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Abstract
Carlitz initiated a study of degenerate Bernoulli and Euler numbers and polynomials
which is the pioneering work on degenerate versions of special numbers and
polynomials. In recent years, studying degenerate versions regained lively interest of
some mathematicians. The purpose of this paper is to study degenerate Bell
polynomials by using umbral calculus and generating functions. We derive several
properties of the degenerate Bell polynomials including recurrence relations,
Dobinski-type formula, and derivatives. In addition, we represent various known
families of polynomials such as Euler polynomials, modified degenerate
poly-Bernoulli polynomials, degenerate Bernoulli polynomials of the second kind, and
falling factorials in terms of degenerate Bell polynomials and vice versa.
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1 Introduction and preliminaries
In [3, 4], Carlitz studied degenerate Bernoulli and Euler polynomials, which are degener-
ate versions of the ordinary Bernoulli and Euler polynomials, and investigated some com-
binatorial results as well as some arithmetical ones. We have witnessed in recent years
that, along the same line as Carlitz’s pioneering work, some mathematicians began to ex-
plore degenerate versions of quite a few special polynomials and numbers which include
the degenerate Bernoulli numbers of the second kind, degenerate Stirling numbers of the
first and second kinds, degenerate Cauchy numbers, degenerate Bell numbers and polyno-
mials, degenerate complete Bell polynomials and numbers, degenerate gamma function,
and so on (see [8, 9, 11, 14–16, 20] and the references therein). They have been studied by
various means like combinatorial methods, generating functions, differential equations,
umbral calculus techniques, p-adic analysis, and probability theory. Here we would like
to point out that the generating functions are also useful in related fields like mathemati-
cal physics (see [23, 24]). Moreover, those degenerate versions of some special polynomi-
als found some applications to other areas of mathematics such as differential equations,
identities of symmetry, and probability theory [12, 13, 18].
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The Bell number Bn counts the number of partitions of a set with n elements into disjoint
nonempty subsets. The Bell polynomials are natural extensions of Bell numbers and also
called Touchard or exponential polynomials (see [2]). As a degenerate version of these Bell
polynomials and numbers, the degenerate Bell polynomials and numbers in (18) are intro-
duced and studied under the different names of the partially degenerate Bell polynomials
and numbers in [16].

The purpose of the present paper is to study the degenerate Bell polynomials and num-
bers by means of umbral calculus and generating functions. We investigate several proper-
ties of those numbers and polynomials which include Dobinski-type formula, recurrence
relations, and their derivatives. Moreover, with the help of umbral calculus techniques
we represent various known families of polynomials such as Euler polynomials, modified
degenerate poly-Bernoulli polynomials, degenerate Bernoulli polynomials of the second
kind, and falling factorials in terms of degenerate Bell polynomials and vice versa. Even
though the degenerate Bell polynomials were introduced earlier in [16], only some basic
properties were studied there by using generating functions. The novelty of this paper is
that they are further explored by employing a different method, namely umbral calculus.
In particular, this enables us to represent various known families of polynomials in terms
of degenerate Bell polynomials and vice versa, which can be viewed as a classical connec-
tion problem.

This paper is outlined as follows. In Sect. 1, firstly we recall the degenerate exponential
functions, the degenerate logarithms, and the degenerate polylogarithm functions which
are respectively degenerate versions of exponential functions, logarithms, and polyloga-
rithm functions. Then we go over the definitions of some degenerate special polynomials
and numbers, namely the modified degenerate poly-Bernoulli polynomials, the degener-
ate Bernoulli polynomials of the second kind of order r, the degenerate Stirling numbers
of the first and second kinds, and the degenerate Bell polynomials. In addition, we briefly
state some basic facts about umbral calculus. For details, we let the reader refer to [21]. In
Sect. 2, firstly we derive Dobinski-type formulas, recurrence relations, and the derivatives
for the degenerate Bell polynomials. Then we find a formula expressing any polynomial in
terms of the degenerate Bell polynomials. We apply this formula to Euler polynomials and
to find the inversion formula of (28). By applying the transfer formula we obtain a relation
involving the degenerate Bell polynomials, Stirling numbers of the first and second kinds,
and the higher-order degenerate Bernoulli polynomials of the second kind. In addition,
by using the general formula (26) expressing one Sheffer polynomial in terms of another
Sheffer polynomial, we express Euler polynomials and modified degenerate poly-Bernoulli
polynomials in terms of the degenerate Bell polynomials and also represent the degener-
ate Bell polynomials in terms of falling factorials and degenerate Bernoulli polynomials of
the second kind. Finally, Sect. 3 is the conclusion of this paper.

For any 0 �= λ ∈R, we recall that the degenerate exponential functions are defined by

ex
λ(t) = (1 + λt)

x
λ , eλ(t) = e1

λ(t), (see [9, 14]). (1)

Note that

ex
λ(t) =

∞∑

n=0

(x)n,λ
tn

n!
(see [9]), (2)
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where (x)0,λ = 1, (x)n,λ = x(x – λ) · · · (x – (n – 1)λ)), (n ≥ 1).
The degenerate logarithm logλ(1 + t), which is the compositional inverse of the degen-

erate exponential function eλ(t) and a motivation for the definition of degenerate polylog-
arithm function, is defined by

logλ(1 + t) =
∞∑

n=1

λn–1(1)n,1/λ
tn

n!
=

∞∑

n=1

(λ – 1)n–1
tn

n!
=

1
λ

(
(1 + t)λ – 1

)
, (see [9]). (3)

Note that limλ→0 logλ(1 + t) = log(1 + t), logλ(eλ(t)) = eλ(logλ(t)) = t.
We recall from equation (12) of [9] that, for k ∈ Z, the degenerate polylogarithm func-

tions are defined by

Lik,λ(x) =
∞∑

n=1

(–λ)n–1(1)n,1/λ

(n – 1)!nk xn (|x| < 1
)
. (4)

Note that

lim
λ→0

Lik,λ(x) =
∞∑

n=1

xn

nk = Lik(x),

where Lik(x) is called the polylogarithm.
From (4), we note that Li1,λ(x) = – logλ(1 – x). In [3, 4], Carlitz considered the degenerate

Bernoulli polynomials which are given by

t
eλ(t) – 1

ex
λ(t) =

∞∑

n=0

βn,λ(x)
tn

n!
. (5)

For x = 0, βn,λ = βn,λ(0) are called the degenerate Bernoulli numbers.
It is easy to show that limλ→0 βn,λ(x) = Bn(x), (n ≥ 0), where Bn(x) are the ordinary

Bernoulli polynomials given by

t
et – 1

ext =
∞∑

n=0

Bn(x)
tn

n!
(see [1–18, 20–22, 25, 26]). (6)

For x = 0, Bn = Bn(0) are called the Bernoulli numbers.
It is well known that the Euler polynomials are given by

2
et + 1

ext =
∞∑

n=0

En(x)
tn

n!
(see [21]). (7)

For x = 0, En = En(0) are called the Euler numbers.
From (7), we note that

En(x) =
n∑

l=0

(
n
l

)
En–lxl (n ≥ 0). (8)
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Recently, the degenerate poly-Bernoulli polynomials have been defined by means of the
degenerate polylogarithms as follows:

Lik,λ(1 – eλ(–t))
1 – eλ(–t)

ex
λ(–t) =

∞∑

n=0

B(k)
n,λ(x)

tn

n!
(see [9]). (9)

When k = 1, we note that B(1)
n,λ(x) = (–1)nβn,λ(x), (n ≥ 0). Now, we slightly modify the defi-

nition of the degenerate poly-Bernoulli polynomials, called the modified degenerate poly-
Bernoulli polynomials, as follows:

Lik,λ(1 – eλ(–t))
eλ(t) – 1

ex
λ(t) =

∞∑

n=0

β
(k)
n,λ(x)

tn

n!
(k ∈ Z), (see [17]). (10)

Note that β
(1)
n,λ(x) = βn,λ(x), (n ≥ 0). When x = 0, β

(k)
n,λ = β

(k)
n,λ(0) are called the modified de-

generate poly-Bernoulli numbers.
The degenerate Bernoulli polynomials of the second kind of order r are defined by

(
t

logλ(1 + t)

)r

(1 + t)x =
∞∑

n=0

b(r)
n,λ(x)

tn

n!
. (11)

For x = 0, b(r)
n,λ = b(r)

n,λ(0) are called the degenerate Bernoulli numbers of the second kind of
order r. Note that

lim
λ→0

(
t

logλ(1 + t)

)r

(1 + t)x =
(

t
log(1 + t)

)r

(1 + t)x =
∞∑

n=0

b(r)
n (x)

tn

n!
,

where b(r)
n (x) are called the Bernoulli polynomials of the second kind of order r (see [21]).

When r = 1, bn(x) = b(1)
n (x), (n ≥ 0), are called the Bernoulli polynomials of the second

kind.
For n ≥ 0, the falling factorial sequence is defined by

(x)0 = 1, (x)n = x(x – 1) · · · (x – n + 1), (n ≥ 1), (see [21]).

The Stirling numbers of the first kind are given by

(x)n =
n∑

l=0

S1(n, l)xl (n ≥ 0), (see [21]). (12)

As an inversion formula of (12), the Stirling numbers of the second kind are defined as

xn =
n∑

l=0

S2(n, l)(x)l (n ≥ 0), (see [1, 16, 21]). (13)

In [9], the degenerate Stirling numbers of the first kind are defined by Kim and Kim as
follows:

(x)n =
n∑

l=0

S1,λ(n, l)(x)l,λ (n ≥ 0). (14)
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Note that limλ→0 S1,λ(n, l) = S1(n, l), (n ≥ 0). As an inversion formula of (14), the Stirling
numbers of the second kind are given by

(x)n,λ =
n∑

l=0

S2,λ(n, l)(x)l (n ≥ 0), (see [11]). (15)

Thus, by (14) and (15), we get

1
k!

(
logλ(1 + t)

)k =
∞∑

n=k

S1,λ(n, k)
tn

n!
(k ≥ 0), (see [9]), (16)

and

1
k!

(
eλ(t) – 1

)k =
∞∑

n=k

S2,λ(n, k)
tn

n!
(k ≥ 0), (see [11]). (17)

In [16], the degenerate Bell polynomials are defined by

ex(eλ(t)–1) =
∞∑

n=0

Beln,λ(x)
tn

n!
. (18)

When x = 1, Beln,λ = Beln,λ(1) are called the degenerate Bell numbers.
From (18), we note that

Beln,λ(x + y) =
n∑

l=0

(
n
l

)
Bell,λ(x)Beln–l,λ(y), (n ≥ 0). (19)

For the rest of this section, we will briefly go over some basic facts about umbral calculus.
For the details on this fascinating mathematics, the interested reader may refer to [6, 21,
22, 26]. Let C be the field of complex numbers, and let F be the set of all formal power
series in the variable t over C, given by

F =

{
f (t) =

∞∑

k=0

ak
tk

k!
|ak ∈ C

}
.

Let P = C[x], and let P∗ be the vector space of all linear functionals on P. The action of
the linear functional L ∈ P

∗ on a polynomial p(x) is denoted by 〈L|p(x)〉, which is linearly
extended by the rule

〈
cL + c′L′|p(x)

〉
= c

〈
L
∣∣p(x)

〉
+ c′〈L′∣∣p(x)

〉
,

where c, c′ ∈C.
For f (t) =

∑∞
k=0 ak

tk

k! , the action 〈f (t)|·〉 of the linear functional f (t) on P is defined by

〈
f (t)|xn〉 = an for all n ≥ 0 (see [1, 19, 21, 22]). (20)

Thus, by (20), we get

〈
tk|xn〉 = n!δn,k (n, k ≥ 0), (see [1, 10, 19, 21]), (21)
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where δn,k is the Kronecker symbol.
Let

fL(t) =
∞∑

k=0

〈
L|xk 〉 tk

k!
.

Then, by (21), we have

〈
fL(t)|xn〉 =

∞∑

k=0

〈L|xk〉
k!

〈
tk|xn〉 =

〈
L|xn〉.

Moreover, the map L �→ fL(t) is a vector space isomorphism from P
∗ onto F .

Henceforth, F denotes both the algebra of the formal power series in t and the vector
space of all linear functionals on P, and so an element of F will be thought of as both a
formal power series and a linear functional. We call F the umbral algebra. The umbral
calculus is the study of the umbral algebra. Note that 〈eyt|p(x)〉 = p(y). The order O(f (t))
of a power series f (t)( �= 0) is the smallest integer k for which the coefficient of tk does not
vanish. An invertible series is a series f (t) with O(f (t)) = 0, while a delta series is a series
f (t) with O(f (t)) = 1. Let f (t), g(t) ∈ F with O(f (t)) = 1 and O(g(t)) = 0. Then it is known
that there exists a unique sequence sn(x), (n ≥ 0), of polynomials satisfying the conditions

〈
g(t)

(
f (t)

)k|sn(x)
〉

= n!δn,k (n, k ≥ 0), (see [21, p. 17]). (22)

The sequence sn(x) is called the Sheffer sequence for (g(t), f (t)), which we denote by sn(x) ∼
(g(t), f (t)). For pn(x) ∼ (1, f (t)), qn(x) ∼ (1, g(t)), we have the transfer formula

qn(x) = x
(

f (t)
g(t)

)n

x–1pn(x), (n ≥ 1), (see [21, p. 51]). (23)

It is well known that sn(x) ∼ (g(t), f (t)) if and only if

1
g(f (t))

exf (t) =
∞∑

k=0

sk(x)
k!

tk (see [21, p. 107]) (24)

for all x ∈C, where f (t) is the compositional inverse of f (t) satisfying f (f (t)) = f (f (t)) = t.
Let sn(x) ∼ (g(t), f (t)), and let rn(x) ∼ (h(t), l(t)). Then we have

sn(x) =
∞∑

m=0

an,mrm(x), (n ≥ 0), (25)

where

an,m =
1

m!

〈
h(f (t))
g(f (t))

(l
(
f (t)

)m|xn
〉

(see [21, p. 132]). (26)
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2 Some identities of degenerate Bell polynomials
From (18), we note that

∞∑

n=0

Beln,λ(x)
tn

n!
= ex(eλ(t)–1) =

∞∑

l=0

xl
∞∑

n=l

S2,λ(n, l)
tn

n!

=
∞∑

n=0

( n∑

l=0

S2,λ(n, l)xl

)
tn

n!
. (27)

Thus, by (27), we get

Beln,λ(x) =
n∑

l=0

S2,λ(n, l)xl (n ≥ 0). (28)

On the other hand, by (18), we have

ex(eλ(t)–1) = e–xex(eλ(t)) =
1
ex

∞∑

l=0

xl

l!
el
λ(t) = e–x

∞∑

l=0

xl

l!

∞∑

n=0

(l)n,λ
tn

n!

=
∞∑

n=0

{
1
ex

∞∑

l=0

xl

l!
(l)n,λ

}
tn

n!
. (29)

Now, (18) and (29) together yield the following Dobinski-type formula.

Lemma 1 For n ≥ 0, we have

Beln,λ(x) =
1
ex

∞∑

l=0

(l)n,λ

l!
xl.

For n ∈N, with the help of Lemma 1, we obtain

x
n∑

k=1

(
n – 1
k – 1

)
Belk–1,λ(x)(1 – λ)n–k,λ

= x
n∑

k=1

(
n – 1
k – 1

)
(1 – λ)n–k,λe–x

∞∑

l=0

(l)k–1,λ

l!
xl

= xe–x
∞∑

l=0

xl

l!

n–1∑

k=0

(
n – 1

k

)
(1 – λ)n–1–k,λ(l)k,λ

= xe–x
∞∑

l=0

xl

l!
(l + 1 – λ)n–1,λ = xe–x

∞∑

l=0

xl

(l + 1)!
(l + 1)n,λ

= e–x
∞∑

l=1

xl

l!
(l)n,λ = Beln,λ(x). (30)

Therefore, by (30), we have shown the following proposition.
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Proposition 2 For n ∈N, we have

Beln,λ(x) = x
n∑

k=1

(
n – 1
k – 1

)
Belk–1,λ(x)(1 – λ)n–k,λ.

By Proposition 2, we get

Beln,λ(x)
x

=
n∑

k=1

(
n – 1
k – 1

)
Belk–1,λ(x)(1 – λ)n–k,λ

=
n–1∑

k=0

(
n – 1

k

)
Belk,λ(x)(1 – λ)n–k–1,λ

=
n–1∑

k=0

(
n – 1

k

)
Belk,λ(x)(1)n–k,λ (n ∈N). (31)

By using (31), we may proceed to deriving the following equation:

Beln+1,λ(x)
x

=
n∑

k=0

(
n
k

)
Belk,λ(x)(1)n+1–k,λ

=
n∑

k=0

(
n
k

)
Belk,λ(x)(1)n–k,λ

(
1 – (n – k)λ

)

=
n∑

k=0

(
n
k

)
Belk,λ(x)(1)n–k,λ – λ

n–1∑

k=0

(
n
k

)
(n – k)Belk,λ(x)(1)n–k,λ

=
n∑

k=0

(
n
k

)
Belk,λ(x)(1)n–k,λ – nλ

n–1∑

k=0

(
n – 1

k

)
Belk,λ(x)(1)n–k,λ

=
n∑

k=0

(
n
k

)
Belk,λ(x)(1)n–k,λ – nλ

Beln,λ(x)
x

(n ∈ N). (32)

By (32), we get

n∑

k=0

(
n
k

)
Belk,λ(x)(1)n–k,λ =

Beln+1,λ(x)
x

+ nλ
Beln,λ(x)

x
(n ∈N). (33)

From (33), we note that

∞∑

n=0

d
dx

Beln,λ(x)
tn

n!
=

d
dx

ex(eλ(t)–1) =
(
eλ(t) – 1

)
ex(eλ(t)–1)

= eλ(t)ex(eλ(t)–1) – ex(eλ(t)–1)

=
∞∑

n=0

( n∑

m=0

(
n
m

)
Belm,λ(x)(1)n–m,λ

)
tn

n!
–

∞∑

n=0

Beln,λ(x)
tn

n!

=
∞∑

n=0

{
Beln+1,λ(x)

x
+ nλ

Beln,λ(x)
x

– Beln,λ(x)
}

tn

n!
. (34)
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By comparing the coefficients on both sides of (34), we obtain the following theorem.

Theorem 3 For n ≥ 1, we have

d
dx

Beln,λ(x) =
1
x
{

Beln+1,λ(x) + (nλ – x)Beln,λ(x)
}

.

Let

Pn =
{

p(x) ∈C[x]|deg p(x) ≤ n
}

, (n ≥ 0).

For p(x) ∈ Pn, let

p(x) =
n∑

m=0

amBelm,λ(x), (n ≥ 0). (35)

Then, by (22) and noting that Beln,λ(x) ∼ (1, logλ(1 + t)), we get

〈(
logλ(1 + t)

)m|p(x)
〉

=
n∑

l=0

al
〈(

logλ(1 + t)
)m|Bell,λ(x)

〉
=

n∑

l=0

alδl,ml! = amm!. (36)

Hence, by (36), we get

am =
1

m!
〈(

logλ(1 + t)
)m|p(x)

〉
, (m ≥ 0). (37)

Therefore, by (35) and (37), we obtain the following lemma.

Lemma 4 For p(x) ∈ Pn, we have

p(x) =
n∑

m=0

amBelm,λ(x),

where

am =
1

m!
〈(

logλ(1 + t)
)m|p(x)

〉
.

Let us take p(x) = En(x) ∈ Pn. Then, by (8) and Lemma 4, we get

En(x) =
n∑

m=0

amBelm,λ(x), (n ≥ 0), (38)

where

am =
1

m!
〈(

logλ(1 + t)
)m|En(x)

〉

=
1

m!

n∑

l=m

(
n
l

)
En–l

〈(
logλ(1 + t)

)m|xl〉
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=
n∑

l=m

(
n
l

)
En–l

〈 l∑

k=m

S1,λ(k, m)
tk

k!
|xl

〉

=
n∑

l=m

(
n
l

)
En–l

l∑

k=m

S1,λ(k, m)
1
k!

〈
tk|xl〉

=
n∑

l=m

(
n
l

)
En–lS1,λ(l, m). (39)

Thus, (38) and (39) together give the following theorem.

Theorem 5 For n ≥ 0, we have

En(x) =
n∑

m=0

{ n∑

l=m

(
n
l

)
En–lS1,λ(l, m)

}
Belm,λ(x).

Now, in order to get the inversion formula of (28), we take p(x) = xn ∈ Pn. Then, by
Lemma 4, we get

xn =
n∑

k=0

akBelk,λ(x), (40)

where

ak =
1
k!

〈(
logλ(1 + t)

)k|xn〉 =
n∑

m=k

S1,λ(m, k)
m!

〈
tm|xn〉

=
n∑

m=k

S1,λ(m, k)
m!

n!δm,n = S1,λ(n, k). (41)

Now, from (40) and (41), we have the following theorem.

Theorem 6 For n ≥ 0, we have

xn =
n∑

k=0

S1,λ(n, k)Belk,λ(x).

For Beln,λ(x) ∼ (1, logλ(1 + t)), xn ∼ (1, t), by using the transfer formula in (23), we get

Beln,λ(x) = x
(

t
logλ(1 + t)

)n

x–1xn

= x
(

t
logλ(1 + t)

)n n–1∑

l=0

S2(n – 1, l)(x)l

= x
n–1∑

l=0

S2(n – 1, l)
(

t
logλ(1 + t)

)n

(x)l. (42)
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Now, we observe that

(
t

logλ(1 + t)

)n

(x)l =
∞∑

k=0

b(n)
k,λ

tk

k!

l∑

m=0

S1(l, m)xm

=
l∑

m=0

m∑

k=0

b(n)
k,λ

(
m
k

)
xm–kS1(l, m)

=
l∑

m=0

m∑

k=0

(
m
k

)
S1(l, m)b(n)

m–k,λxk . (43)

Thus, by (42) and (43), we get

Beln,λ(x) = x
n–1∑

l=0

l∑

m=0

m∑

k=0

(
m
k

)
S1(l, m)b(n)

m–k,λS2(n – 1, l)xk

= x
n–1∑

l=0

l∑

k=0

l∑

m=k

(
m
k

)
S1(l, m)b(n)

m–k,λS2(n – 1, l)xk

= x
n–1∑

k=0

n–1∑

l=k

l∑

m=k

(
m
k

)
S1(l, m)S2(n – 1, l)b(n)

m–k,λxk . (44)

From Proposition 2 and (44), we note that

Beln,λ(x)
x

=
n–1∑

k=0

n–1∑

l=k

l∑

m=k

(
m
k

)
S1(l, m)S2(n – 1, l)b(n)

m–k,λxk

=
n∑

k=1

(
n – 1
k – 1

)
Belk–1,λ(x)(1 – λ)n–k,λ (n ∈N). (45)

Therefore, by combining (44) with (45), we obtain the following theorem.

Theorem 7 For n ∈N, we have

n∑

k=1

(
n – 1
k – 1

)
Belk–1,λ(x)(1 – λ)n–k,λ =

n–1∑

k=0

n–1∑

l=k

l∑

m=k

(
m
k

)
S1(l, m)S2(n – 1, l)b(n)

m–k,λxk .

Let us consider the following two Sheffer sequences:

β
(k)
n,λ(x) ∼

(
g(t), f (t) =

1
λ

(
eλt – 1

))
, Beln,λ(x) ∼ (

1, logλ(1 + t)
)
,

where g(t) is uniquely determined by 1
g(f̄ (t)) = Lik,λ(1–eλ(–t))

eλ(t)–1 . From (25) and (26), we have

β
(k)
n,λ(x) =

n∑

m=0

an,mBelm,λ(x), (46)
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where we have

an,m =
1

m!

〈
Lik,λ(1 – eλ(–t))

eλ(t) – 1

(
logλ

(
1 +

1
λ

log(1 + λt)
))m

|xn
〉

=
n∑

l=m

S1,λ(l, m)
l!

〈
Lik,λ(1 – eλ(–t))

eλ(t) – 1

(
1
λ

log(1 + λt)
)l

|xn
〉

=
n∑

l=m

S1,λ(l, m)
λl

〈
Lik,λ(1 – eλ(–t))

eλ(t) – 1
1
l!
(
log(1 + λt)

)l|xn
〉

=
n∑

l=m

S1,λ(l, m)
λl

n∑

r=l

S1,λ(r, l)
λr

r!

〈
Lik,λ(1 – eλ(–t))

eλ(t) – 1
tr|xn

〉

=
n∑

l=m

n∑

r=l

(
n
r

)
S1,λ(l, m)S1,λ(r, l)λr–l

〈
Lik,λ(1 – eλ(–t))

eλ(t) – 1
|xn–r

〉

=
n∑

l=m

n∑

r=l

(
n
r

)
S1,λ(l, m)S1,λ(r, l)λr–l

∞∑

j=0

β
(k)
j,λ

1
j!
〈
tj|xn–r〉

=
n∑

l=m

n∑

r=l

(
n
r

)
S1,λ(l, m)S1,λ(r, l)λr–l

n–r∑

j=0

β
(k)
j,λ

1
j!

(n – r)!δj,n–r

=
n∑

l=m

n∑

r=l

(
n
r

)
S1,λ(l, m)S1,λ(r, l)λr–lβ

(k)
n–r,λ. (47)

Therefore, by (46) and (47), we obtain the following theorem.

Theorem 8 For n ≥ 0, we have

β
(k)
n,λ(x) =

n∑

m=0

{ n∑

l=m

n∑

r=l

(
n
r

)
S1,λ(l, m)S1,λ(r, l)λr–lβ

(k)
n–r,λ

}
Belm,λ(x).

For Beln,λ(x) ∼ (1, logλ(1 + t)), (x)n ∼ (1, et – 1), we have

Beln,λ(x) =
n∑

m=0

an,m(x)m, (48)

where we have

an,m =
1

m!
〈(

e(eλ(t)–1) – 1
)m|xn〉

=
1

m!

m∑

l=0

(
m
l

)
(–1)m–l〈(el(eλ(t)–1))|xn〉

=
1

m!

m∑

l=0

(
m
l

)
(–1)m–l

n∑

k=0

Belk,λ(l)
1
k!

〈
tk|xn〉

=
1

m!

m∑

l=0

(
m
l

)
(–1)m–lBeln,λ(l). (49)

Now, by (48) and (49), we get the following theorem.
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Theorem 9 For n ≥ 0, we have

Beln,λ(x) =
n∑

m=0

{
1

m!

m∑

l=0

(
m
l

)
(–1)m–lBeln,λ(l)

}
(x)m.

Consider the following two Sheffer sequences:

Beln,λ(x) ∼ (
1, logλ(1 + t)

)
, bn(x) ∼

(
t

et – 1
, et – 1

)
.

Then, by (25) and (26), we get

Beln,λ(x) =
n∑

m=0

an,mbm(x), (50)

where we have

an,0 =
〈

eλ(t) – 1
eeλ(t)–1 – 1

|xn
〉

=

〈 ∞∑

l=0

Bl

l!
(
eλ(t) – 1

)l|xn

〉

=
∞∑

m=0

m∑

l=0

Bl

m!
S2,λ(m, l)

〈
tm|xn〉

=
n∑

m=0

m∑

l=0

Bl

m!
S2,λ(m, l)n!δn,m =

n∑

l=0

S2,λ(n, l)Bl, (51)

and, for m ≥ 1,

an,m =
1

m!

〈
eλ(t) – 1

eeλ(t)–1 – 1
(
eeλ(t)–1 – 1

)m|xn
〉

=
1

m!
〈(

eeλ(t)–1 – 1
)m–1eλ(t)

∣∣∣∣ xn〉 –
1

m!
〈(

eeλ(t)–1 – 1
)m–1

∣∣∣∣ xn〉

=
1

m!

n∑

k=0

(1)k,λ

k!
〈(

eeλ(t)–1 – 1
)m–1tk

∣∣∣∣ xn〉 –
1

m!
〈(

eeλ(t)–1 – 1
)m–1

∣∣∣∣ xn〉

=
1

m!

n∑

k=0

(
n
k

)
(1)k,λ

〈(
eeλ(t)–1 – 1

)m–1
∣∣∣∣ xn–k 〉 –

1
m!

〈(
eeλ(t)–1 – 1

)m–1
∣∣∣∣ xn〉

=
1

m!

n–1∑

k=0

(
n
k

)
(1)n–k,λ

〈(
eeλ(t)–1 – 1

)m–1|xk 〉

=
1

m!

n–1∑

k=0

(
n
k

)
(1)n–k,λ

m–1∑

l=0

(
m – 1

l

)
(–1)m–1–l〈el(eλ(t)–1)|xk 〉

=
1

m!

n–1∑

k=0

m–1∑

l=0

(
n
k

)
(1)n–k,λ

(
m – 1

l

)
(–1)m–1–lBelk,λ(l). (52)

Now, (50)–(52) altogether yield the following result.
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Theorem 10 For n ≥ 0, we have

Beln,λ(x) =
n∑

l=0

S2,λ(n, l)Bl

+
n∑

m=1

{
1

m!

n–1∑

k=0

m–1∑

l=0

(
n
k

)
(1)n–k,λ

(
m – 1

l

)
(–1)m–1–lBelk,λ(l)

}
bn(x).

3 Conclusion
We derived Dobinski-type formulas, recurrence relations, and the derivatives for the de-
generate Bell polynomials. After finding a formula expressing any polynomial in terms of
the degenerate Bell polynomials, we applied this formula to Euler polynomials and powers
of x. We obtained a relation involving the degenerate Bell polynomials, Stirling numbers of
the first and second kinds, and the higher-order degenerate Bernoulli polynomials of the
second kind. In addition, by using the general formula of expressing one Sheffer polyno-
mial in terms of another Sheffer polynomial, we expressed Euler polynomials and modified
degenerate poly-Bernoulli polynomials in terms of the degenerate Bell polynomials and
also represented the degenerate Bell polynomials in terms of degenerate Bernoulli poly-
nomials of the second kind and falling factorials.

As we briefly mentioned in Sect. 1, degenerate versions of many special polynomials and
numbers have applications to identities of symmetry, differential equations, and probabil-
ity theory as well as to number theory and combinatorics. In more detail, some new com-
binatorial identities were found from infinite families of ordinary differential equations
which are satisfied by the generating functions of some degenerate special polynomials
(see [12]). Many identities of symmetry have been discovered for various degenerate ver-
sions of quite a few special polynomials in recent years (see [13]). The generating functions
of the moments of certain random variables were used in order to derive some identities
connecting some special numbers and moments of random variables (see [18]). As one of
our future projects, we would like to continue to study degenerate versions of certain spe-
cial polynomials and numbers and their applications to physics, science, and engineering
as well as to mathematics.
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