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Abstract
This work extends the theory of Rychkov, who developed the theory of Aloc

p weights.
It also extends the work by Cruz-Uribe SFO, Fiorenza, and Neugebauer. The class Aloc

p(·)
is defined. The weighted inequality for the local Hardy–Littlewood maximal operator
on Lebesgue spaces with variable exponents is proven. Cruz-Uribe SFO, Fiorenza, and
Neugebauer considered the Muckenhoupt class for Lebesgue spaces with variable
exponents. However, due to the setting of variable exponents, a new method for
extending weights is needed. The proposed extension method differs from that by
Rychkov. A passage to the vector-valued inequality is realized by means of the
extrapolation technique. This technique is an adaptation of the work by Cruz-Uribe
and Wang. Additionally, a theory of extrapolation adapted to our class of weights is
also obtained.
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1 Introduction
This paper develops the theory of local Muckenhoupt weights in a variable exponent set-
ting. It mixes the results obtained in [2, 3, 14]. Also see the textbook [6]. Due to the setting
of variable exponents, we cannot directly use the ideas of Cruz-Uribe, Diening, and Hästö
[2], Cruz-Uribe SFO, Fiorenza and Neugebauer [3], or Rychkov [14].

Herein, we use the following notation of variable exponents: Let p(·) : Rn → [1,∞) be
a measurable function, and let w be a weight. In other words, w : Rn → [1,∞) is a mea-
surable function that is positive almost everywhere. Then the weighted variable Lebesgue
space Lp(·)(w) collects all measurable functions f such that

∫
Rn

( |f (x)|
λ

)p(x)

w(x) dx < ∞

for some λ > 0. For f ∈ Lp(·)(w), the norm is defined by

‖f ‖Lp(·)(w) ≡ inf

{
λ > 0 :

∫
Rn

( |f (x)|
λ

)p(x)

w(x) dx ≤ 1
}

.

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13660-021-02601-2
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-021-02601-2&domain=pdf
mailto:toru.nogayama@gmail.com


Nogayama and Sawano Journal of Inequalities and Applications         (2021) 2021:70 Page 2 of 27

If w ≡ 1, then ‖·‖Lp(·)(1) = ‖·‖p(·) and Lp(·)(1) = Lp(·)(Rn). Thus, we have the ordinary variable
Lebesgue space Lp(·)(Rn).

The definition of Lp(·)(w) slightly differs from that in [3], where the authors considered
the theory of Muckenhoupt weights for the Hardy–Littlewood maximal operator M for
Lebesgue spaces with variable exponents. Recall that Rychkov established the theory of
the local Muckenhoupt class [14]. Here and below, Q denotes the set of all cubes whose
edges are parallel to the coordinate axes. Herein we mix the notions considered in [3, 14]
to define the local Muckenhoupt class with variable exponents.

Definition 1.1 Given an exponent p(·) : Rn → [1,∞), a weight w belongs to Aloc
p(·) if

[w]Aloc
p(·)

≡ supQ∈Q,|Q|≤1 |Q|–1‖χQ‖Lp(·)(w)‖χQ‖Lp′(·)(σ ) < ∞, where σ ≡ w– 1
p(·)–1 and the supre-

mum is taken over all cubes Q ∈ Q with |Q| ≤ 1. Given a cube Q, analogously define
Aloc

p(·)(Q) by restricting the cubes R to those contained in Q.

Remark that if p(x) = 1 for some x ∈ R
n, then we define σ (x) = 1.

If p(·) ≡ p is a constant exponent, then Aloc
p(·) coincides with the class Aloc

p defined in [14].
Using a different method, we seek to establish that the local analog of the result in [2, 3] is
available: Let f be a measurable function and let Mloc be the local maximal operator given
by

Mlocf (x) ≡ sup
Q∈Q,|Q|≤1

χQ(x)
|Q|

∫
Q

∣∣f (y)
∣∣dy

(
x ∈ R

n).

Needless to say, this is an analog of the Hardy–Littlewood maximal operator given by

Mf (x) ≡ sup
Q∈Q

χQ(x)
|Q|

∫
Q

∣∣f (y)
∣∣dy

(
x ∈R

n).

For the boundedness of M, we postulate the following two conditions on p(·):
(1) The local log-Hölder continuity condition, which is given by

LH0 :
∣∣p(x) – p(y)

∣∣ ≤ C
– log |x – y| , x, y ∈R

n, |x – y| ≤ 1
2

. (1.1)

(2) The log-Hölder continuity condition at infinity. That is, there exists p∞ ∈ [0,∞)
such that

LH∞ :
∣∣p(x) – p∞

∣∣ ≤ C
log(e + |x|) , x ∈ R

n. (1.2)

Keeping these in mind, we state the main result of this paper.

Theorem 1.2 Let p(·) : Rn → [1,∞) satisfy conditions (1.1) and (1.2) and 1 < p– ≡
essinfx∈Rn p(x) ≤ p+ ≡ esssupx∈Rn p(x) < ∞. For any given w ∈ Aloc

p(·), there exists a constant
C > 0 such that for all measurable functions f ,

∥∥Mlocf
∥∥

Lp(·)(w) ≤ C‖f ‖Lp(·)(w).
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It is easy to show that w ∈ Aloc
p(·) is necessary for the boundedness of Mloc, since Mlocf (x) ≥

1
|Q|

∫
Q |f (y)|dx for all cubes Q with a volume less than or equal to 1 containing x.

Additionally, the matters are reduced to the estimate of the following maximal function.
We consider the local maximal operator given by

Mloc
6–1 f (x) ≡ sup

Q∈Q,|Q|≤6–n

χQ(x)
|Q|

∫
Q

∣∣f (y)
∣∣dy

(
x ∈ R

n),

for a measurable function f . In fact, if we denote the seven-fold composition of Mloc
6–1 by

(Mloc
6–1 )7, then there exists a constant C > 0 such that Mlocf ≤ C(Mloc

6–1 )7f for any measurable
function f .

Before we go further, we offer some words on the technique of the proof. At first glance,
the proof of Theorem 1.2 seems to be a reexamination of the original theorem [3, Theorem
1.5], which is recalled below.

Proposition 1.3 ([3, Theorem 1.5]) Suppose that we have a variable exponent p(·) : Rn →
[1,∞) such that 1 ≤ p– ≤ p+ < ∞ and that p(·) satisfies (1.1) and (1.2). Let w ∈ Ap(·). Then,
the Hardy–Littlewood maximal operator M satisfies the weak-type inequality

‖tχ{x∈Rn :Mf (x)>t}w‖p(·) ≤ C‖fw‖p(·), t > 0

for all measurable functions f . If, in addition, p– > 1, then

∥∥(Mf )w
∥∥

p(·) ≤ C‖fw‖p(·)

for all measurable functions f .

However, as the example of w(x) = exp(|x|) ∈ Aloc
p(·) \ Ap(·) shows, inequality

∫
Rn

w(x)p(x) dx
(e + |x|)K ,

∫
Rn

σ (x) dx
(e + |x|)K < ∞,

which is used in the proof of [3, Theorem 1.5], fails for local Muckenhoupt class with
variable exponents. Hence, the proof of [3] cannot be used naively for the local Mucken-
houpt class. This observation led to the technique of Rychkov, who detailed a method for
creating global weights from given local weights.

Next, we consider why the technique employed by Rychkov [14] does not work di-
rectly. For simplicity, we work in R. In [14], Rychkov considered a symmetric extension
of weights. More precisely, given an interval I and a weight w on I , Rychkov defined a
weight wI on an interval J adjacent to I mirror-symmetrically with respect to the contact
point in I ∩ J . Here, we tried to repeat this procedure to define a weight wI on R. Hence,
this method is not applicable because we cannot extend the variable exponents mirror-
symmetrically. For example, if the weight w satisfies w(t) = |t|– 1

3 on (–2, 2) and the expo-
nent p(·) satisfies p(t) = 2 on (–1, 1) and p(t) = 4

3 on (3, 5), then the weight w(–2,2) defined

mirror-symmetrically from w|(–2,2) does not satisfy σ = w(–2,2)
– 1

p(·)–1 ∈ L1
loc(2, 6).
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To overcome these issues, two devices are necessary. The first device is well known. We
fix a dyadic grid Dk,a, k ∈ Z and a ∈ {0, 1, 2}n. More precisely, we let

D0
k,a ≡ {

2–k[m + a/3, m + a/3 + 1) : m ∈ Z
}

for k ∈ Z and a = 0, 1, 2, and consider

Dk,a ≡ {
Q1 × Q2 × · · · × Qn : Qj ∈D0

k,aj
, j = 1, 2, . . . , n

}

for k ∈ Z and a = (a1, a2, . . . , an) ∈ {0, 1, 2}n. See [4, Lemma 4.8] for this construction.
Herein, a dyadic grid is the family Da ≡ ⋃

k∈ZDk,a for a ∈ {0, 1, 2}n. It is noteworthy that
for any cube Q there exists R ∈ ⋃

a∈{0,1,2}n Da such that Q ⊂ R and |R| ≤ 6n|Q|. As in [11],
we reduced the matters to the local maximal operator generated by a family D given by

Mloc
D f (x) ≡ sup

Q∈D,|Q|≤1

χQ(x)
|Q|

∫
Q

∣∣f (y)
∣∣dy

(
x ∈R

n)

for a measurable function f and a dyadic grid D ∈ {Da : a ∈ {0, 1, 2}n}. In fact, we have

Mloc
6–1 f (x) ≤ C

∑
a∈{0,1,2}n

Mloc
Da f (x)

(
x ∈R

n).

Here and below, due to the similarity, we suppose a = (1, 1, . . . , 1). We abbreviate D(1,1,...,1)

to D. The other values of a can be handled similarly.
Since we reduced the matters to a dyadic grid D = D(1,1,...,1), it is natural to define the

class Aloc
p(·)(D).

Definition 1.4 Given an exponent p(·) : Rn → (1,∞) with p– > 1 and a weight w, we say
that w ∈ Aloc

p(·)(D) if

[w]Aloc
p(·)(D) ≡ sup

Q∈D,|Q|≤1
|Q|–1‖χQ‖Lp(·)(w)‖χQ‖Lp′(·)(σ ) < ∞,

where σ ≡ w– 1
p(·)–1 and the supremum is taken over all cubes Q ∈D with |Q| ≤ 1.

In an analogy to Theorem 1.2, we can prove the following theorem:

Theorem 1.5 Let p(·) : Rn → [1,∞) satisfy conditions (1.1) and (1.2). If 1 < p– ≤ p+ < ∞,
then, for any w ∈ Aloc

p(·)(D), there exists a constant C > 0 such that

∥∥Mloc
D f

∥∥
Lp(·)(w) ≤ C‖f ‖Lp(·)(w)

for any f ∈ Lp(·)(w).

The second device is a new local/global strategy. To prove Theorem 1.5 when deal-
ing with local dyadic Muckenhoupt weights, we consider (global) dyadic Muckenhoupt
weights.
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Definition 1.6 Given an exponent p(·) : Rn → [1,∞) with p– > 1 and a weight w, we say
that w ∈ Ap(·)(D) if

[w]Ap(·)(D) ≡ sup
Q∈D

|Q|–1‖χQ‖Lp(·)(w)‖χQ‖Lp′(·)(σ ) < ∞,

where p′(·) is the conjugate exponent of p(·), σ ≡ w– 1
p(·)–1 and the supremum is taken over

all cubes Q ∈D.

Here, we propose a new method to create a globally regular weight wQ ∈ Ap(·)(D), Q ∈ D

from a weight w ∈ Aloc
p(·)(D) in Proposition 2.10. As we will see, this technique is valid only

for the dyadic maximal operator (see Remark 2.11). In addition to the local/global strategy
which differs from that in Rychkov [14], we use the localization principle due to Hästo [8,
Theorem 2.4]. In analogy to Theorem 1.2, we can prove the following theorem:

Theorem 1.7 Let p(·) : Rn → [1,∞) satisfy conditions (1.1) and (1.2). If 1 < p– ≤ p+ < ∞,
then given any w ∈ Ap(·)(D), there exists a constant C > 0 such that

‖MDf ‖Lp(·)(w) ≤ C‖f ‖Lp(·)(w)

for any measurable function f .

As explained above, Theorem 1.2 will be proven once we prove Theorem 1.5, whose
proof uses Theorem 1.7. We note that unlike the proof of Theorem 1.2, that for Theorem
1.7 is an analog of [3, Theorem 1.5]. However, we include its whole proof for the sake of
completeness.

Finally, as an application of our results, we will prove the Rubio de Francia extrapolation
theorem in our setting of weights, which in turn produces the weighted vector-valued
maximal inequality. The theory of extrapolation is a powerful tool in harmonic analysis
to extend many results starting from a weighted inequality. Cruz-Uribe and Wang [5] and
Ho [9] extended the extrapolation theorem to weighted Lebesgue spaces with variable
exponents. We will show the extrapolation theorem for Aloc

p(·) by applying the boundedness
of the local maximal operator.

Theorem 1.8 Let N : [1,∞) → [1,∞) be an increasing function. Suppose that for some
p0, 1 < p0 < ∞, and every w0 ∈ Aloc

p0 , the inequality

∫
Rn

f (x)p0 w0(x) dx ≤ N
(
[w0]Aloc

p0

)∫
Rn

g(x)p0 w0(x) dx (1.3)

holds for pairs of functions (f , g) contained in some family F of nonnegative measurable
functions. Let p(·) satisfy conditions (1.1) and (1.2) as well as 1 < p– ≤ p+ < ∞. Also let
w ∈ Aloc

p(·). Then,

‖f ‖Lp(·)(w) ≤ C‖g‖Lp(·)(w)

for (f , g) ∈F .
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Rychkov [14, Lemma 2.11] proved the weighted vector-valued inequality for Mloc and
w ∈ Aloc

p as an extension of the results in [1].

Proposition 1.9 Let 1 < p < ∞, 1 < q ≤ ∞, and w ∈ Aloc
p . Then for any sequence of mea-

surable functions {fj}j∈N, we have

∥∥∥∥∥
( ∞∑

j=1

[
Mlocfj

]q
) 1

q
∥∥∥∥∥

Lp(w)

≤ C

∥∥∥∥∥
( ∞∑

j=1

|fj|q
) 1

q
∥∥∥∥∥

Lp(w)

.

Recall that Cruz-Uribe et al. extended the same result by Anderson and John [1] to vari-
able Lebesgue spaces.

Proposition 1.10 Suppose that p(·) satisfies conditions (1.1) and (1.2), as well as 1 < p– ≤
p+ < ∞, and let w ∈ Ap(·) and 1 < q ≤ ∞. Then for any sequence of measurable functions
{fj}j∈N, we have

∥∥∥∥∥
( ∞∑

k=1

[Mfk]q

) 1
q
∥∥∥∥∥

Lp(·)(w)

≤ C

∥∥∥∥∥
( ∞∑

k=1

|fk|q
) 1

q
∥∥∥∥∥

Lp(·)(w)

. (1.4)

The following theorem is the weighted vector-valued inequality for the local variable
weight:

Theorem 1.11 Suppose that p(·) satisfies conditions (1.1) and (1.2), as well as 1 < p– ≤
p+ < ∞, and let w ∈ Aloc

p(·) and 1 < q ≤ ∞. Then for any sequence of measurable functions
{fj}j∈N, we have

∥∥∥∥∥
( ∞∑

k=1

[
Mlocfk

]q
) 1

q
∥∥∥∥∥

Lp(·)(w)

≤ C

∥∥∥∥∥
( ∞∑

k=1

|fk|q
) 1

q
∥∥∥∥∥

Lp(·)(w)

. (1.5)

Throughout the paper, we use the following notation. The relation A � B means A ≤ CB
for some constant C > 0, while A � B means A ≥ CB for some constant C > 0. The relation
A ∼ B means that A � B and B � A. For a weight w and measurable set E, we define
w(E) ≡ ∫

E w(x) dx.
The rest of this paper is organized as follows. Sect. 2 establishes various preliminaries

and some notation. Sect. 3 proves Theorem 1.7, while Sect. 4 proves Theorem 1.5, which
includes Theorem 1.2. Finally, as an application, Sect. 5 is devoted to the proof of the
weighted vector-valued maximal inequality for Aloc

p(·).

2 Preliminaries
We collect some preliminary facts by investigating some elementary properties of the
dyadic grids D0

k,1 and Dk,(1,1,...,1) and recalling the definition of variable Lebesgue spaces.
Then we consider classes of weights.

2.1 Dyadic grids D0
k,1 and Dk,(1,1,. . . ,1)

Recall that the grid D0
k,1 is given by

D0
k,1 ≡ {

[2–k(m + 1/3), 2–k(m + 4/3)) : m ∈ Z
}

(k ∈ Z).
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Thus, 0 ∈ Vk ≡ [–21–k/3, 2–k/3) ∈ D0
k,1 for all k ∈ Z. Concerning Dk,(1,1,...,1), we employ the

following property.

Lemma 2.1 Suppose that Q ∈D(1,1,...,1) does not contain 0. If we set

Uk = Vk × · · · × Vk︸ ︷︷ ︸
n times

, kQ = max{k ∈ Z : Q ∩ Uk 
= ∅},

then Q ⊂ UkQ–1 and Q ∩ UkQ+1 = ∅. In particular, �(Q) ∼ 2–kQ .

Proof By the property of “max”, it is clear that Q∩UkQ+1 = ∅. Let us prove Q ⊂ UkQ–1. First,
we prove Q does not contain UkQ . To this end, it suffices prove �(Q) ≤ �(UkQ ). Since we
can concentrate on the x1-direction, we may assume n = 1. Write

Q = [2–k(m + 1/3), 2–k(m + 4/3))

with k, m ∈ Z. Since 0 /∈ Q, m 
= –1. Since UkQ and Q meet at a point, a geometric obser-
vation shows

2–k
(

m +
1
3

)
<

2–kQ

3
≤ 2–k

(
m +

4
3

)
or

2–k
(

m +
1
3

)
≤ –21–kQ

3
< 2–k

(
m +

4
3

)
.

(2.1)

Equivalently,

3m + 1 < 2k–kQ ≤ 3m + 4 or – (3m + 4) < 2k–kQ ≤ –(3m + 1).

Thus, since 2k–kQ > 0, m ≥ 0 or m ≤ –2, in which case k ≥ kQ.
Next, we will show that Q ⊂ UkQ–1. If Q ⊂ UkQ , this is clear. We assume otherwise. Then,

the relations (2.1) hold. Since the left relation in (2.1) holds, we have

2–(kQ–1)

3
–

(
2–k

(
m +

4
3

))
=

2–kQ

3
+

(
2–kQ

3
– 2–k

(
m +

1
3

)
–

2–k

3

)
> 0.

Similarly, since the right relation in (2.1) holds, we have

2–k
(

m +
1
3

)
–

–21–(kQ–1)

3
> 0.

Therefore, we see that Q ⊂ UkQ–1. �

2.2 Weighted variable Lebesgue spaces
For any measurable subset � ⊂R

n, denote

p+(�) ≡ esssup
x∈�

p(x), p–(�) ≡ essinf
x∈�

p(x).

In particular, when � = R
n, we simply write p+ and p–, respectively.
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Let 1 < p(·) < ∞. If p(·) ∈ LH0 then p′(·) ∈ LH0. Likewise, if p(·) ∈ LH∞ then p′(·) ∈ LH∞.
Furthermore, (p∞)′ = (p′)∞.

In addition, recall generalized Hölder’s inequality.

Lemma 2.2 (Generalized Hölder’s inequality) Let p(·) : Rn → [1,∞] be a variable expo-
nent. Then for all f ∈ Lp(·)(Rn) and all g ∈ Lp′(·)(Rn),

‖f · g‖L1(Rn) ≤ rp‖f ‖Lp(·)(Rn)‖g‖Lp′(·)(Rn), (2.2)

where

rp ≡ 1 +
1

p–
–

1
p+

=
1

p–
+

1
(p′)–

≤ 2. (2.3)

Let us recall some properties for the variable Lebesgue space Lp(·)(Rn).

Lemma 2.3 ([12, Lemma 2.2]) Suppose that p(·) is a function satisfying (1.1) and (1.2).
(1) For all cubes Q with |Q| ≤ 1, we have |Q|1/p–(Q) � |Q|1/p+(Q). In particular, we have

|Q|1/p–(Q) ∼ |Q|1/p+(Q) ∼ |Q|1/p(z) ∼ ‖χQ‖Lp(·) .
(2) For all cubes Q with |Q| ≥ 1, we have ‖χQ‖Lp(·) ∼ |Q|1/p∞ .

Lemma 2.4 ([3, Lemma 2.2], [13, Lemma 2.17]) Let p(·) : Rn → [1,∞) be such that p+ < ∞.
Then given any set � and any measurable function f ,

(1) if ‖f χ�‖p(·) ≤ 1, then ‖f χ�‖p+(�)
p(·) ≤ ∫

�
|f (x)|p(x) dx ≤ ‖f χ�‖p–(�)

p(·) and

∫
�

∣∣f (x)
∣∣p(x) dx ≤ ‖f ‖p(·),

(2) if ‖f χ�‖p(·) ≥ 1, then ‖f χ�‖p–(�)
p(·) ≤ ∫

�
|f (x)|p(x) dx ≤ ‖f χ�‖p+(�)

p(·) .

Lemma 2.5 Let p(·) : Rn → [1,∞) and f be a measurable function. Then ‖f ‖p(·) ≤ 1 if and
only if

∫
Rn |f (x)|p(x) dx ≤ 1.

Remark 2.6 Let Q be a cube. In Lemmas 2.4 and 2.5, let f = w
1

p(·) χQ to obtain the following
equivalence:

‖χQ‖Lp(·)(w) ≤ 1 ⇐⇒
∫

Q
w(x) dx ≤ 1. (2.4)

A direct consequence of (2.4) is the following:
(1) If ‖χQ‖Lp(·)(w) ≤ 1, then

‖χQ‖p+(Q)
Lp(·)(w) ≤ w(Q) ≤ ‖χQ‖p–(Q)

Lp(·)(w). (2.5)

(2) If ‖χQ‖Lp(·)(w) ≥ 1, then

‖χQ‖p–(Q)
Lp(·)(w) ≤ w(Q) ≤ ‖χQ‖p+(Q)

Lp(·)(w). (2.6)
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The following inequality is a key tool used in this paper. Although [3, Lemma 2.7] con-
siders Borel measures, we consider Lebesgue measures. Here and below denote by L0(Rn)
the set of all measurable functions defined over Rn.

Lemma 2.7 ([3, Lemma 2.7]) Let μ be a weighted Lebesgue measure defined on a measur-
able set G. Given a set G and two exponents s(·) and r(·) such that

∣∣s(y) – r(y)
∣∣ � 1

log(e + |y|) (y ∈ G).

Then for all t ∈ [1,∞) and f ∈ L0(Rn) with 0 ≤ f ≤ 1,

∫
G

f (y)s(y) dμ(y) �
∫

G
f (y)r(y) dμ(y) +

∫
G

dμ(y)
(e + |y|)tnr–(G) .

Finally, recall the localization principle due to Hästo.

Lemma 2.8 ([8]) Let p(·) : Rn → [1,∞) satisfy conditions (1.1) and (1.2). Then

‖f ‖Lp(·) ∼
( ∑

Q∈D0,(1,1,...,1)

(‖f χQ‖Lp(·)
)p∞

) 1
p∞

for all measurable functions f .

2.3 Weights
Here and below, we assume that p(·) takes value in (1,∞) and satisfies conditions (1.1) and
(1.2). First, note that for w ∈ Aloc

p(·) we have, by the definition of Aloc
p(·),

∥∥(
[w]Aloc

p(·)
|Q|)–1∥∥χQ‖Lp′(·)(σ )χQ‖Lp(·)(w) ≤ 1,

or equivalently,

∫
Q

(‖χQ‖Lp′(·)(σ )

[w]Aloc
p(·)

|Q|
)p(x)

w(x) dx ≤ 1. (2.7)

for Q ∈Q with |Q| ≤ 1.
Recall an equivalent definition of A∞. We refer to [7, Theorem 7.3.3] for its proof.

Lemma 2.9 ([7, Theorem 7.3.3]) Given a weight w, the following are equivalent:
(1) w ∈ A∞.
(2) There exist constants 0 < C1, C2 < 1 such that given any cube Q and any measurable

set E ⊂ Q with |E| > C1|Q|, then w(E) > C2w(Q).
If (2) holds, then it can be arranged so that C1 and C2 depend only on the A∞ constant of w.

The next lemma is important in this paper. Rychkov extended a local weight mirror-
symmetrically but a variable exponent cannot be set in this manner. Hence, we propose a
different extension.
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Proposition 2.10 Suppose that p– > 1. Let w ∈ Aloc
p(·)(D). Let I ∈ D be a cube with |I| = 1.

Define

w(x) ≡
⎧⎨
⎩

(‖χI‖Lp(·)(w))p(x) (x ∈R
n \ I),

w(x) (x ∈ I).

Then w ∈ Ap(·)(D) and [w]Ap(·)(D) � [w]Aloc
p(·)(D).

Proof Arithmetic shows that w ∈ Aloc
p(·)(D) if and only if σ ∈ Aloc

p′(·)(D). We also note that

[w]Aloc
p(·)(D) � 1 due to Hölder’s inequality (see Lemma 2.2). Write σ ≡ w– 1

p(·)–1 . Let Q ∈ D.
We need to estimate

1
|Q| ‖χQ‖Lp(·)(w)‖χQ‖Lp′(·)(σ ).

We distinguish three cases:
• Suppose I ∩ Q = ∅. In this case, by virtue of Lemma 2.3,

1
|Q| ‖χQ‖Lp(·)(w)‖χQ‖Lp′(·)(σ ) =

1
|Q| ‖χQ‖Lp(·)‖χQ‖Lp′(·) ∼ 1 ≤ [w]Aloc

p(·)(D).

• Next, suppose Q ⊂ I . In this case, since w ∈ Aloc
p(·)(D),

1
|Q| ‖χQ‖Lp(·)(w)‖χQ‖Lp′(·)(σ ) =

1
|Q| ‖χQ‖Lp(·)(w)‖χQ‖Lp′(·)(σ ) ≤ [w]Aloc

p(·)(D).

• Finally, suppose Q ⊃ I . In this case, again by virtue of Lemma 2.3 and the fact that
w ∈ Aloc

p(·)(D),

1
|Q| ‖χQ‖Lp(·)(w)‖χQ‖Lp′(·)(σ )

∼ 1
|Q|

(‖χQ\I‖Lp(·)(w) + ‖χI‖Lp(·)(w)
)(‖χQ\I‖Lp′(·)(σ ) + ‖χI‖Lp′(·)(σ )

)

∼ 1
|Q|

(|Q| 1
p∞ ‖χI‖Lp(·)(w) + ‖χI‖Lp(·)(w)

)( |Q|
1

p′∞

‖χI‖Lp(·)(w)
+ ‖χI‖Lp′(·)(σ )

)

∼ 1
|Q| |Q| 1

p∞
(|Q|

1
p′∞ + ‖χI‖Lp(·)(w)‖χI‖Lp′(·)(σ )

)

� [w]Aloc
p(·)(D),

as required.
�

Remark 2.11 Let I ≡ (0, 1) and J ≡ (–1, 0). Define w(t) = t– 1
2 on I and w(t) = 1 on J . Denote

by A2(I) the A2 class over I . Although w ∈ A2(I), w is not in A2(I ∪ J ∪ {0}).

Lemma 2.12 Suppose w ∈ Ap(·)(D). Then for all Q ∈D and a measurable subset E of Q,

|E|
|Q| ≤ 2[w]Ap(·)(D)

‖χE‖Lp(·)(w)

‖χQ‖Lp(·)(w)
.
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Here for the sake of convenience, we include the proof.

Proof By Hölder’s inequality (see Lemma 2.2), we have

|E| =
∫

E
dx ≤ 2‖χE‖Lp(·)(w)‖χQ‖Lp′(·)(σ ) ≤ 2[w]Ap(·)(D)|Q| ‖χE‖Lp(·)(w)

‖χQ‖Lp(·)(w)
,

as required. �

Lemma 2.13 Suppose w ∈ Ap(·)(D). Then for all Q ∈D,

‖χQ‖p–(Q)–p+(Q)
Lp(·)(w) � 1.

Proof We assume ‖χQ‖Lp(·)(w) ≤ 1. Otherwise the inequality is trivial since p–(Q) ≤ p+(Q).
We distinguish 3 cases. Let Q0 = [–4, 4]n.

• Suppose |Q| ≤ 1 and Q ∩ Q0 
= ∅. Then, Q ⊂ 5Q0 and since p(·) satisfies the local
log-Hölder continuity condition, |Q|p–(Q)–p+(Q) � 1. Meanwhile, due to Lemma 2.5,
since σ (Q0) � 1, it follows that ‖χQ0‖Lp′(·)(σ ) � 1. Thus,

|Q| � ‖χQ‖Lp(·)(w)‖χQ‖Lp′(·)(σ ) � ‖χQ‖Lp(·)(w)‖χ5Q0‖Lp′(·)(σ ) � ‖χQ‖Lp(·)(w).

• Suppose Q ∩ Q0 = ∅. Write xQ for the left-lower corner of Q. Let
Uk = [–2–k/3, 21–k/3)n as before and write kQ = max{k ∈ Z : Uk ∩ Q 
= ∅}. Note that
kQ ≤ –3. Then, since Q ⊂ UkQ–1 by Lemma 2.1, we have

|Q| � ‖χQ‖Lp(·)(w)‖χQ‖Lp′(·)(σ ) � ‖χQ‖Lp(·)(w)‖χUkQ–1‖Lp′(·)(σ )

� |UkQ–1|
‖χQ‖Lp(·)(w)

‖χUkQ–1‖Lp(·)(w)
.

We observe that

p+(Q) – p–(Q) = sup
y,z∈Q

∣∣p(y) – p(z)
∣∣ ≤ 2 sup

y∈Q

∣∣p(y) – p∞
∣∣ � 1

log(e + |xQ|) .

Thus, since |UkQ–1| ∼ |xQ|n, we have

|UkQ–1|p+(Q)–p–(Q) ∼ |xQ|
Cn

log(e+|xQ |) = exp

(
Cn log |xQ|

log(e + |xQ|)
)

� 1

for some C > 1. Moreover, since ‖χUkQ–1‖Lp(·)(w) ≥ ‖χU0‖Lp(·)(w) � 1, we obtain the
desired result.

• Suppose |Q| ≥ 1 and Q ∩ Q0 
= ∅. Let R ∈D with [–1, 1]n ⊂ R and Q ⊂ R. Then
‖χ[–1,1]n‖Lp(·)(w) ≤ ‖χR‖Lp(·)(w) � ‖χQ‖Lp(·)(w) ≤ 1, thanks to Lemma 2.12. Therefore,

‖χQ‖p–(Q)–p+(Q)
Lp(·)(w) � ‖χR‖p–(Q)–p+(Q)

Lp(·)(w) ∼ 1. �

If we fix a cube P ∈ D such that 0 ∈ P and if Q is any one of the adjacent cubes to P and
has the same size, then w(Q),σ (Q) � 1.
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Corollary 2.14 Let w ∈ Ap(·)(D). Then

∫
Rn

w(x) dx
(e + |x|)K ,

∫
Rn

σ (x) dx
(e + |x|)K < ∞

as long as K � 1.

Proof Let Pj be the jth parent of P. Then

∫
Rn

w(x) dx
(e + |x|)K =

∫
P1

w(x) dx
(e + |x|)K +

∞∑
j=1

∫
Pj+1\Pj

w(x) dx
(e + |x|)K �

∞∑
j=1

2–jK w(Pj).

By Lemmas 2.4 and 2.12,

w(Pj) � max
(‖χPj‖p–

Lp(·)(w),‖χPj‖p+
Lp(·)(w)

)
� max

(( |Pj|
|P|

)p–

,
( |Pj|

|P|
)p+)

� 2jnp+ .

Thus, since K is sufficiently large, it follows that

∫
Rn

w(x) dx
(e + |x|)K �

∞∑
j=1

2–j(K–np+) ∼ 1.

The second inequality is proven similarly. �

Lemma 2.15 Suppose w ∈ Ap(·)(D). Let Q ∈D and E be a measurable subset of Q.
(1) If w(Q) ≥ 1, then ‖χQ‖Lp(·)(w) ∼ w(Q)

1
p∞ .

(2) If w(E) ≥ 1, then

|E|
|Q| �

(
w(E)
w(Q)

) 1
p∞

.

(3) In general

|E|
|Q| �

(
w(E)
w(Q)

) 1
p+

.

Proof
(1) Using Lemma 2.7 for the measure w(x) dx, we have

∫
Q

(
1

w(Q)
1

p∞

)p(x)

w(x) dx �
∫

Q

w(x) dx
w(Q)

+
∫

Q

w(x) dx
(e + |x|)K � 1.

Thus, w(Q) � (‖χQ‖Lp(·)(w))p∞ . Likewise, due to Lemma 2.7,

∫
Q

(
1

‖χQ‖Lp(·)(w)

)p∞
w(x) dx �

∫
Q

w(x) dx
(‖χQ‖Lp(·)(w))p(x) +

∫
Q

w(x) dx
(e + |x|)K � 1.

Thus, w(Q) � (‖χQ‖Lp(·)(w))p∞ .
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(2) As in (1), using Lemma 2.7 for the measure w(x) dx, we have

∫
E

(
1

w(E)
1

p∞

)p(x)

w(x) dx �
∫

E

w(x) dx
w(E)

+
∫

E

w(x) dx
(e + |x|)K � 1.

Thus, since w(Q)
1

p∞ ∼ ‖χQ‖Lp(·)(w),

|E|
|Q| �

‖χE‖Lp(·)(w)

‖χQ‖Lp(·)(w)
� w(E)

1
p∞

w(Q)
1

p∞
,

as required.
(3) If w(E) ≥ 1, then this is clear from (2). Suppose w(E) ≤ 1.

• If w(Q) ≤ 1, then by virtue of Lemma 2.5, ‖χQ‖Lp(·)(w) ≤ 1 and ‖χE‖Lp(·)(w) ≤ 1.
Hence

(‖χQ‖Lp(·)(w)
)p–(Q) ≥ w(Q),

(‖χE‖Lp(·)(w)
)p+(Q) ≤ w(E), (2.8)

thanks to Remark 2.6. Meanwhile, ‖χQ‖Lp(·)(w)

p–(Q)
p+(Q) –1 � 1 due to Lemma 2.13.

Thus, using (2.8), we have

|E|
|Q| �

‖χE‖Lp(·)(w)

‖χQ‖Lp(·)(w)
� w(E)

1
p+(Q)

w(Q)
1

p+(Q) ‖χQ‖Lp(·)(w)
1– p–(Q)

p+(Q)
� w(E)

1
p+

w(Q)
1

p+
.

• If w(E) ≤ 1 ≤ w(Q), then

(‖χQ‖Lp(·)(w)
)p+(Q) ≥ w(Q),

(‖χE‖Lp(·)(w)
)p+(Q) ≤ w(E),

thanks to Remark 2.6. Thus,

|E|
|Q| �

‖χE‖Lp(·)(w)

‖χQ‖Lp(·)(w)
≤ w(E)

1
p+(Q)

w(Q)
1

p+(Q)
� w(E)

1
p+

w(Q)
1

p+
. �

Next, we consider some estimates related to the dyadic maximal operator. We define

mQ(g) =
1

|Q|
∫

Q
g(y) dy

(
g ∈ L1

loc
(
R

n))

for a cube Q.

Lemma 2.16 (Sparse decomposition of f , [15, p. 250]) Let f ∈ L∞
c (Rn) \ {0}, λ > 0, a �

2n, and let D be a dyadic grid. Then there exists a set of pairwise disjoint dyadic cubes
{Qk

j }k∈Z,j∈Jk such that

�k ≡ {
x ∈R

n : MDf (x) > ak} =
⋃
j∈Jk

Qk
j .
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Further, these cubes have the property of ak < mQk
j
(|f |) ≤ 2nak for all j ∈ Jk . Furthermore,

there exists a disjoint collection {Ek
j }k∈Z,j∈Jk , where each Ek

j is a subset of Qk
j called a nutshell,

such that 2|Ek
j | ≥ |Qk

j | and that

�k \ �k+1 =
⋃
j∈Jk

Ek
j .

A direct consequence of Lemma 2.16 is that

MDf �
∞∑

k=–∞

∑
j∈Jk

mQk
j

(|f |)χEk
j
.

Given a weight W and a measurable function f , define

MW ,Df (x) = sup
Q∈D

χQ(x)
W (Q)

∫
Q

∣∣f (y)
∣∣W (y) dy.

The next lemma reflects the geometric property of D.

Lemma 2.17 ([10, Lemma 2.1]) Given a weight W and 1 < p < ∞, we have

∫
Rn

MW ,Df (x)pW (x) dx ≤ p · 2p

p – 1

∫
Rn

∣∣f (x)
∣∣pW (x) dx.

We transform Lemma 2.17 as shown below.

Lemma 2.18 Let {Qk
j }k∈Z,j∈Jk be a sparse collection with the nutshell {Ek

j }k∈Z,j∈Jk , and let
1 < r < ∞. Also let W ∈ A∞(D). Then for all nonnegative f ∈ L0(Rn),

∞∑
k=–∞

∑
j∈Jk

(
1

W (Qk
j )

∫
Qk

j

f (y)W (y) dy
)r

W
(
Qk

j
)
�

∫
Rn

f (x)rW (x) dx.

Proof By Lemmas 2.9 and 2.17,

∞∑
k=–∞

∑
j∈Jk

(
1

W (Qk
j )

∫
Qk

j

f (y)W (y) dy
)r

W
(
Qk

j
)

�
∞∑

k=–∞

∑
j∈Jk

(
1

W (Qk
j )

∫
Qk

j

f (y)W (y) dy
)r

W
(
Ek

j
)

=
∞∑

k=–∞

∑
j∈Jk

∫
Ek

j

(
1

W (Qk
j )

∫
Qk

j

f (y)W (y) dy
)r

W (x) dx

≤
∞∑

k=–∞

∑
j∈Jk

∫
Ek

j

MW ,Df (x)rW (x) dx

�
∫
Rn

f (x)rW (x) dx,

as required. �
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Lemma 2.19 Let w ∈ Ap(·)(D) and Q ∈D.
(1) ‖χQ‖Lp′(·)(σ )

p–(Q)–p(x) � 1 for all x ∈ Q.
(2) We have

(
σ (Q)

‖χQ‖Lp′(·)(σ )

)p–(Q)

≤ σ (Q).

(3)
∫

Q σ (Q)p–(Q)|Q|–p(x)w(x) dx � σ (Q).

Proof Note that p′
+ = (p′)– and p′

– = (p′)+, where (p′)+ and (p′)– are the supremum and the
infimum of p′(·), respectively.

(1) Since p(x) – p–(Q) � (p′)+(Q) – (p′)–(Q) as in [3, p. 755], we can use Lemma 2.13.
(2) If ‖χQ‖Lp′(·)(σ ) ≥ 1, then ‖χQ‖Lp′(·)(σ ) ≥ σ (Q)

1
(p′)+(Q) by Remark 2.6. Hence

(
σ (Q)

‖χQ‖Lp′(·)(σ )

)p–(Q)

≤
(

σ (Q)

σ (Q)
1

(p′)+(Q)

)p–(Q)

=
(

σ (Q)

σ (Q)
1

p′–(Q)

)p–(Q)

= σ (Q).

If ‖χQ‖Lp′(·)(σ ) ≤ 1, then, again by Remark 2.6,

σ (Q)
1

(p′)+(Q) ≥ ‖χQ‖Lp′(·)(σ ) ≥ σ (Q)
1

(p′)–(Q) .

Therefore

(
σ (Q)

‖χQ‖Lp′(·)(σ )

)p–(Q)

≤ (‖χQ‖Lp′(·)(σ )
(p′)–(Q)–1)p–(Q)

≤ (‖χQ‖Lp′(·)(σ )
(p′)+(Q)–1)p–(Q)

≤ (
σ (Q)

(p′)+(Q)–1
(p′)+(Q)

)p–(Q)

=
(
σ (Q)

p′–(Q)–1
p′–(Q)

)p–(Q)

= σ (Q),

as required.
(3) By the definition of Ap(·)(D), we have

∥∥(
[w]Ap(·)(D)|Q|)–1∥∥χQ‖Lp′(·)(σ )χQ‖Lp(·)(w) ≤ 1,

or equivalently,

∫
Q

( ‖χQ‖Lp′(·)(σ )

[w]Ap(·)(D)|Q|
)p(x)

w(x) dx ≤ 1 (2.9)

for Q ∈D. From (1) and (2) we deduce

∫
Q

σ (Q)p–(Q)|Q|–p(x)w(x) dx
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=
(

σ (Q)
‖χQ‖Lp′(·)(σ )

)p–(Q) ∫
Q

‖χQ‖Lp′(·)(σ )
p–(Q)–p(x)‖χQ‖Lp′(·)(σ )

p(x)|Q|–p(x)w(x) dx

� σ (Q)
∫

Q
‖χQ‖Lp′(·)(σ )

p(x)|Q|–p(x)w(x) dx � σ (Q). �

Lemma 2.20 Suppose that w ∈ Ap(·)(D). Let S be a disjoint collection of cubes in dyadic
grid D. Then

∑
Q∈S

∫
Q

(
e + |x|)–K

σ (Q)p–(Q)|Q|–p(x)w(x) dx � 1.

Proof Let Q ∈ S . Then either Q ⊃ Pl for some l or Q is included in some Pl . Since the first
possibility can occur only in one cube, we only have to consider the second possibility.
For such a cube Q, we let l be the smallest number such that Q ⊂ Pl . Then Pl–1 and Q
never intersect due to the minimality of l, since Q does not contain Pl . Thus, there exists
uniquely an integer l such that Q ⊂ Pl \ Pl–1.

Using Lemma 2.19(3) and Corollary 2.14, we estimate

∑
Q∈S

∫
Q

(
e + |x|)–K

σ (Q)p–(Q)|Q|–p(x)w(x) dx

=
∞∑
l=1

∑
Q∈S ,Q⊂Pl\Pl–1

∫
Q

(
e + |x|)–K

σ (Q)p–(Q)|Q|–p(x)w(x) dx

�
∞∑
l=1

2–Kl
∑

Q∈S ,Q⊂Pl\Pl–1

∫
Q

σ (Q)p–(Q)|Q|–p(x)w(x) dx

�
∞∑
l=1

2–Kl
∑

Q∈S ,Q⊂Pl\Pl–1

σ (Q)

�
∞∑
l=1

∑
Q∈S ,Q⊂Pl\Pl–1

∫
Q

σ (x) dx
(e + |x|)K

� 1. �

The next lemma is used in Sect. 3.2.

Lemma 2.21 Suppose that w ∈ Ap(·)(D). Let {Qk
j }k∈Z,j∈Jk be a sparse collection with the

nutshell {Ek
j }k∈Z,j∈Jk . Set H2 ≡ {(k, j) : Qk

j ∩ P = φ,σ (Qk
j ) ≥ 1}. Then

∑
(k,j)∈H2

∫
Ek

j

(‖χQk
j
‖Lp′(·)(σ )

|Qk
j |

)p(x) w(x) dx
(e + |x|)K � 1.

Proof By (2.7), we obtain

∑
(k,j)∈H2

∫
Ek

j

(‖χQk
j
‖Lp′(·)(σ )

|Qk
j |

)p(x) w(x) dx
(e + |x|)K

≤
∑

(k,j)∈H2

sup
x∈Qk

j

1
(e + |x|)K

∫
Qk

j

(‖χQk
j
‖Lp′(·)(σ )

|Qk
j |

)p(x)

w(x) dx �
∑

(k,j)∈H2

sup
x∈Qk

j

1
(e + |x|)K .
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By Lemma 2.9, Corollary 2.14, and the fact that σ (Qk
j ) ≥ 1 for any (k, j) ∈H2, we obtain

∑
(k,j)∈H2

∫
Ek

j

(‖χQk
j
‖Lp′(·)(σ )

|Qk
j |

)p(x) w(x) dx
(e + |x|)K

�
∑

(k,j)∈H2

sup
x∈Qk

j

1
(e + |x|)K σ

(
Qk

j
)

�
∑

(k,j)∈H2

∫
Qk

j

σ (x)
(e + |x|)K dx

�
∑

(k,j)∈H2

∫
Ek

j

σ (x)
(e + |x|)K dx

� 1. �

3 Proof of Theorem 1.7
Sect. 3 uses the notation in Lemma 2.21.

Suppose that w ∈ Ap(·)(D) and f ∈ L∞
c (Rn) satisfy ‖f ‖Lp(·)(w) < 1. We may assume f ≥ 0

a.e. by replacing f by |f | if necessary. We write f1 ≡ f χ{f >σ } and f2 ≡ f – f1. Here, σ ≡ w– 1
p(·)–1

is the dual weight. Then

∫
Rn

∣∣fj(x)
∣∣p(x)w(x) dx < 1 (j = 1, 2). (3.1)

We only have to show that for j = 1, 2,

∫
Rn

MDfj(x)p(x)w(x) dx � 1.

We form a sparse decomposition of f1 and f2 separately. The estimates of f1 and f2 will
be established independently. So suppose that there exists a sparse family {Qk

j }k∈Z,j∈Jk with
the nutshell {Ek

j }k∈Z,j∈Jk such that

MDfl �
∞∑

k=–∞

∑
j∈Jk

mQk
j

(|fl|
)
χEk

j
(l = 1, 2).

Since the Ek
j ’s are disjoint, we have

∫
Rn

(
MDfl(x)

)p(x)w(x) dx �
∞∑

k=–∞

∑
j∈Jk

∫
Ek

j

mQk
j

(|fl|
)p(x)w(x) dx =: Il (l = 1, 2).

3.1 Estimate of MDf1

We use the sparse decomposition of MDf1:

MDf1 �
∞∑

k=–∞

∑
j∈Jk

mQk
j

(|f1|
)
χEk

j
.
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Let x ∈R
n. Note that f1(x)σ –1(x) ≥ 1 unless f1(x) = 0. Since p–(Qk

j ) ≥ 1,

∫
Qk

j

(
f1(y)σ (y)–1) p(y)

p–(Qk
j )

σ (y) dy ≤
∫

Qk
j

(
f1(y)σ (y)–1)p(y)

σ (y) dy

=
∫

Qk
j

f1(y)p(y)w(y) dy ≤ 1.

Consequently,

(∫
Qk

j

(
f1(y)σ (y)–1)σ (y) dy

)p(x)

≤
(∫

Qk
j

(
f1(y)σ (y)–1) p(y)

p–(Qk
j )

σ (y) dy
)p(x)

≤
(∫

Qk
j

(
f1(y)σ (y)–1) p(y)

p–(Qk
j )

σ (y) dy
)p–(Qk

j )

.

Hence, by Lemma 2.19(3),

I1 ≤
∞∑

k=–∞

∑
j∈Jk

(
1

σ (Qk
j )

∫
Qk

j

(
f1(y)σ (y)–1) p(y)

p–(Qk
j )

σ (y) dy
)p–(Qk

j )

×
∫

Ek
j

σ
(
Qk

j
)p–(Qk

j )∣∣Qk
j
∣∣–p(x)w(x) dx

�
∞∑

k=–∞

∑
j∈Jk

(
1

σ (Qk
j )

∫
Qk

j

(
f1(y)σ (y)–1) p(y)

p–(Qk
j )

σ (y) dy
)p–(Qk

j )

σ
(
Qk

j
)

≤
∞∑

k=–∞

∑
j∈Jk

(
1

σ (Qk
j )

∫
Qk

j

(
f1(y)σ (y)–1) p(y)

p– σ (y) dy
)p–

σ
(
Qk

j
)
.

The last inequality used Hölder’s inequality. Since σ ∈ A∞(D), σ (Qk
j ) � σ (Ek

j ) by virtue of
Lemma 2.9. Consequently, due to Lemma 2.18, we have

I1 �
∫
Rn

{[
f1(x)σ –1(x)

] p(x)
p–

}p–
σ (x) dx ≤ 1.

3.2 Estimate of Mf2

Set

F ≡ {
(k, j) : Qk

j ⊂ P
}

,

G ≡ {
(k, j) : P ⊂ Qk

j
}

,

H ≡ {
(k, j) : P ∩ Qk

j = ∅}
.

Accordingly,

I2,A ≡
∑

(k,j)∈A

∫
Ek

j

mQk
j

(|f2|
)p(x)w(x) dx

(
A ∈ {F ,G,H}).
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Estimate of I2,F Since f2σ
–1 ≤ 1, we have

I2,F =
∑

(k,j)∈F

∫
Ek

j

(
1

|Qk
j |

∫
Qk

j

f2(y)σ (y)–1σ (y) dy
)p(x)

w(x) dx

≤
∑

(k,j)∈F

∫
Ek

j

σ
(
Qk

j
)p(x)–p–(Qk

j )
σ
(
Qk

j
)p–(Qk

j )∣∣Qk
j
∣∣–p(x)w(x) dx

≤
∑

(k,j)∈F

∫
Ek

j

(
1 + σ

(
Qk

j
))p(x)–p–(Qk

j )
σ
(
Qk

j
)p–(Qk

j )∣∣Qk
j
∣∣–p(x)w(x) dx

≤ (
1 + σ (P)

)p+–p–
∑

(k,j)∈F

∫
Ek

j

σ
(
Qk

j
)p–(Qk

j )∣∣Qk
j
∣∣–p(x)w(x) dx.

From Lemmas 2.19(3) and 2.9, we obtain

I2,F �
(
1 + σ (P)

)p+–p–
∑

(k,j)∈F
σ
(
Qk

j
)

�
(
1 + σ (P)

)p+–p–
∑

(k,j)∈F
σ
(
Ek

j
)
�

(
1 + σ (P)

)p+–p–
σ (P) � 1.

Estimate of I2,G We note that w(Qk
j ) ≥ w(P) ≥ 1 and σ (Qk

j ) ≥ σ (P) ≥ 1. Consequently,
from Lemma 2.15(1)–(2),

1
|Qk

j |
� 1

|P|σ (P)
1

p′∞ σ
(
Qk

j
)– 1

p′∞ � σ
(
Qk

j
)– 1

p′∞ � 1
‖χQk

j
‖Lp′(·)(σ )

.

Thus, by Hölder’s inequality and (3.1),

mQk
j
(f2) � 1

‖χQk
j
‖Lp′(·)(σ )

∫
Qk

j

f2(y) dy �
‖f2‖Lp(·)(w)‖χQk

j
‖Lp′(·)(σ )

‖χQk
j
‖Lp′(·)(σ )

� 1.

Using Lemma 2.7 for the measure w(x) dx, we have

I2,G �
∑

(k,j)∈G

∫
Ek

j

(
mQk

j
(f2)

)p∞w(x) dx +
∑

(k,j)∈G

∫
Ek

j

w(x) dx
(e + |x|)K

�
∑

(k,j)∈G

∫
Ek

j

(
mQk

j
(f2)

)p∞w(x) dx + 1.

To complete the estimate of I2,G , we only have to show that the first sum is bounded by a
constant. We calculate

∑
(k,j)∈G

∫
Ek

j

(
mQk

j
(f2)

)p∞w(x) dx

=
∑

(k,j)∈G
w

(
Ek

j
)(σ (Qk

j )
|Qk

j |
)p∞(

1
σ (Qk

j )

∫
Qk

j

f2(y)σ (y)–1σ (y) dy
)p∞

.
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We note that

σ
(
Qk

j
)p∞–1 = σ

(
Qk

j
) p∞

p′∞ ∼ (‖χQk
j
‖Lp′(·)(σ )

)p∞ �
( |Qk

j |
‖χQk

j
‖Lp(·)(w)

)p∞
∼ |Qk

j |p∞

w(Qk
j )

thanks to Lemma 2.15(1) and the definition of Ap(·)(D). Thus,

∑
(k,j)∈G

∫
Ek

j

(
mQk

j
(f2)

)p∞w(x) dx

=
∑

(k,j)∈G
w

(
Ek

j
)(σ (Qk

j )
|Qk

j |
)p∞(

1
σ (Qk

j )

∫
Qk

j

f2(y)σ (y)–1σ (y) dy
)p∞

�
∑

(k,j)∈G
σ
(
Qk

j
) w(Ek

j )
w(Qk

j )

(
1

σ (Qk
j )

∫
Qk

j

f2(y)σ (y)–1σ (y) dy
)p∞

�
∑

(k,j)∈G
σ
(
Ek

j
)( 1

σ (Qk
j )

∫
Qk

j

f2(y)σ (y)–1σ (y) dy
)p∞

�
∫
Rn

(
f2(x)σ (x)–1)p∞

σ (x) dx,

owing to Lemma 2.18. Since 0 ≤ f2σ
–1 ≤ 1, we have

∫
Rn

(
f2(x)σ (x)–1)p∞

σ (x) dx �
∫
Rn

(
f2(x)σ (x)–1)p(x)

σ (x) dx +
∫
Rn

σ (x)
(e + |x|)K dx

�
∫
Rn

f2(x)p(x)w(x) dx + 1 � 1,

thanks to Lemma 2.7 applied for the weighted measure σ (x) dx. Consequently, I2,G � 1.

Estimate of I3,G Set

H1 ≡ {
(k, j) ∈H : σ

(
Qk

j
) ≤ 1

}
, H2 ≡ {

(k, j) ∈H : σ
(
Qk

j
)

> 1
}

.

Accordingly, we consider

I2,Hl ≡
∑

(k,j)∈Hl

∫
Ek

j

mQk
j

(|f2|
)p(x)w(x) dx (l = 1, 2).

Let (k, j) ∈H1. Let x+ ∈ Qk
j satisfy p(x+) = p+(Qk

j ). Then

∣∣p+
(
Qk

j
)

– p(x)
∣∣ ≤ ∣∣p(x) – p∞

∣∣ +
∣∣p(x+) – p∞

∣∣ � 1
log(e + |x|)

(
x ∈ Qk

j
)
.
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Also see [3, (5.14)]. Consequently, from Lemma 2.7 applied for the measure w(x) dx, we
deduce

I2,H1 �
∑

(k,j)∈H1

∫
Ek

j

mQk
j
(f2)p+(Qk

j )w(x) dx +
∑

(k,j)∈H1

∫
Ek

j

w(x) dx
(e + |x|)K

�
∑

(k,j)∈H1

∫
Ek

j

mQk
j
(f2)p+(Qk

j )w(x) dx + 1.

Note that

1
σ (Qk

j )

∫
Qk

j

f2(y)σ (y)–1σ (y) dy ≤ 1

from the definition of f2. We calculate

I2,H1 �
∑

(k,j)∈H1

∫
Ek

j

(
1

σ (Qk
j )

∫
Qk

j

f2(y)σ (y)–1σ (y) dy
)p+(Qk

j )(σ (Qk
j )

|Qk
j |

)p+(Qk
j )

w(x) dx + 1

≤
∑

(k,j)∈H1

∫
Ek

j

(
1

σ (Qk
j )

∫
Qk

j

f2(y)σ (y)–1σ (y) dy
)p∞(

σ (Qk
j )

|Qk
j |

)p+(Qk
j )

w(x) dx

+
∑

(k,j)∈H1

∫
Ek

j

(
e + |x|)–K

(
σ (Qk

j )
|Qk

j |
)p+(Qk

j )

w(x) dx + 1.

Since σ (Qk
j ) ≤ 1 and p(x) ≤ p+(Qk

j ) for x ∈ Qk
j , we have

I2,H1 �
∑

(k,j)∈H1

∫
Ek

j

(
1

σ (Qk
j )

∫
Qk

j

f2(y)σ (y)–1σ (y) dy
)p∞(

σ (Qk
j )

|Qk
j |

)p+(Qk
j )

w(x) dx

+
∑

(k,j)∈H1

∫
Ek

j

(
e + |x|)–K σ (Qk

j )p–(Qk
j )

|Qk
j |p(x)

w(x) dx + 1

�
∑

(k,j)∈H1

∫
Ek

j

(
1

σ (Qk
j )

∫
Qk

j

f2(y)σ (y)–1σ (y) dy
)p∞(

σ (Qk
j )

|Qk
j |

)p+(Qk
j )

w(x) dx + 1,

by virtue of Lemma 2.20. Consequently, we only have to show

∑
(k,j)∈H1

∫
Ek

j

(
1

σ (Qk
j )

∫
Qk

j

f2(y)σ (y)–1σ (y) dy
)p∞(

σ (Qk
j )

|Qk
j |

)p+(Qk
j )

w(x) dx � 1.

In fact, from Lemma 2.19(3), we get

∑
(k,j)∈H1

∫
Ek

j

(
1

σ (Qk
j )

∫
Qk

j

f2(y)σ (y)–1σ (y) dy
)p∞ σ (Qk

j )p–(Qk
j )

|Qk
j |p(x)

w(x) dx

≤
∑

(k,j)∈H1

(
1

σ (Qk
j )

∫
Qk

j

f2(y)σ (y)–1σ (y) dy
)p∞

σ
(
Qk

j
)
.
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Thus, using Lemmas 2.18 and 2.20, we have

∑
(k,j)∈H1

∫
Ek

j

(
1

σ (Qk
j )

∫
Qk

j

f2(y)σ (y)–1σ (y) dy
)p∞ σ (Qk

j )p–(Qk
j )

|Qk
j |p(x)

w(x) dx

�
∑

(k,j)∈H1

(
1

σ (Qk
j )

∫
Qk

j

f2(y)σ (y)–1σ (y) dy
)p∞

σ
(
Ek

j
)

�
∫
Rn

(
f2(y)σ (y)–1)p∞

σ (x) dx

�
∫
Rn

(
f2(y)σ (y)–1)p(x)

σ (x) dx +
∫
Rn

σ (x) dx
(e + |x|)M � 1.

We consider H2. By Hölder’s inequality,

∫
Qk

j

f2(y) dy � ‖f2‖Lp(·)(w)‖χQk
j
‖Lp′(·)(σ ) ≤ ‖χQk

j
‖Lp′(·)(σ ).

Consequently, using Lemma 2.7 for the measure w(x) dx and Lemma 2.21, we have

∑
(k,j)∈H2

∫
Ek

j

(
1

|Qk
j |

∫
Qk

j

f2(y) dy
)p(x)

w(x) dx

=
∑

(k,j)∈H2

∫
Ek

j

(
1

‖χQk
j
‖Lp′(·)(σ )

∫
Qk

j

f2(y) dy
)p(x)(‖χQk

j
‖Lp′(·)(σ )

|Qk
j |

)p(x)

w(x) dx

�
∑

(k,j)∈H2

∫
Ek

j

(
1

‖χQk
j
‖Lp′(·)(σ )

∫
Qk

j

f2(y) dy
)p∞(‖χQk

j
‖Lp′(·)(σ )

|Qk
j |

)p(x)

w(x) dx

+
∑

(k,j)∈H2

∫
Ek

j

(‖χQk
j
‖Lp′(·)(σ )

|Qk
j |

)p(x) w(x) dx
(e + |x|)K

�
∑

(k,j)∈H2

∫
Ek

j

(
1

‖χQk
j
‖Lp′(·)(σ )

∫
Qk

j

f2(y) dy
)p∞(‖χQk

j
‖Lp′(·)(σ )

|Qk
j |

)p(x)

w(x) dx + 1

≡ J1 + 1.

Thanks to Lemma 2.15 applied to the dual exponent,

(
σ (Qk

j )
‖χQk

j
‖Lp′(·)(σ )

)p∞
�

(
σ
(
Qk

j
)1– 1

p′∞
)p∞ = σ

(
Qk

j
)
.

Thus we obtain

J1 =
∑

(k,j)∈H2

∫
Ek

j

(
1

σ (Qk
j )

∫
Qk

j

f2(y) dy
)p∞(

σ (Qk
j )

‖χQk
j
‖Lp′(·)(σ )

)p∞

×
(‖χQk

j
‖Lp′(·)(σ )

|Qk
j |

)p(x)

w(x) dx
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≤
∑

(k,j)∈H2

∫
Ek

j

(
1

σ (Qk
j )

∫
Qk

j

f2(y) dy
)p∞(‖χQk

j
‖Lp′(·)(σ )

|Qk
j |

)p(x)

σ
(
Qk

j
)
w(x) dx

�
∑

(k,j)∈H2

(
1

σ (Qk
j )

∫
Qk

j

f2(y) dy
)p∞

σ
(
Qk

j
)

� 1,

where in the third inequality, we used (2.7) and Lemmas 2.7 and 2.9. Together, we obtain
the desired result.

3.3 Equivalent condition on weights
Finally, we consider the condition on which Q in the definition of w ∈ Aloc

p(·). We generalize
w ∈ Aloc

p(·) as follows:

Definition 3.1 Given an exponent p(·) : Rn → (1,∞) with p– > 1, a positive number R ≥ 1
and a weight w, we say that w ∈ Aloc,R

p(·) if

[w]Aloc,R
p(·)

≡ sup
|Q|≤Rn

|Q|–1‖χQ‖Lp(·)(w)‖χQ‖Lp′(·)(σ ) < ∞,

where σ ≡ w– 1
p(·)–1 as before and the supremum is taken over all cubes Q ∈Q with volume

Rn.

Accordingly, we consider the local maximal operator given by

Mloc,Rf (x) ≡ sup
Q∈Q,|Q|≤Rn

χQ(x)
|Q|

∫
Q

∣∣f (y)
∣∣dy

(
x ∈R

n)

for a measurable function f and R ≥ 1.
Similar to Theorem 1.2, we can prove the following theorem:

Theorem 3.2 Suppose that a variable exponent p(·) : Rn → [1,∞) satisfies conditions (1.1)
and (1.2) and 1 < p– ≤ p+ < ∞. Let R ≥ 1. Then given any w ∈ Aloc,R

p(·) ,

∥∥Mloc,Rf
∥∥

Lp(·)(w) ≤ C‖f ‖Lp(·)(w).

We remark that the class w ∈ Aloc,R
p(·) with R ≥ 1 is independent of R ≥ 1.

Proposition 3.3 Suppose that a variable exponent p(·) : Rn → [1,∞) satisfies conditions
(1.1) and (1.2) and 1 < p– ≤ p+ < ∞. The class w ∈ Aloc,R

p(·) with R ≥ 1 is independent of R ≥ 1.

Proof Let w ∈ Aloc
p(·). If m ≡ [2R + 1], then Mloc,Rf (x) ≤ Cm(Mloc)mf (x) for any measurable

function f , where (Mloc)m denotes the m-fold composition of Mloc. Consequently, Mloc,R

is bounded on Lp(·)(w). Thus, w ∈ Aloc,R
p(·) . �
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4 Proof of Theorem 1.5
Thanks to Lemma 2.8, we have

∥∥Mloc
D f

∥∥
Lp(·)(w) ∼

( ∑
Q∈D0,(1,1,...,1)

(∥∥(
Mloc

D f
)
χQ

∥∥
Lp(·)(w)

)p∞
) 1

p∞
.

Since (Mloc
D

f )χQ = Mloc
D

[f χQ] = (MD[f χQ])χQ for any Q ∈ D0,(1,1,...,1), we can use Theorem
1.7 to get

∥∥Mloc
D f

∥∥
Lp(·)(w) �

( ∑
Q∈D0,(1,1,...,1)

(‖f χQ‖Lp(·)(w)
)p∞

) 1
p∞

.

Using Lemma 2.8, we obtain the desired result.

5 Application – the weighted vector-valued maximal inequality
Finally, as an application, we consider the weighted vector-valued inequality for Mloc. If
Theorem 1.8 is proven, Theorem 1.11 follows immediately from Proposition 1.9. So, we
concentrate on Theorem 1.8 using an extrapolation for Aloc

p(·). We prepare two lemmas.

Lemma 5.1 Let w0, w1 ∈ Aloc
1 and 1 < p < ∞. Then, w = w0w1–p

1 ∈ Aloc
p .

Proof The proof is analogous to the corresponding assertion for A1 and Ap. For conve-
nience, here we supply the proof. Fix a cube Q with |Q| ≤ 1. Then

1
|Q|

∫
Q

w0(x)w1(x)1–p dx
(

1
|Q|

∫
Q

w0(x)1–p′
w1(x) dx

)p–1

� 1
|Q|

∫
Q

w0(x)
(

1
|Q|

∫
Q

w1(y) dy
)1–p

dx

×
(

1
|Q|

∫
Q

w1(x) dx
)p–1( 1

|Q|
∫

Q
w0(y) dy

)–1

= 1.

Thus, [w]Aloc
p

� 1 and w ∈ Aloc
p . �

Let us conclude the proof of Theorem 1.8.
Let w ∈ Aloc

p(·) and (f , g) ∈ F with ‖f ‖Lp(·)(w) < ∞. Assume that ‖f ‖Lp(·)(w) > 0 and 0 <
‖g‖Lp(·)(w) < ∞, also set

h1 ≡ f
‖f ‖Lp(·)(w)

+
g

‖g‖Lp(·)(w)
.

Then, h1 ∈ Lp(·)(w) and ‖h1‖Lp(·)(w) ≤ 2. We define the operator R as

Rh(x) ≡
∞∑

k=0

(Mloc)kh(x)
2k‖Mloc‖k

B(Lp(·)(w))

(
x ∈R

n)

for h ∈ Lp(·)(w). Then, we can show that
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(i) for all x ∈R
n, |h(x)| ≤Rh(x),

(ii) ‖Rh‖Lp(·)(w) ≤ 2‖h‖Lp(·)(w),
(iii) Rh ∈ Aloc

1 with [Rh]Aloc
1

≤ 2‖Mloc‖B(Lp(·)(w)).

Define M′h ≡ w–1 · Mloc(hw). Note that if σ = w– 1
p(·)–1 ∈ Aloc

p(·), then Mloc is bounded on
Lp′(·)(σ ). Hence, M′ is bounded on Lp′(·)(w). In fact,

∥∥M′h
∥∥

Lp′(·)(w) =
∥∥w–1 · Mloc(hw)w

1
p′(·)

∥∥
Lp′(·)

=
∥∥Mloc(hw) · σ 1

p′(·)
∥∥

Lp′(·)

=
∥∥Mloc(hw)

∥∥
Lp′(·)(σ ) � ‖hw‖Lp′(·)(σ ) = ‖h‖Lp′(·)(w).

Moreover, define

R′h(x) ≡
∞∑

k=0

(M′)kh(x)
2k‖M′‖k

B(Lp′(·)(w))

(
x ∈R

n)

for h ∈ Lp′(·). Then, we also have
(i) for all x ∈R

n, |h(x)| ≤R′h(x),
(ii) ‖R′h‖Lp′(·)(w) ≤ 2‖h‖Lp′(·)(w),

(iii) (R′h)w ∈ Aloc
1 with [(R′h)w]Aloc

1
≤ 2‖M′‖B(Lp′(·)(w)).

Fix f ∈ Lp(·)(w). Then, fw
1

p(·) ∈ Lp(·). Thus, by duality there exists a nonnegative function
h ∈ Lp′(·) with ‖h‖Lp′(·) = 1 such that

‖f ‖Lp(·)(w)

�
∫
Rn

f (x)h(x)w(x)
1

p(x) dx

≤
∫
Rn

f (x)Rh1(x)
– 1

p′
0 Rh1(x)

1
p′

0 R′[hw– 1
p′(·)

]
(x)

1
p0 R′[hw– 1

p′(·)
]
(x)

1
p′

0 w(x) dx

≤
(∫

Rn
f (x)p0Rh1(x)1–p0R′[hw– 1

p′(·)
]
(x)w(x) dx

) 1
p0

×
(∫

Rn
Rh1(x)R′[hw– 1

p′(·) ](x)w(x) dx
) 1

p′
0

≡ I1 × I2.

We estimate I1. Since Rh1,R′[hw– 1
p′(·) ]w ∈ Aloc

1 , according to Lemma 5.1, we have

(Rh1)1–p0
(
R′[hw– 1

p′(·) ]w
) ∈ Ap0 .

Using our assumption (1.3) and Hölder’s inequality, we have

Ip0
1 ≤

∫
Rn

g(x)p0Rh1(x)1–p0R′[hw– 1
p′(·)

]
(x)w(x) dx

≤
∫
Rn

g(x)p0

(
g(x)

‖g‖Lp(·)(w)

)1–p0

R′[hw– 1
p′(·)

]
(x)w(x) dx
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= ‖g‖p0–1
Lp(·)(w)

∫
Rn

g(x)R′[hw– 1
p′(·) ](x)w(x) dx

= ‖g‖p0–1
Lp(·)(w)‖g‖Lp(·)(w)

∥∥R′[hw– 1
p′(·)

]∥∥
Lp′(·)(w)

� ‖g‖p0
Lp(·)(w)

∥∥hw– 1
p′(·)

∥∥
Lp′(·)(w)

= ‖g‖p0
Lp(·)(w).

Next, we estimate I2. Using Hölder’s inequality, we have

Ip′
0

2 �
∥∥(Rh1)w

1
p(·)

∥∥
Lp(·)

∥∥R′[hw– 1
p′(·)

] · w
1

p′(·)
∥∥

Lp′(·)

= ‖Rh1‖Lp(·)(w)
∥∥R′[hw– 1

p′(·) ]∥∥
Lp′(·)(w)

� ‖h1‖Lp(·)(w)
∥∥hw– 1

p′(·)
∥∥

Lp′(·)(w)

= ‖h1‖Lp(·)(w)‖h‖Lp′(·) ∼ 1.

Combining these two estimates gives the desired result.
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