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1 Introduction
The well-known Lyapunov inequality [1] states that if u(t) is a nontrivial solution of the
boundary value problem

u′′(t) + q(t)u(t) = 0, t ∈ (a, b),

u(a) = 0 = u(b),
(1.1)

where q(t) ∈ C([a, b];R), then

∫ b

a

∣∣r(t)
∣∣dt >

4
b – a

. (1.2)

The Lyapunov inequality (1.2) is a useful tool in various branches of mathematics, in-
cluding disconjugacy, oscillation theory, and eigenvalue problems. Many improvements
and generalizations of inequality (1.2) have appeared in the literature; see [2–13] and ref-
erences therein.

The study of Lyapunov-type inequalities for fractional differential equations has begun
recently. The first result in this direction is due to Ferreira [14]. He obtained a Lyapunov
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inequality for Riemann–Liouville fractional differential equations; his main result is as
follows.

Theorem 1.1 If the fractional boundary value problem

(
Dα

a+ u
)
(t) + q(t)u(t) = 0, a < t < b, 1 < α ≤ 2, (1.3)

u(a) = 0 = u(b), (1.4)

has a nontrivial solution, where q is a real continuous function, then

∫ b

a

∣∣q(s)
∣∣ds > �(α)

(
4

b – a

)α–1

, (1.5)

where Dα
a+ is the Riemann–Liouville fractional derivative of order α.

One year later, the same author Ferreira [15] obtained a Lyapunov-type inequality for
the Caputo fractional boundary value problem.

Theorem 1.2 If the fractional boundary value problem

(CDα
a+ u

)
(t) + q(t)u(t) = 0, a < t < b, 1 < α ≤ 2, (1.6)

u(a) = 0 = u(b), (1.7)

where q is a real continuous function, has a nontrivial continuous solution, then
∫ b

a

∣∣q(s)
∣∣ds >

�(α)αα

[(α – 1)(b – a)]α–1 , (1.8)

where CDα
a+ is the Caputo fractional derivative of order α.

After the publication of [14, 15], the research on Lyapunov inequalities for fractional
differential equations has become a hot topic. The results in the literature can be divided
into two categories. The first one is using other fractional derivatives instead of the Ca-
puto fractional derivatives or Riemann–Liouville fractional derivatives in equation (1.3) or
(1.6). Secondly, the boundary conditions (1.4) or (1.7) are replaced by multipoint boundary
conditions or integral boundary conditions. For instance, in [16–18], Lyapunov inequali-
ties for Hadamard fractional differential equations are given. Lyapunov-type inequalities
regarding sequential fractional differential equations are obtained in [19–21]. The first pa-
per considering integral boundary conditions is also duo to Ferreira [22]. For the results
of multipoint boundary conditions, see [23, 24].

Motivated by the above works, in this paper, we establish Lyapunov-type inequalities
for the fractional boundary value problems with Caputo–Hadamard fractional derivative
under multipoint boundary condition

(C
HDα

a+ u
)
(t) + q(t)u(t) = 0, 0 < a < t < b, 1 < α < 2, (1.9)

u(a) = 0, u(b) =
m–2∑
i=1

βiu(ξi), (1.10)

where C
HDα

a+ denotes the Caputo–Hadamard fractional derivative of order α.
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In this paper, we assume that βi ≥ 0 (i = 1, 2, . . . , m – 2), a < ξ1 < ξ2 < · · · < ξm–2 < b, and
0 ≤ ∑m–2

i=1 βi < 1.

2 Preliminaries
In this section, we recall the concepts of the Riemann–Liouville fractional integral, the
Riemann–Liouville fractional derivative, the Caputo fractional derivative of order α ≥ 0,
and the definition of the Caputo–Hadamard fractional derivative.

Definition 2.1 ([25]) Let α ≥ 0, and let f be a real function on [a, b]. The Riemann–
Liouville fractional integral of order α is defined by (I0

a+ f ) ≡ f and

(
Iα

a+ f
)
(t) =

1
�(α)

∫ t

a
(t – s)α–1f (s) ds, α > 0, t ∈ [a, b].

Definition 2.2 ([25]) The Riemann–Liouville fractional derivative of order α ≥ 0 is de-
fined by (D0

a+ f ) ≡ f and

(
Dα

a+ f
)
(t) =

(
DmIm–α

a+ f
)
(t) =

1
�(m – α)

(
d
dt

)m ∫ t

a
(t – s)m–α–1f (s) ds

for α > 0, where m is the smallest integer greater than or equal to α.

Definition 2.3 ([25]) The Caputo fractional derivative of order α ≥ 0 is defined by
(CD0

a+ f ) ≡ f and

(CDα
a+ f

)
(t) =

(
Im–α

a+ Dmf
)
(t) =

1
�(m – α)

∫ t

a
(t – s)m–α–1f (m)(s) ds,

for α > 0, where m is the smallest integer greater than or equal to α.

Definition 2.4 ([25]) The Hadamard fractional integral of order α ∈R+ for a continuous
function f : [a,∞) →R is defined by

(
HIα

a+f
)
(t) =

1
�(α)

∫ t

a

(
ln

t
s

)α–1

f (s)
ds
s

, α > 0, t ∈ [a, b].

Definition 2.5 ([25]) The Hadamard fractional derivative of order α ∈ R+ for a continu-
ous function f : [a,∞) →R is defined by

(
HDα

a+f
)
(t) =

1
�(n – α)

(
t

d
dt

)n ∫ t

a

(
ln

t
s

)n–α–1

f (s)
ds
s

, t ∈ [a, b],

where n – 1 < α < n, n = [α] + 1.

Definition 2.6 ([25]) The Caputo–Hadamard fractional derivative of order α ∈ R+ for a
function f ∈ ACn

δ [a, b] is defined as

(C
HDα

a+ f
)
(t) =

(
HIn–α

a+ δnf
)
(t) =

1
�(n – α)

∫ t

a

(
ln

t
s

)n–α–1

δnf (s)
ds
s

,

where n = [α] + 1, and f ∈ ACn
δ [a, b] = {ϕ : [a, b] →C : δ(n–1)ϕ ∈ AC[a, b], δ = t d

dt }.
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Lemma 2.7 ([25]) Let α > 0 and n = [α] + 1. If f ∈ ACn
δ [a, b] or f ∈ Cn

δ [a, b], then

(
HIα

a+
C
H Dα

a+f
)
(t) = f (t) –

n∑
k=1

δk–1f (a)
(k – 1)!

(
ln

t
a

)k–1

.

3 Main results
We begin by writing problem (1.9)–(1.10) in an equivalent integral form.

Lemma 3.1 A function u ∈ C[a, b] is a solution to the boundary value problem (1.9)–(1.10)
if and only if it satisfies the integral equation

u(t) =
∫ b

a
G(t, s)q(s)u(s) ds +

ln t
a

ln b
a –

∑m–2
i=1 βi ln ξi

a

∫ b

a

m–2∑
i=1

βiG(ξi, s)q(s)u(s) ds,

where G(t, s) is defined as

G(t, s) =
1

s ln b
a�(α)

⎧⎨
⎩

ln t
a (ln b

s )α–1 – ln b
a (ln t

s )α–1, 0 < a ≤ s ≤ t ≤ b,

ln t
a (ln b

s )α–1, 0 < a ≤ t ≤ s ≤ b.

Proof By Lemma 2.7 u ∈ C[a, b] is a solution to the boundary value problem (1.9)–(1.10)
if and only if

u(t) = c0 + c1

(
ln

t
a

)
–

1
�(α)

∫ t

a

(
ln

t
s

)α–1

q(s)u(s)
ds
s

,

where c0 and c1 are real constants. Since u(a) = 0, we immediately get that c0 = 0, and thus

u(t) = c1

(
ln

t
a

)
–

1
�(α)

∫ t

a

(
ln

t
s

)α–1

q(s)u(s)
ds
s

.

The boundary condition u(b) =
∑m–2

i=1 βiu(ξi) yields

c1

(
ln

b
a

)
–

1
�(α)

∫ b

a

(
ln

b
s

)α–1

q(s)u(s)
ds
s

=
m–2∑
i=1

βi

[
c1

(
ln

ξi

a

)
–

1
�(α)

∫ ξi

a

(
ln

ξi

s

)α–1

q(s)u(s)
ds
s

]
,

so,

c1 =
∫ b

a (ln b
s )α–1q(s)u(s) ds

s –
∑m–2

i=1 βi
∫ ξi

a (ln ξi
s )α–1q(s)u(s) ds

s

(ln b
a –

∑m–2
i=1 βi ln ξi

a )�(α)

=
1

�(α)

∫ b

a

(ln b
s )α–1

ln b
a

q(s)u(s)
ds
s

–
∑m–2

i=1 βi
∫ ξi

a (ln ξi
s )α–1q(s)u(s) ds

s

(ln b
a –

∑m–2
i=1 βi ln ξi

a )�(α)

+
∑m–2

i=1 βi ln ξi
a

ln b
a (ln b

a –
∑m–2

i=1 βi ln ξi
a )�(α)

∫ b

a

(
ln

b
s

)α–1

q(s)u(s)
ds
s

.
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Hence

u(t) = c1

(
ln

t
a

)
–

1
�(α)

∫ t

a

(
ln

t
s

)α–1

q(s)u(s)
ds
s

=
ln t

a
�(α)

∫ b

a

(ln b
s )α–1

ln b
a

q(s)u(s)
ds
s

–
(ln t

a )
∑m–2

i=1 βi
∫ ξi

a (ln ξi
s )α–1q(s)u(s) ds

s

(ln b
a –

∑m–2
i=1 βi ln ξi

a )�(α)

+
(ln t

a )
∑m–2

i=1 βi ln ξi
a

ln b
a (ln b

a –
∑m–2

i=1 βi ln ξi
a )

∫ b

a

(
ln

b
s

)α–1

q(s)u(s)
ds
s

–
1

�(α)

∫ t

a

(
ln

t
s

)α–1

q(s)u(s)
ds
s

=
∫ b

a
G(t, s)q(s)u(s) ds +

ln t
a

ln b
a –

∑m–2
i=1 βi ln ξi

a

∫ b

a

m–2∑
i=1

βiG(ξi, s)q(s)u(s) ds,

which concludes the proof. �

Lemma 3.2 Let 0 < a ≤ s ≤ b and 1 < α < 2. Then

0 ≤ ln
s
a

(
ln

b
s

) α–1
2–α ≤ (2 – α)(α – 1)

α–1
2–α

(
ln

b
a

) 1
2–α

.

Proof Let

f (s) = ln
s
a

(
ln

b
s

) α–1
2–α

, s ∈ [a, b].

Clearly, f (a) = f (b) = 0, and f (s) > 0 on (a, b). By Rolle’s theorem there exists s∗ ∈ (a, b) such
that f (s∗) = max f (s) on (a, b), that is, f ′(s∗) = 0. Note that

f ′(s) =
1
s

(
ln

b
s

) α–1
2–α –1[

ln
b
s

–
α – 1
2 – α

ln
s
a

]
.

Letting f ′(s) = 0, we obtain s∗ = aα–1b2–α . It is easy to show that s∗
a = ( b

a )2–α > 1, b
s∗ = ( b

a )α–1 >
1, and s∗ ∈ (a, b), and thus

max f (s) = f
(
s∗) = ln

s∗

a

(
ln

b
s∗

) α–1
2–α

= (2 – α)(α – 1)
α–1
2–α

(
ln

b
a

) 1
2–α

,

which concludes the proof. �

Lemma 3.3 Let 0 < a ≤ s ≤ b and 1 < α < 2. Then

0 ≤ 1
s

ln
s
a

(
ln

b
s

)α–1

≤ 1
a

ln
s
a

(
ln

b
s

)α–1

≤ 1
a

· (α – 1)α–1

αα

(
ln

b
a

)α

.

Proof Let

g(s) = ln
s
a

(
ln

b
s

)α–1

, s ∈ [a, b].
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As g(a) = g(b) = 0 and g(s) > 0 on (a, b). So, there exists s∗ ∈ (a, b) such that g(s∗) = max g(s)
on (a, b), that is, g ′(s∗) = 0. Note that

g ′(s) =
1
s

(
ln

b
s

)α–2[
ln

b
s

– (α – 1) ln
s
a

]
.

Letting g ′(s) = 0, we obtain s∗ = a α–1
α b 1

α , s∗
a = ( b

a ) 1
α > 1, and b

s∗ = ( b
a ) α–1

α > 1, which imply
that s∗ ∈ (a, b), and thus

max g(s) = g
(
s∗) = ln

s∗

a

(
ln

b
s∗

)α–1

=
(α – 1)α–1

αα

(
ln

b
a

)α

,

which concludes the proof. �

Lemma 3.4 Let 0 < a ≤ s ≤ b(a/b)α–1 and 1 < α < 2. Then the function

h(s) = (2 – α)(α – 1)
α–1
2–α

(
ln

b
a

) 1
2–α 1

s

(
ln

b
s

) (α–1)2
α–2

–
1
s

ln
s
a

(
ln

b
s

)α–1

,

satisfies

max
s∈[a,b(a/b)α–1]

h(s) = (2 – α)(α – 1)
α–1
2–α

1
a

(
ln

b
a

)α

.

Proof For 0 < a ≤ s ≤ b(a/b)α–1, we have (α – 1) ln b
a < ln b

s < ln b
a , 0 < ln s

a < (2 – α) ln b
a .

Define the new function

r(s) = sh(s) = (2 – α)(α – 1)
α–1
2–α

(
ln

b
a

) 1
2–α

(
ln

b
s

) (α–1)2
α–2

– ln
s
a

(
ln

b
s

)α–1

=
[

(2 – α)(α – 1)
α–1
2–α

(
ln

b
a

) 1
2–α

– ln
s
a

(
ln

b
s

) α–1
2–α

](
ln

b
s

) (α–1)2
α–2

.

By Lemma 3.2, r(s) ≥ 0, and we easily obtain

r′(s) =
1
s

[
(α – 1)

3–α
2–α

(
ln

b
a

) 1
2–α

(
ln

b
s

) (α–1)2
α–2 –1

–
(

ln
b
s

)α–1

+ (α – 1) ln
s
a

(
ln

b
s

)α–2]

≤ 1
s

[
(α – 1)

3–α
2–α

(
ln

b
a

) 1
2–α

(α – 1)
(α–1)2
α–2 –1

(
ln

b
a

) (α–1)2
α–2 –1

– (α – 1)α–1
(

ln
b
a

)α–1

+ (α – 1)(2 – α) ln
b
a

(α – 1)α–2
(

ln
b
a

)α–2]

=
1
s

[
(α – 1)α

(
ln

b
a

)α–1

– (α – 1)α–1
(

ln
b
a

)α–1

+ (2 – α)(α – 1)α–1
(

ln
b
a

)α–1]

= 0.
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So,

h′(s) =
(

r(s)
s

)′
=

sr′(s) – r(s)
s2 < 0.

Therefore

max
s∈[a,b( a

b )α–1]
h(s) = h(a) = (2 – α)(α – 1)

α–1
2–α

1
a

(
ln

b
a

)α

. �

Lemma 3.5 If 1 < α < 2, then

(2 – α)(α – 1)
α–1
2–α ≤ (α – 1)α–1

αα
.

Proof A proof of this lemma can be found in [15]. Here we give a new proof. Let 0 < a ≤
s ≤ b. It is easy to check that

ln
s
a

(
ln

b
s

) α–1
2–α

(
ln

b
a

) (α–1)2
α–2

– ln
s
a

(
ln

b
s

)α–1

= ln
s
a

(
ln

b
s

)α–1[(
ln

b
s

) (α–1)2
2–α

(
ln

b
a

) (α–1)2
α–2

– 1
]

= ln
s
a

(
ln

b
s

)α–1[(
ln b

s

ln b
a

) (α–1)2
2–α

– 1
]

≤ 0,

so,

ln
s
a

(
ln

b
s

) α–1
2–α

(
ln

b
a

) (α–1)2
α–2 ≤ ln

s
a

(
ln

b
s

)α–1

,

and thus

max
0<a≤s≤b

ln
s
a

(
ln

b
s

) α–1
2–α

(
ln

b
a

) (α–1)2
α–2 ≤ max

0<a≤s≤b
ln

s
a

(
ln

b
s

)α–1

.

By Lemmas 3.2 and 3.3 we obtain

(2 – α)(α – 1)
α–1
2–α

(
ln

b
a

)α

≤ (α – 1)α–1

αα

(
ln

b
a

)α

.

Thus the proof is completed. �

Lemma 3.6 The function G defined in Lemma 3.1 satisfies the following property:

∣∣G(t, s)
∣∣ ≤ 1

a
· (α – 1)α–1

αα�(α)

(
ln

b
a

)α–1

.
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Proof The Green’s function G(t, s) can be rewritten as the following form:

(
ln

b
a

)
�(α)G(t, s) =

⎧⎨
⎩

1
s ln t

a (ln b
s )α–1 – 1

s ln b
a (ln t

s )α–1, a ≤ s ≤ t ≤ b,
1
s ln t

a (ln b
s )α–1, a ≤ t ≤ s ≤ b.

Define two functions

g1(t, s) =
1
s

ln
t
a

(
ln

b
s

)α–1

–
1
s

ln
b
a

(
ln

t
s

)α–1

, a ≤ s ≤ t ≤ b,

g2(t, s) =
1
s

ln
t
a

(
ln

b
s

)α–1

, a ≤ t ≤ s ≤ b.

Obviously, g2(t, s) is an increasing function in t, and 0 ≤ g2(t, s) ≤ g2(s, s). By Lemma 3.3
we obtain

g2(t, s) ≤ g2(s, s) ≤ 1
a

· (α – 1)α–1

αα

(
ln

b
a

)α

.

Now we turn our attention to the function g1(t, s). We start by fixing an arbitrary s ∈ [a, b).
Differentiating g1(t, s) with respect to t, we get

∂g1(t, s)
∂t

=
1
st

[(
ln

b
s

)α–1

– (α – 1) ln
b
a

(
ln

t
s

)α–2]
.

It follows that ∂g1(t∗ ,s)
∂t = 0 if and only if t∗ = se

[ (α–1) ln b
a

(ln b
s )α–1 ]

1
2–α

, provided that t∗ ≤ b, that is,

as long as s ≤ b(a/b)α–1. So, if s > b(a/b)α–1, then t∗ > b and t < t∗ = se
[ (α–1) ln b

a
(ln b

s )α–1 ]
1

2–α

, and
therefore ∂g1(t,s)

∂t < 0, g1(t, s) is strictly decreasing with respect to t, and thus we have

0 = g1(b, s) ≤ g1(t, s) ≤ g1(s, s) = g2(s, s).

From this we conclude that

∣∣g1(t, s)
∣∣ ≤ g2(s, s) ≤ 1

a
· (α – 1)α–1

αα

(
ln

b
a

)α

, s ∈ (
b(a/b)α–1, b

]
.

It remains to verify the result for s ≤ b(a/b)α–1, that is, for t∗ ≤ b. It is easy to check that
∂g1(t,s)

∂t < 0 for t < t∗ and ∂g1(t,s)
∂t ≥ 0 for t ≥ t∗. This, together with the fact that g1(b, s) = 0,

implies that g1(t∗, s) ≤ 0, and we only have to show that

∣∣g1
(
t∗, s

)∣∣ ≤ 1
a

· (α – 1)α–1

αα

(
ln

b
a

)α

, s ∈ [
a, b(a/b)α–1].

Indeed, by Lemmas 3.4 and 3.5 we obtain

∣∣g1
(
t∗, s

)∣∣ =
∣∣∣∣1

s
ln

s
a

(
ln

b
s

)α–1

– (2 – α)(α – 1)
α–1
2–α

(
ln

b
a

) 1
2–α 1

s

(
ln

b
s

) (α–1)2
α–2

∣∣∣∣

= (2 – α)(α – 1)
α–1
2–α

(
ln

b
a

) 1
2–α 1

s

(
ln

b
s

) (α–1)2
α–2

–
1
s

ln
s
a

(
ln

b
s

)α–1
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≤ (2 – α)(α – 1)
α–1
2–α

1
a

(
ln

b
a

)α

≤ 1
a

· (α – 1)α–1

αα

(
ln

b
a

)α

.

The proof is completed. �

Now we are ready to prove our Lyapunov-type inequality.

Theorem 3.7 If a nontrivial continuous solution of the Caputo–Hadamard fractional
boundary value problem

(C
HDα

a+ u
)
(t) + q(t)u(t) = 0, 0 < a < t < b, 1 < α < 2,

u(a) = 0, u(b) =
m–2∑
i=1

βiu(ξi),

exists, where βi ≥ 0 (i = 1, 2, . . . , m – 2), a < ξ1 < ξ2 < · · · < ξm–2 < b, 0 ≤ ∑m–2
i=1 βi < 1, and q

is a real continuous function on [a, b], then

∫ b

a

∣∣q(s)
∣∣ds ≥ a · �(α)αα

[(α – 1)(ln b – ln a)]α–1 · ln b
a –

∑m–2
i=1 βi ln ξi

a

ln b
a +

∑m–2
i=1 βi ln b

ξi

. (3.1)

Proof Let B = C[a, b] be the Banach space endowed with norm ‖u‖ = supt∈[a,b] |u(t)|. It
follows from Lemma 3.1 that a solution u to the boundary value problem satisfies the
integral equation

u(t) =
∫ b

a
G(t, s)q(s)u(s) ds +

ln t
a

ln b
a –

∑m–2
i=1 βi ln ξi

a

∫ b

a

m–2∑
i=1

βiG(ξi, s)q(s)u(s) ds.

Now an application of Lemma 3.6 yields

‖u‖ ≤ 1
a

· (α – 1)α–1

αα�(α)

(
ln

b
a

)α–1(
1 +

ln b
a
∑m–2

i=1 βi

ln b
a –

∑m–2
i=1 βi ln ξi

a

)∫ b

a

∣∣q(s)
∣∣ds‖u‖

=
1
a

· (α – 1)α–1

αα�(α)

(
ln

b
a

)α–1 ln b
a +

∑m–2
i=1 βi ln b

ξi

ln b
a –

∑m–2
i=1 βi ln ξi

a

∫ b

a

∣∣q(s)
∣∣ds‖u‖,

which implies that (3.1) holds. �

Letting βi = 0 (i = 1, 2, . . . , m – 2) in Theorem 3.7, we have the following result.

Corollary 3.8 If a nontrivial continuous solution of the Caputo-Hadamard fractional
boundary value problem

(C
HDα

a+ u
)
(t) + q(t)u(t) = 0, 0 < a < t < b, 1 < α < 2,

u(a) = 0, u(b) = 0,
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exists, where q is a real continuous function in [a, b], then

∫ b

a

∣∣q(s)
∣∣ds ≥ a · �(α)αα

[(α – 1)(ln b – ln a)]α–1 . (3.2)

4 Remarks
Applying the Green’s approach, we can also obtain Lyapunov-type inequalities for
Caputo–Hadamard fractional differential equations under integral boundary conditions,

(C
HDα

a+ u
)
(t) + q(t)u(t) = 0, 0 < a < t < b, 1 < α < 2, (4.1)

u(a) = 0, u(b) = λ

∫ b

a
h(s)u(s) ds, λ ≥ 0. (4.2)

where h : [a, b] → [0,∞) with h ∈ L1(a, b).

Lemma 4.1 A function u ∈ C[a, b] is a solution to the boundary value problem (4.1)–(4.2)
if and only if it satisfies the integral equation

u(t) =
∫ b

a
G(t, s)q(s)u(s) ds +

λ ln t
a

ln b
a – λσ

∫ b

a

(∫ b

a
G(t, s)h(t) dt

)
q(s)u(s) ds,

where h : [a, b] → [0,∞) with h ∈ L1(a, b), σ =
∫ b

a h(t) ln t
a dt, 0 ≤ λσ < ln b

a , and G(t, s) is
defined in Lemma 3.1.

Proof By Lemma 2.7 u ∈ C[a, b] is a solution to the boundary value problem (4.1)–(4.2) if
and only if

u(t) = c0 + c1

(
ln

t
a

)
–

1
�(α)

∫ t

a

(
ln

t
s

)α–1

q(s)u(s)
ds
s

,

where c0 and c1 are real constants. Since u(a) = 0, we immediately get that c0 = 0, and thus

u(t) = c1

(
ln

t
a

)
–

1
�(α)

∫ t

a

(
ln

t
s

)α–1

q(s)u(s)
ds
s

.

The boundary condition u(b) = λ
∫ b

a h(s)u(s) ds yields

c1

(
ln

b
a

)
–

1
�(α)

∫ b

a

(
ln

b
s

)α–1

q(s)u(s)
ds
s

= λ

∫ b

a
h(t)u(t) dt,

so,

c1 =
1

(ln b
a )�(α)

∫ b

a

(
ln

b
s

)α–1

q(s)u(s)
ds
s

+
λ

ln b
a

∫ b

a
h(t)u(t) dt,
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and therefore the solution of the boundary value problem (4.1)–(4.2) is

u(t) = c1

(
ln

t
a

)
–

1
�(α)

∫ t

a

(
ln

t
s

)α–1

g(s)
ds
s

=
(ln t

a )
(ln b

a )�(α)

∫ b

a

(
ln

b
s

)α–1

q(s)u(s)
ds
s

+
λ(ln t

a )
(ln b

a )

∫ b

a
h(t)u(t) dt

–
1

�(α)

∫ t

a

(
ln

t
s

)α–1

q(s)u(s)
ds
s

=
∫ b

a
G(t, s)q(s)u(s) ds +

λ ln t
a

ln b
a

∫ b

a
h(t)u(t) dt.

Multiplying both sides of this equality by h(t) and integrating from a to b, we obtain

∫ b

a
h(t)u(t) dt =

∫ b

a

(∫ b

a
G(t, s)q(s)u(s) ds

)
h(t) dt +

λσ

ln b
a

∫ b

a
h(t)u(t) dt

and

∫ b

a
h(t)u(t) dt =

ln b
a

ln b
a – λσ

∫ b

a

(∫ b

a
G(t, s)q(s)u(s) ds

)
h(t) dt,

and thus

u(t) =
∫ b

a
G(t, s)q(s)u(s) ds +

λ ln t
a

ln b
a – λσ

∫ b

a

(∫ b

a
G(t, s)q(s)u(s) ds

)
h(t) dt,

which concludes the proof. �

Theorem 4.2 If a nontrivial continuous solution of the Caputo–Hadamard fractional
boundary value problem

(C
HDα

a+ u
)
(t) + q(t)u(t) = 0, 0 < a < t < b, 1 < α < 2,

u(a) = 0, u(b) = λ

∫ b

a
h(s)u(s) ds, λ ≥ 0,

exists, where q : [a, b] → R is a continuous function, h : [a, b] → [0,∞) with h ∈ L1(a, b),
σ =

∫ b
a h(t) ln t

a dt, and 0 ≤ λσ < ln b
a , then we have

∫ b

a

∣∣q(s)
∣∣ds ≥ a[ln b

a – λσ ]

ln b
a + λ[(ln b

a )
∫ b

a h(t) dt – σ ]
· �(α)αα

[(α – 1)(ln b – ln a)]α–1 . (4.3)
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