

=
(

1 –
δ

δn

)
d(χn,ωn) +

δ

δn
d(χn,χn) + d(ωn,χn)

=
(

1 –
δ

δn

)
d(χn,ωn) + +d(ωn,χn)

=
(

2 –
δ

δn

)
d(χn,ωn)

→ 0 as n → ∞. (3.31)

Next we show that w�(χn) =
⋃

{ηn}⊂{χn} A({ηn}) ⊂ P. Let η ∈ w�(χn). Then there exists a
subsequence {ηn} of {χn} such that A(ηn) = {η}. Therefore, there exists a subsequence {ϑn}
of {ηn} such that �– limn→∞ ϑn = ϑ for some ϑ ∈ P. In view of Proposition 3.1, (3.30), and
(3.31), we have limn→∞ d(ϑn,T ϑn) = 0, limn→∞ d(ϑn,Sϑn) = 0, limn→∞ d(proxνζ ϑn,ϑn) =
0, limn→∞ d(proxδτ ϑn,ϑn) = 0. Since T and S satisfy demiclosedness conditions, we have
ϑ ∈ P. Hence, by Proposition 3.1(a), limn→∞ d(χn,ϑ) exists, and by Lemma 2.2, we have
η = ϑ . This shows that w�(χn) ⊂ P. Finally, we show that the sequence {χn} generated
by (1.1) �-converges to a point in P. To this end, it suffices to show that w�(χn) consists
of exactly one point. Let {ηn} be a subsequence of {χn}, and let A({χn}) = {χ}. Since η ∈
w�(χn) ⊂ P and d(χn,η) converges, we have χ = η. Hence w�(χn) = {χ}. �

Theorem 3.2 Let C be a nonempty closed convex subset of a complete CAT (0) space (X , d).
Let ζ , τ : C → (–∞,∞] be proper convex and lower semi-continuous functions, and let
T ,S : C → C be uniformly continuous nearly asymptotically nonexpansive mappings with
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sequence {(an,ϒn)} such that
∑∞

n=1 an < ∞ and
∑∞

n=1(ϒn – 1) < ∞. Let P = F (T ) ∩F (S) ∩
argminϕ∈C ζ (ϕ) ∩ argmin	∈C τ (	) 
= ∅. Let {ρn}, {σn}, and {ςn} be sequences in (0, 1) such
that 0 < ρ ≤ ρn, σn,ςn ≤ σ < 1 for all n ∈ N. Let {νn} and {δn} be sequences in (0,∞) such
that 0 < ν ≤ νn and 0 < δ ≤ δn for all n ∈ N. For χ1 ∈ C , let {χn} be a sequence in C defined
by (1.1). Then the sequence {χn} �-converges to an element of P.

Proof T ,S are nearly asymptotically nonexpansive mappings with P 
= ∅. This implies that
T , S are nearly asymptotically quasi-nonexpansive mappings. Set � = supn∈N ϒn. Then S
and T are nearly uniformly �-Lipschitzian. By Lemma 2.5, T and S satisfy the demi-
closedness principle. Therefore, the proof follows from Theorem 3.1. �

Theorem 3.3 Let C be a nonempty closed convex subset of a complete CAT (0) space (X , d).
Let ζ , τ : C → (–∞,∞] be proper convex and lower semi-continuous functions, and let
T ,S : C → C be uniformly continuous mappings satisfying the following:

(a) T and S are quasi-nonexpansive mappings:
(b) T and S are nearly uniformly �-Lipschitzian mappings with sequence {(qn,�)}.
Let the mappings T and S satisfy the demiclosedness principle and P = F (T ) ∩F (S) ∩

argminϕ∈C ζ (ϕ) ∩ argmin	∈C τ (	) 
= ∅. Let {ρn}, {σn}, and {ςn} be sequences in (0, 1) such
that 0 < ρ ≤ ρn, σn,ςn ≤ σ < 1 for all n ∈ N. Let {νn} and {δn} be sequences in (0,∞) such
that 0 < ν ≤ νn and 0 < δ ≤ δn for all n ∈N. For χ1 ∈ C, let {χn} be a sequence in C defined
by (1.1). Then the sequence {χn} �-converges to an element of P.

Remark 2 If we take T n = T and Sn = S , then (1.1) reduces to the following iterative
process:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ1 ∈ C,

ωn = argmin	∈C(τ (	) + 1
2δn

d2(	,χn)),

υn = argminϕ∈C(ζ (ϕ) + 1
2νn

d2(ϕ,ωn)),

	n = (1 – ςn)χn ⊕ ςnT υn,

ϕn = (1 – σn)	n ⊕ σnS	n,

χn+1 = (1 – ρn)T 	n ⊕ ρnSϕn.

(1.1a)

Theorem 3.4 Let C be a nonempty closed convex subset of a complete CAT (0) space
(X , d). Let ζ , τ : C → (–∞,∞] be proper convex and lower semi-continuous functions,
and let T ,S : C → C be nonexpansive mappings with P = F (T ) ∩ F (S) argminϕ∈C ζ (ϕ) ∩
argmin	∈C τ (	) 
= ∅. Let {ρn}, {σn}, and {ςn} be sequences in (0, 1) such that 0 < ρ ≤ ρn,
σn,ςn ≤ σ < 1 for all n ∈ N. Let {νn} and {δn} be sequences in (0,∞) such that 0 < ν ≤ νn

and 0 < δ ≤ δn for all n ∈ N. For χ1 ∈ C , let {χn} be a sequence in C defined by (1.1a). Then
the sequence {χn} �- converges to an element of P.

Remark 3 If we take τ = ζ = 0 and T = S , then (1.1a) reduces to the Thakur iteration
process in a CAT(0) space studied by Garodia and Uddin [18] for generalized nonexpansive
mappings.

Since every Hilbert space is a complete CAT(0) space, we directly obtain the following
result.
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Corollary 3.1 Let C be a nonempty closed convex subset of a Hilbert space X . Let ζ , τ :
C → (–∞,∞] be proper convex and lower semi-continuous functions, and let T ,S : C → C
be uniformly continuous mappings satisfying the following:

(a) T and S are nearly asymptotically quasi-nonexpansive mappings with sequence
{(an,ϒn)} such that

∑∞
n=1 an < ∞ and

∑∞
n=1(ϒn – 1) < ∞;

(b) T and S are nearly uniformly �-Lipschitzian mappings with sequence {(qn,�)}.
Let the mappings T and S satisfy the demiclosedness principle and P = F (T ) ∩F (S) ∩

argminϕ∈C ζ (ϕ)∩argmin	∈C τ (	) 
= ∅. Let {ρn}, {σn}, and {ςn} be sequences in (0, 1) such that
0 < ρ ≤ ρn, σn,ςn ≤ σ < 1 for all n ∈ N. Let {νn} and {δn} be sequences in (0,∞) such that
0 < ν ≤ νn and 0 < δ ≤ δn for all n ∈N. For χ1 ∈ C , let {χn} be a sequence in C defined by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωn = argmin	∈C(τ (	) + 1
2δn

‖	 – χn‖2),

υn = argminϕ∈C(ζ (ϕ) + 1
2νn

‖ϕ – ωn‖2),

	n = (1 – ςn)χn + ςnT nυn,

ϕn = (1 – σn)	n + σnSn	n,

χn+1 = (1 – ρn)T n	n + ρnSnϕn.

(1.1b)

Then the sequence {χn} weakly converges to an element of P.

4 Application
In this section, particularly using Theorem 3.4 in a Hilbert space, we obtain the following.

Theorem 4.1 Let C be a nonempty closed convex subset of a Hilbert space, X . Let ζ , τ :
C → (–∞,∞] be proper convex and lower semi-continuous functions and T ,S : C → C be
two nonexpansive mappings with P = F (T ) ∩F (S) ∩ argminϕ∈C ζ (ϕ) ∩ argmin	∈C τ (	) 
= ∅.
Let {ρn}, {σn}, and {ςn} be sequences in (0, 1) such that 0 < ρ ≤ ρn, σn,ςn ≤ σ < 1 for all
n ∈ N. Let {νn} and {δn} be sequences in (0,∞) such that 0 < ν ≤ νn and 0 < δ ≤ δn for all
n ∈N. For χ1 ∈ C , let {χn} be a sequence in C defined as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωn = argmin	∈C(τ (	) + 1
2δn

‖	 – χn‖2),

υn = argminϕ∈C(ζ (ϕ) + 1
2νn

‖ϕ – ωn‖2),

	n = (1 – ςn)χn + ςnT υn,

ϕn = (1 – σn)	n + σnS	n,

χn+1 = (1 – ρn)T 	n + ρnSϕn.

(1.1c)

Then the sequence {χn} converges to an element of P.

Example 4.1 Let X = R3 with the Euclidean norm. Define nonexpansive mappings T ,S :
R3 →R3 as follows:

T (χ ,ϕ,	) =
(

1
7

(4χ – 3ϕ – 9),
1
7

(–3χ + 4ϕ – 9),
	

2

)
, (χ ,ϕ,	) ∈R3

and

S(χ ,ϕ,	) =
(

1
9

(5χ – 4ϕ – 12),
1
9

(–4χ + 5ϕ – 12),
	

3

)
, (χ ,ϕ,	) ∈R3.
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We define ζ , τ : R3 →R by

ζ (u) =
1
2
‖Au – b‖2 and τ (u) =

1
2
‖Bu – c‖2, u ∈R3,

where

A =

⎛

⎜
⎝

–1 –1 1
–1 –1 1
1 1 –1

⎞

⎟
⎠ , B =

⎛

⎜
⎝

–1 –1 0
–1 –1 0
0 0 0

⎞

⎟
⎠ ,

b = (3, 3, –3), c = (3, 3, 0).

The functions ζ and τ are proper convex and lower semi-continuous. Hence, from prox-
imity operators in [14], it follows that, for ν, δ > 0, we have

proxνζ (u) =
(
I + νA∗A

)–1(u + νA∗b
)

and

proxδτ (u) =
(
I + δB∗B

)–1(u + δB∗c
)

for all u ∈R3.

Note

P = F (T ) ∩F (S) ∩ argmin
ϕ∈C

ζ (ϕ) ∩ argmin
	∈C

τ (	)

=
{

(χ ,ϕ,	) ∈R3 : χ + ϕ + 3 = 0,	 = 0
}

.

Algorithm (1.1c) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

tn = (I + δB∗B)–1((χn,ϕn,	n) + δB∗c),

ωn = (I + νA∗A)–1(tn + νA∗b),

υn = (1 – ςn)(χn,ϕn,	n) + ςnT ωn,

ψn = (1 – σn)υn + σnSυn,

(χn+1,ϕn+1,	n+1) = (1 – ρn)T υn + ρnSψn, ∀n ∈N.

(4.1)

We choose the particular values of ρn = σn = ςn = 1/2 and νn = δn = 1 for all n ∈ N.
It can be clearly seen that all the presumptions of Theorem 4.1 are fulfilled. Therefrom,
algorithm (4.1) converges to an element of P.

Table 1 shows the computative result for the proposed iteration and Sahu’s iteration
with starting point (–3, 1, 2), and it can be seen directly from the table that both iteration
processes converge to the point (–3.5, 0.5, 0) of P.

Table 2 shows the computative result for the proposed iteration and Sahu’s iteration with
starting point (3, –1, 2), and it can be seen directly that both iteration processes converge
to the point (0.5, –3.5, 0) of P.

Table 3 shows the computative result for the proposed iteration and Sahu’s iteration with
starting point (3, 1, –2), and it can be seen directly that both iteration processes converge
to the point (–0.5, –2.5, 0) of P.
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Table 1 Iterative values with starting point (–3, 1, 2)

No. of iterations (n) Values of (χn ,ϕn ,	n)

Proposed iteration Sahu’s iteration

1 (–3.0, 1.0, 2.0) (–3.0, 1.0, 2.0)
5 (–3.49991482687, 0.50008517312, 0.00716930549) (–3.49979478783, 0.50020521216, 0.03470411177)
10 (–3.49999992944, 0.50000007055, 0.00000618461) (–3.49999901589, 0.50000098410, 0.00021730413)
15 (–3.49999999993, 0.50000000006, 0.00000000533) (–3.49999999384, 0.50000000615, 0.00000136064)
20 (–3.50000000000, 0.50000000000, 0.00000000000) (–3.49999999996, 0.50000000003, 0.00000000851)
...

...
...

25 (–3.50000000000, 0.50000000000, 0.00000000000) (–3.49999999999, 0.50000000000, 0.00000000005)
26 (–3.50000000000, 0.50000000000, 0.00000000000) (–3.49999999999, 0.50000000000, 0.00000000001)
27 (–3.50000000000, 0.50000000000, 0.00000000000) (–3.50000000000, 0.50000000000, 0.00000000000)

Table 2 Iterative values with starting point (3, –1, 2)

No. of iterations (n) Values of (χn ,ϕn ,	n)

Proposed iteration Sahu’s iteration

1 (3.0, –1.0, 2.0) (3.0, –1.0, 2.0)
5 (0.50010389790, –3.49989610209, 0.00756711606) (0.50040420692, –3.49959579307, 0.03535705834)
10 (0.50000007448, –3.49999992551, 0.00000652846) (0.50000100463, –3.49999899536, 0.00022141583)
15 (0.50000000006, –3.49999999993, 0.00000000563) (0.50000000627, –3.49999999372, 0.00000138638)
20 (0.50000000000, –3.50000000000, 0.00000000000) (0.50000000003, –3.49999999996, 0.00000000868)
...

...
...

25 (0.50000000000, –3.50000000000, 0.00000000000) (0.50000000000, –3.49999999999, 0.00000000005)
26 (0.50000000000, –3.50000000000, 0.00000000000) (0.50000000000, –3.49999999999, 0.00000000001)
27 (0.50000000000, –3.50000000000, 0.00000000000) (0.50000000000, –3.50000000000, 0.00000000000)

Table 3 Iterative values with starting point (3, 1, –2)

No. of iterations (n) Values of (χn ,ϕn ,	n )

Proposed iteration Sahu’s iteration

1 (3.0, 1.0, –2.0) (3.0, 1.0, –2.0)
5 (–0.50004772357, –2.50004772357, –0.00637368436) (–0.49980722262, –2.49980722262, –0.03339821863)
10 (–0.50000006270, –2.50000006270, –0.00000549690) (–0.50000094305, –2.50000094305, –0.00020908074)
15 (–0.50000000005, –2.50000000005, –0.00000000474) (–0.50000000592, –2.50000000592, –0.00000130915)
20 (–0.50000000000, –2.50000000000, 0.00000000000) (–0.50000000001, –2.50000000001, –0.00000000297)
.
.
.

.

.

.
.
.
.

25 (–0.50000000000, –2.50000000000, 0.00000000000) (–0.50000000000, –2.50000000000, –0.00000000005)
26 (–0.50000000000, –2.50000000000, 0.00000000000) (–0.50000000000, –2.50000000000, –0.00000000001)
27 (–0.50000000000, –2.50000000000, 0.00000000000) (–0.50000000000, –2.50000000000, 0.00000000000)

Figures 1, 2, 3 represent the behavior of errors E(n) = ‖χn – χn+1‖ for the proposed iter-
ation and Sahu’s iteration with starting points (–3, 1, 2), (3, –1, 2), and (3, 1, –2).

Remark 4 From data in Tables 1–3, we see that computative results of our proposed it-
eration process have the lower number of iterations than the modified PPA of Sahu et al.
[34], 35% on average. This shows that our proposed iteration has better convergence rate
than the modified PPA iteration.

5 Conclusion
The purpose of this paper was to propose a modified proximal point algorithm based
on the Thakur iteration process to approximate the common element of the set of so-
lutions of convex minimization problems and the fixed points of two nearly asymp-
totically quasi-nonexpansive mappings in the framework of CAT(0) spaces. We proved
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Figure 1 E(n) = ‖χn –χn+1‖ for iterations with initial point (–3, 1, 2)

Figure 2 E(n) = ‖χn –χn+1‖ for iterations with initial point (3, –1, 2)

the �-convergence of the proposed algorithm. We also provided an application and
a numerical result based on our proposed algorithm as well as the computational re-
sult by comparing our modified iteration with previously known Sahu’s modified itera-
tion.
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Figure 3 E(n) = ‖χn –χn+1‖ for iteration with initial point (3, 1, –2)
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