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Abstract
With the increasing availability of spatially extensive geo-referenced data, much
attention has been paid to the use of local statistics to identify local patterns of spatial
association, in which the null distributions of local statistics play an essential role in
the related statistical inference. As a powerful tool to approximate the distribution of a
statistic, the bootstrap method is used in this paper to derive null distributions of the
commonly used local spatial statistics including local Getis and Ord’s Gi , Moran’s Ii and
Geary’s ci . Strong consistency of the bootstrap approximation to the null distributions
of the statistics is proved under some mild conditions, and the Boston housing price
data are analyzed to demonstrate the application of the theoretical results.
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1 Introduction
Exploration of spatial association has long been recognized as an important issue in spa-
tial data analysis. With the increasing availability of spatially extensive geo-referenced data
and due to the geological and geographical diversity on a large region, a global struc-
ture of spatial association is no longer a realistic assumption for such a data set. There-
fore, much attention has been paid to the use of local statistics to identify local pat-
terns of spatial association. The most popular local spatial statistics are perhaps Getis
and Ord’s Gi [11, 18] and Anselin’s LISAs [1]. Since their inception, these local statis-
tics have been applied to a variety of fields for spatial data analysis (see, for example,
[9, 10, 14, 24]).

In order to test for significance of local spatial association at a reference location, it is
essential to derive the null distribution of the local statistics. Normal distributions have
been used to approximate the null distributions of some local spatial statistics such as
local Getis and Ord’s Gi, Moran’s Ii and Geary’s ci (see, for example, [1, 11, 18]). How-
ever, many empirical studies have shown that this approximation is sometimes problem-
atic [1, 4, 5, 27]. Based on the distributional theory of quadratic forms in normal vari-
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ables, some improved methods have been developed under the assumption that the spa-
tial data are drawn from a normally distributed population (see, for example, [5, 13, 20–
22]). Nevertheless, this assumption might be invalid for some real-world data sets. With
the computation power of modern computers, the randomized permutation method, a
resampling procedure that randomly relocates the data over the locations, is frequently
employed to approximate the null distributions of local spatial statistics (see, for exam-
ple, [1, 12, 17]). Recently, Yan et al. [26] suggested a bootstrap method, originally pro-
posed by Efron [8], to approximate the null distributions of the spatio-temporal ver-
sions of local Getis and Ord’s Gi, Moran’s Ii and Geary’s ci. They showed by simulations
that both the bootstrap and the randomized permutation methods can accurately ap-
proximate the null distributions of the local statistics while the bootstrap method seems
more efficient than the randomized permutation method in terms of computational time.
However, the theoretical validity of the bootstrap approximation remains to be investi-
gated.

The main objective of this paper is to theoretically investigate the validity of the boot-
strap approximation to the null distributions of local Getis and Ord’s Gi, Moran’s Ii and
Geary’s ci. Under some mild conditions, we proved that the bootstrap approximation is
strongly consistent in terms of the Kolmogorov distance on the space of distribution func-
tions. Moreover, the Monte Carlo implementation of the bootstrap approximation for sta-
tistical inference is given in detail by a case study of the Boston housing price in order to
demonstrate application of the theoretical results.

The remainder of this paper is organized as follows: the main results are presented in
the next section, and their proofs are given in Sect. 3. As an application example of the
theoretical results, the Boston housing price data are analyzed in Sect. 4. The paper is
then ended with a brief summary.

2 Main results
Let F(x) be the population distribution and s be the coordinate of a geographical location.
Given n locations si (i = 1, 2, . . . , n), let W = (wij(d))n×n be the symmetric spatial linkage
matrix determined by the underlying spatial structure of the n locations or geographical
units, where d is a pre-specified distance threshold and wij(d) (j = 1, 2, . . . , n) are positive
for all sj ’s within distance d of the location si excluding sj = si, and are zero for other sj ’s.
Generally, the binary values, zero and one, are assigned to wij(d) (j = 1, 2, . . . , n) according
to the above rule. At each location sj, draw independently Xj from the population distribu-
tion F(x), forming an independent and identically distributed (i.i.d.) sample (X1, X2, . . . , Xn)
with Xj located at sj (j = 1, 2, . . . , n).

Given a reference location si, after re-scaling and/or re-centering, the local Getis and
Ord’s Gi [11], the local Moran’s Ii and Geary’s ci [1] are, respectively, of the forms

Gi(d) =
n – 1
Win

∑n
j=1 wij(d)(Xj – X̄)

∑
j �=i Xj

, (1)

Ii(d) =
n

Win

(Xi – X̄)
∑n

j=1 wij(d)(Xj – X̄)
∑n

j=1(Xj – X̄)2
, (2)
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and

ci(d) =
n

W 2
in

∑n
j=1 wij(d)(Xi – Xj)2

∑n
j=1(Xj – X̄)2

, (3)

where X̄ = 1
n
∑n

i=1 Xi and Win =
√∑n

j=1 wij(d).

Remark 1 For Gi(d), it is a natural assumption that E(Xj) = μ �= 0. Moreover, we modify
the numerator in the Gi(d) statistic as Xj – X̄ instead of Xj in its original form to facilitate
the forthcoming proof of the asymptotic property. This modification does not change the
interpretation of the statistic.

Let Fn denote the empirical distribution of the sample (X1, X2, . . . , Xn), that is,

Fn(x) =
1
n

n∑

i=1

I{Xi≤x},

where I{A} is the indicator function of the event A. Let (X∗
1 , X∗

2 , . . . , X∗
n) be the bootstrap

sample drawn from Fn(x) with replacement and be located at (s1, s2, . . . , sn). The bootstrap
scenarios of the local Getis and Ord’s Gi, Moran’s Ii and Geary’s ci are, respectively,

G∗
i (d) =

n – 1
Win

∑n
j=1 wij(d)(X∗

j – X̄∗)
∑

j �=i X∗
j

, (4)

I∗
i (d) =

n
Win

∑n
j=1 wij(d)(X∗

i – X̄∗)(X∗
j – X̄∗)

∑n
j=1(X∗

j – X̄∗)2
, (5)

and

c∗
i (d) =

n
W 2

in

∑n
j=1 wij(d)(X∗

i – X∗
j )2

∑n
j=1(X∗

j – X̄∗)2
, (6)

where X̄∗ = 1
n
∑n

i=1 X∗
i .

Throughout this paper, we use the notations P, E and Var to indicate the probability,
expectation and variance calculated under F(x) and the notations P∗, E∗ and Var∗ to rep-
resent those computed under Fn(x). In what follows, we first introduce the consistency
definition of bootstrap approximation to the distribution of a statistic and then give the
main results of this article.

Definition 1 ([7], Chap. 29) Let F and G be two distributions on a sample space X and
ρ(F , G) be a metric on the space of distribution functions. Let (X1, X2, . . . , Xn) be i.i.d. ran-
dom variables with the common distribution F . For a given statistic T = T(X1, . . . , Xn; F),
let Hn(x) = P(T(X1, X2, . . . , Xn; F) ≤ x) and H∗

n (x) = P∗(T(X∗
1 , X∗

2 , . . . , X∗
n ; Fn) ≤ x) be the dis-

tribution function of T and the bootstrap distribution function of T∗ = T(X∗
1 , X∗

2 , . . . , X∗
n ;

Fn), respectively. We say that the bootstrap approximation for T is weakly consistent un-

der ρ if ρ(Hn, H∗
n )

P−→ 0 as n → ∞, where
P−→ denotes convergence in probability; we say

that the bootstrap approximation for T is strongly consistent under ρ if ρ(Hn, H∗
n )

a.s.−→ 0
as n → ∞, where

a.s.−→ denotes convergence for almost all sample sequences of X1, X2, . . . .
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Several metrics such as the Kolmogorov distance and the Mallows distance can be em-
ployed to measure the consistency of the bootstrap approximation. The Kolmogorov dis-
tance defined by

K(F , G) = sup
x∈R

∣
∣F(x) – G(x)

∣
∣

is commonly used, where R = (–∞, +∞). In this paper, the Kolmogorov distance is mainly
used to investigate the strong consistency of the bootstrap approximation for the local
Getis and Ord’s Gi, Moran’s Ii and Geary’s ci and the main results are summarized in the
following theorems.

Theorem 1 Let W = (wij(d))n×n be the binary spatial linkage matrix of the geographical
locations sj (j = 1, 2, . . . , n) and Win =

√∑n
j=1 wij(d). Let (X1, X2, . . . , Xn) be an i.i.d. sample

drawn from a continuous distribution F with non-zero mean μ and positive variance σ 2.
Given a reference location si, if 1

n W 2
in → 0 as n → ∞, then the bootstrap approximation for

Gi(d) is strongly consistent under the Kolmogorov distance. That is,

sup
x∈R

∣
∣P∗(G∗

i (d) ≤ x
)

– P
(
Gi(d) ≤ x

)∣
∣

a.s.−→ 0 as n → ∞.

Theorem 2 Let W = (wij(d))n×n be the binary spatial linkage matrix of the geographical
locations sj (j = 1, 2, . . . , n) and Win =

√∑n
j=1 wij(d). Let (X1, X2, . . . , Xn) be an i.i.d. sample

drawn from a continuous distribution F with mean μ and positive variance σ 2. Given a
reference location si, if 1

n W 2
in → 0 as n → ∞, then the bootstrap approximation for Ii(d) is

strongly consistent under the Kolmogorov distance. That is,

sup
x∈R

∣
∣P∗(I∗

i (d) ≤ x
)

– P
(
Ii(d) ≤ x

)∣
∣

a.s.−→ 0 as n → ∞.

Theorem 3 Let W = (wij(d))n×n be the binary spatial linkage matrix of the geographical
locations sj (j = 1, 2, . . . , n) and Win =

√∑n
j=1 wij(d). Let (X1, X2, . . . , Xn) be an i.i.d. sample

drawn from a continuous distribution F with mean μ and positive variance σ 2. Given a
reference location si, the bootstrap approximation for ci(d) is strongly consistent under the
Kolmogorov distance. That is,

sup
x∈R

∣
∣P∗(c∗

i (d) ≤ x
)

– P
(
ci(d) ≤ x

)∣
∣

a.s.−→ 0 as n → ∞.

3 Proofs of the main results
3.1 Preliminaries and lemmas
To prove the theorems, the Mallows distance (see, for example, [3, 15, 16]) will be used
because of its interesting properties relating to the Kolmogorov distance. Let Fp be the set
of distribution functions F with

∫ ∞
–∞ |x|p dF(x) < ∞. For F , G ∈ Fp, the Mallows distance

between F and G is defined as

dp(F , G) = inf
(X,Y )

{(
E|X – Y |p) 1

p
}

,
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where 1 ≤ p < ∞ and the infimum is taken over the pairs (X, Y ) with the marginal dis-
tribution functions of X and Y being F and G, respectively. Throughout this paper, we
also write dp(F , G) and [dp(F , G)]2 as dp(X, Y ) and d2

p(X, Y ), respectively, for the ease of
interpretation.

Lemma 1 ([23], p. 12) Let X1, X2, . . . be a random variable sequence and X be a random
variable with a continuous distribution function. If Xn converges to X in distribution, which
we denote Xn � X, then

sup
x∈R

∣
∣P(Xn ≤ x) – P(X ≤ x)

∣
∣ → 0 as n → ∞.

Lemma 2 ([3]) Let Gn ∈ Fp and G ∈ Fp. Then dp(Gn, G) → 0 as n → ∞ if and only if
both of the following conditions hold:

(1) Gn → G weakly as n → ∞,

(2) lim
n→∞

∫ ∞

–∞
|x|p dGn(x) =

∫ ∞

–∞
|x|p dG(x).

Remark 2 Let the distribution functions of Xn and X be Gn and G, respectively. Lemma 2
means that Gn converges to G in the Mallows distance dp if and only if Xn � X and
E|Xn|p → E|X|p.

Lemma 3 Let X1, X2, . . . be an i.i.d. random variable sequence with the common distribu-
tion function F ∈ Fp. Let Fn be the empirical distribution function of (X1, X2, . . . , Xn). Then

dp(Fn, F)
a.s.−→ 0 as n → ∞,

where
a.s.−→ means that dp(Fn, F) → 0 for almost all sample sequences of X1, X2, . . . .

Proof By Lemma 2, it is sufficient to prove Fn → F weakly and E|Xn|p → E|X|p. Let Yi =
I{Xi≤x} (i = 1, 2, . . . , n). Since (Y1, Y2, . . . , Yn) are i.i.d. random variables, we know from the
strong law of large numbers that

lim
n→∞

1
n

n∑

i=1

Yi = E(Yi) = P(Xi ≤ x) = F(x), a.s.,

which indicates Fn → F weakly. Similarly, E|Xn|p → E|X|p can be obtained by using the
strong law of large numbers for (|X1|p, |X2|p, . . . , |Xn|p). �

Lemma 4 ([3]) Let (X1, X2, . . . , Xn) and (Y1, Y2, . . . , Yn) be two sets of independent random
variables with their distribution functions belonging to Fp. Then, for constants ai (1 ≤ i ≤
n), we have

dp

( n∑

i=1

aiXi,
n∑

i=1

aiYi

)

≤
n∑

i=1

|ai|dp(Xi, Yi).



Mei et al. Journal of Inequalities and Applications        (2020) 2020:217 Page 6 of 19

Remark 3 The key for proving this lemma is the use of the Minkowski’s inequality (see
Lemma 8.6 in Bickel and Freedman [3] for the details), which does not need the indepen-
dence condition among the two sets of the random variables. Therefore, the independence
assumption on (X1, X2, . . . , Xn) as well as on (Y1, Y2, . . . , Yn) is indeed not indispensable for
guaranteeing the conclusion of the lemma.

Lemma 5 Let X, X1, X2, . . . be a sequence of random variables with their distribution func-
tions belonging to Fp. If dp(Xn, X) → 0 as n → ∞, then

dp/2
(
X2

n , X2) → 0 as n → ∞.

Proof The conditions imply that the distribution functions of X2, X2
1 , X2

2 , . . . belong to Fq.
From Lemma 2, we have (i) Xn � X; and (ii) E(|Xn|p) → E(|X|p). The continuous map-
ping theorem ([23], p.7) together with (i) yields (iii)X2

n � X2. The lemma is then proved
according to (ii), (iii) and Lemma 2. �

Lemma 6 Let X1, X2, . . . be an i.i.d. random variable sequence drawn from F with finite
variance σ 2. Let Fn and (X∗

1 , X∗
2 , . . . , X∗

n) be the empirical distribution function and the
bootstrap sample of (X1, X2, . . . , Xn), respectively. Then, for almost all sample sequences of
X1, X2, . . . ,

1
n

n∑

i=1

(
X∗

i – X̄∗)2 a.s.−→ σ 2 as n → ∞.

Proof The condition σ 2 < ∞ implies that E(Xi) � μ exists. By the strong law of large num-
bers, we have, for almost all sample sequences of X1, X2, . . . ,

X̄∗ a.s.−→ μ and
1
n

n∑

i=1

(
X∗

i
)2 a.s.−→ μ2 + σ 2 as n → ∞.

Then the desired result can be proved by the continuous mapping theorem. �

Lemma 7 If Xn and Yn are independent random variables for each n, then Xn � X and
Yn � Y imply that (Xn, Yn) � (X, Y ) with X and Y being independent.

Proof Because Xn and Yn are independent random variables for every n, we have F(Xn ,Yn) =
FXn FYn . It follows from Xn � X and Yn � Y that F(Xn ,Yn) → FXFY for all continuous points
of FXFY . Then the lemma is proved. �

3.2 Proofs of the theorems
In the proofs of the theorems, the following two cases will be separately considered be-
cause the proof ways are essentially different for the two cases.

Case 1 Suppose that Win =
√∑n

j=1 wij(d) < ∞ as n → ∞, which means that the number
of observations within d-distance neighborhood of the reference location si will be fixed
when n is large enough. For a local spatial statistic, this case is possible if the newly coming
observations are all placed outside the d-distance neighborhood of the reference location
si after n reaches some finite integer, say, n0.
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Case 2 Assume Win → ∞ as n → ∞, which implies that the number of observations
within distance d of the reference location si goes to infinity as n → ∞.

Proof of Theorem 1 Note that

E∗
(

1
n – 1

∑

j �=i

X∗
j

)

= E∗(X∗
1
)

= X̄.

Since X̄
a.s.−→ μ as n → ∞, we have

1
n – 1

∑

j �=i

X∗
j

a.s.−→ μ for almost all sample sequences of X1, X2, . . . . (7)

Furthermore, the numerators of Gi(d) and G∗
i (d) can be, respectively, expressed as

1
Win

n∑

j=1

wij(d)(Xj – X̄) =
1

Win

n∑

j=1

wij(d)(Xj – μ) + Win(μ – X̄) (8)

and

1
Win

n∑

j=1

wij(d)
(
X∗

j – X̄∗) =
1

Win

n∑

j=1

wij(d)
(
X∗

j – X̄
)

+ Win
(
X̄ – X̄∗). (9)

For any ε > 0, by the Chebyshev inequality and the assumption that 1
n W 2

in → 0 as n → ∞,
we obtain

P
(∣
∣Win(μ – X̄)

∣
∣ ≥ ε

) ≤ Var(Win(μ – X̄))
ε2 =

W 2
inσ

2

nε2 → 0 as n → ∞,

which implies

Win(μ – X̄)
P−→ 0 as n → ∞. (10)

Similarly, we have

P∗(∣∣Win
(
X̄ – X̄∗)∣∣ ≥ ε

) ≤ Var∗(Win(X̄ – X̄∗))
ε2 =

W 2
in

nε2 Var∗
(
X∗

1
)

=
W 2

in
nε2 S2

n,

where S2
n = 1

n
∑n

i=1(Xi – X̄)2. Since S2
n

a.s.−→ σ 2 < ∞ according to the strong law of large num-
bers, we have, for almost all sample sequences of X1, X2, . . . ,

P∗(∣∣Win
(
X̄ – X̄∗)∣∣ ≥ ε

) → 0 as n → ∞,

which implies

Win
(
X̄ – X̄∗) P∗

−→ 0 for almost all sample sequences of X1, X2, . . . . (11)
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In Case 1, from Eqs. (8) and (10) and the Slutsky theorem, we have

1
Win

n∑

j=1

wij(d)(Xj – X̄) � 1
Win0

n0∑

j=1

wij(d)(Xj – μ) � Z0 as n → ∞, (12)

where Win0 =
√∑n0

j=1 wij(d). Similarly, from Eqs. (9) and (11), it can be inferred that
1

Win

∑n
j=1 wij(d)(X∗

j – X̄∗) and 1
Win0

∑n0
j=1 wij(d)(X∗

j – X̄) have the same limiting distribution
for almost all sample sequences of X1, X2, . . . . Moreover, according to Lemmas 2, 3 and 4,
we obtain

d1

(
1

Win0

n0∑

j=1

wij(d)
(
X∗

j – X̄
)
,

1
Win0

n0∑

j=1

wij(d)(Xj – μ)

)

≤ Win0 d1
(
X∗

j – X̄, Xj – μ
)

≤ Win0

[
d1

(
X∗

j , Xj
)

+ d1(X̄,μ)
] a.s.−→ 0,

which implies that the distribution of 1
Win0

∑n0
j=1 wij(d)(X∗

j – X̄) converges to the distribu-
tion of Z0. Therefore, for almost all sample sequences of X1, X2, . . . , we have

1
Win

n∑

j=1

wij(d)
(
X∗

j – X̄∗)� Z0 as n → ∞. (13)

On the other hand, let G(d) � Z0
μ

where μ = E(Xi) �= 0. From the Slutsky theorem,

Eq. (12) and the fact that 1
n–1

∑
j �=i Xj

a.s.−→ μ as n → ∞, we have Gi(d) � G(d). Then, ac-
cording to Lemma 1 and noting that the distribution function of G(d) is continuous, we
have

sup
x∈R

∣
∣P

(
Gi(d) ≤ x

)
– P

(
G(d) ≤ x

)∣
∣ → 0 as n → ∞.

Similarly, from Eqs. (7) and (13), we have

sup
x∈R

∣
∣P∗(G∗

i (d) ≤ x
)

– P
(
G(d) ≤ x

)∣
∣

a.s.−→ 0 as n → ∞.

Therefore, the above two equations and the triangle inequality yields the conclusion of the
theorem.

In Case 2, given an n, suppose that there are kn observation locations within distance
d of si, leading to Win =

√
kn and kn → ∞ as n → ∞. Without loss of generality, let

(X1, X2, . . . , Xkn ) locate within distance d of si. Note that Xj – μ (j = 1, . . . , kn) are i.i.d. ran-
dom variables with finite variance σ 2 and kn → ∞ as n → ∞. Therefore, according to the
central limit theorem, we have

1
Win

n∑

j=1

wij(d)(Xj – μ) =
1√
kn

kn∑

j=1

(Xj – μ) � Z as n → ∞,
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where Z stands for a random variable distributed as the normal distribution N(0,σ 2). It
therefore follows from Eqs. (8) and (10) and the Slutsky theorem that

1
Win

n∑

j=1

wij(d)(Xj – X̄) � Z as n → ∞. (14)

Similarly, because X∗
j – X̄ (j = 1, . . . , kn) are conditionally i.i.d. random variables with vari-

ance S2
n = 1

n
∑n

i=1(Xi – X̄)2 and kn → ∞ as n → ∞, then, according to the central limit

theorem and noting S2
n

a.s.−→ σ 2 as n → ∞, we have, for almost all sample sequences of
X1, X2, . . . ,

1√
kn

kn∑

j=1

(
X∗

j – X̄
)
� Z as n → ∞.

This, together with Eqs. (9) and (11) and the Slutsky theorem, yields

1
Win

n∑

j=1

wij(d)
(
X∗

j – X̄∗)� Z as n → ∞ (15)

for almost all sample sequences of X1, X2, . . . . Let G(d) � Z
μ

. With a similar derivation to
that in Case 1, the theorem is then proved in this case. �

Proof of Theorem 2 Notice that the numerator of Ii(d) can be expressed as

1
Win

n∑

j=1

wij(d)(Xi – X̄)(Xj – X̄) � T1 + T2 + T3, (16)

where

T1 = Win(X̄ – μ)(X̄ – Xi); T2 =
1

Win
(μ – X̄)

n∑

j=1

wij(d)(Xj – μ);

T3 =
1

Win
(Xi – μ)

n∑

j=1

wij(d)(Xj – μ).

Firstly, from Eq. (10) and X̄ – Xi
a.s.−→ μ – Xi, we have T1

P−→ 0 as n → ∞.
Secondly, as mentioned in the proof of Theorem 1, 1

Win

∑n
j=1 wij(d)(Xj – μ) converges

to Z0 and Z in distribution as n → ∞ in Cases 1 and 2, respectively. Therefore, from

μ – X̄
a.s.−→ 0 and the Slutsky theorem, we have T2

P−→ 0 as n → ∞ in both cases.
Finally, because (x, y) 
→ yx is a continuous mapping, then, by Lemma 7 and the result

that Xi – μ is independent from 1
Win

∑n
j=1 wij(d)(Xj – μ), we have T3 � (Xi – μ)Z0 and

T3 � (Xi – μ)Z as n → ∞ in Cases 1 and 2, respectively.
By the Slutsky theorem and Eq. (16), we obtain, as n → ∞,

1
Win

n∑

j=1

wij(d)(Xi – X̄)(Xj – X̄) � (Xi – μ)Z0
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in Case 1 and

1
Win

n∑

j=1

wij(d)(Xi – X̄)(Xj – X̄) � (Xi – μ)Z

in Case 2.
Let I(d) � (Xi–μ)Z0

σ 2 and I(d) � (Xi–μ)Z
σ 2 in Cases 1 and 2, respectively. Since 1

n
∑n

j=1(Xj –

X̄)2 a.s.−→ σ 2 as n → ∞, we know that Ii(d) � I(d) according to the Slutsky theorem. There-
fore, Lemma 1 and the continuity of the distribution function of I(d) guarantee that

sup
x∈R

∣
∣P

(
Ii(d) ≤ x

)
– P

(
I(d) ≤ x

)∣
∣ → 0 as n → ∞.

According to the triangle inequality, to prove Theorem 2, it is sufficient to prove

sup
x∈R

∣
∣P∗(I∗

i (d) ≤ x
)

– P
(
I(d) ≤ x

)∣
∣

a.s.−→ 0 as n → ∞.

In a similar way to that in dealing with the quantity of the left-hand side in Eq. (16), we
rewrite the numerator of I∗

i (d) as

1
Win

n∑

j=1

wij(d)
(
X∗

i – X̄∗)(X∗
j – X̄∗) � T∗

1 + T∗
2 + T∗

3 , (17)

where

T∗
1 = Win

(
X̄∗ – X̄

)(
X̄∗ – X∗

i
)
; T∗

2 =
1

Win

(
X̄ – X̄∗)

n∑

j=1

wij(d)
(
X∗

j – X̄
)
;

T∗
3 =

1
Win

(
X∗

i – X̄
) n∑

j=1

wij(d)
(
X∗

j – X̄
)
.

First of all, we obtain T∗
1

P∗
−→ 0 as n → ∞ according to Eq. (11) and X̄∗ – X∗

i
a.s.−→ μ – X∗

i

as n → ∞ for almost all sample sequences of X1, X2, . . . .
Then, for almost all sample sequences of X1, X2, . . . , we have

1
Win

n∑

j=1

wij(d)
(
X∗

j – X̄
)
� Z0 as n → ∞

in Case 1 and

1
Win

n∑

j=1

wij(d)
(
X∗

j – X̄
)
� Z as n → ∞

in Case 2. Furthermore, it follows from the Slutsky theorem and X̄ – X̄∗ a.s.−→ 0 as n → ∞
that T∗

2
P∗

−→ 0 as n → ∞ in both cases.
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Finally, it is known that

d1
(
X∗

i – X̄, Xi – μ
) ≤ d1

(
X∗

i , Xi
)

+ d1(X̄,μ)
a.s.−→ 0 as n → ∞,

which implies X∗
i – X̄ � Xi –μ as n → ∞. Then, according to Lemma 7 and the result that

X∗
i – X̄ is conditionally independent to 1

Win

∑n
j=1 wij(d)(X∗

j – X̄), we obtain T∗
3 � (Xi –μ)Z0

and T∗
3 � (Xi – μ)Z as n → ∞ in Cases 1 and 2, respectively.

According to the Slutsky theorem, it follows from Lemma 6 and Eq. (17) that I∗
i (d) �

I(d) as n → ∞ in both cases. Noting the continuity of the distribution function of I(d) and
using Lemma 1 and the triangle inequality, Theorem 2 is then proved. �

Proof of Theorem 3 In Case 1, since Win =
√∑n

j=1 wij(d) < ∞ as n → ∞, we can write Win =

Win0 =
√∑n0

j=1 wij(d) for some positive integer n0. According to the triangle inequality, the
Hölder inequality and Lemma 3, we have

d1
(
X∗

i X∗
j , XiXj

)

≤ d1
(
X∗

i X∗
j , X∗

i Xj
)

+ d1
(
X∗

i Xj, XiXj
)

≤ E∗∣∣X∗
i
∣
∣d1

(
X∗

j , Xj
)

+ E|Xj|d1
(
X∗

i , Xi
) a.s.−→ 0.

Then it follows from Lemmas 4 and 5 that

d1

(
1

W 2
in0

n0∑

j=1

wij(d)
(
X∗

i – X∗
j
)2,

1
W 2

in0

n0∑

j=1

wij(d)(Xi – Xj)2

)

≤ d1
((

X∗
i
)2 – 2X∗

i X∗
j +

(
X∗

j
)2, X2

i – 2XiXj + X2
j
)

≤ 2
(
d1

((
X∗

i
)2, X2

i
)

+ d1
(
X∗

i X∗
j , XiXj

)) a.s.−→ 0,

which implies that both 1
W 2

in

∑n
j=1 wij(d)(X∗

i – X∗
j )2 and 1

W 2
in

∑n
j=1 wij(d)(Xi – Xj)2 converge

to 1
W 2

in0

∑n0
j=1 wij(d)(Xi – Xj)2 � T in distribution as n → ∞.

Let c(d) = T
σ 2 . From the fact that S2

n = 1
n
∑n

i=1(Xi – X̄)2 a.s.−→ σ 2 as n → ∞ and the Slutsky
theorem, we have ci(d) � c(d) as n → ∞. According to Lemma 1 and the continuity of the
distribution function of c(d), we obtain

sup
x∈R

∣
∣P

(
ci(d) ≤ x

)
– P

(
c(d) ≤ x

)∣
∣ → 0 as n → ∞.

Similarly, from Lemma 6, we have

sup
x∈R

∣
∣P∗(c∗

i (d) ≤ x
)

– P
(
c(d) ≤ x

)∣
∣

a.s.−→ 0 as n → ∞.

Then the theorem is proved by using the triangle inequality.
In Case 2, since Win → ∞ as n → ∞, we can rewrite the numerator of ci(d) as

1
W 2

in

n∑

j=1

wij(d)(Xi – Xj)2 = A + B + C, (18)
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where

A = X2
i – 2μXi + μ2 + σ 2; B =

1
W 2

in

n∑

j=1

wij(d)
(
X2

j – μ2 – σ 2);

C = –
2Xi

W 2
in

n∑

j=1

wij(d)(Xj – μ).

With the same argument as in the proof of Theorem 1, we have

1
W 2

in

n∑

j=1

wij(d)
(
X2

j – μ2 – σ 2) =
1
kn

kn∑

j=1

(
X2

j – μ2 – σ 2).

According to the strong law of large numbers, we obtain B
a.s.−→ 0 as n → ∞.

It follows from the Markovian inequality that

P
(∣

∣
∣
∣

2Xi

Win

∣
∣
∣
∣ ≥ ε

)

≤ 1
ε2 E

(
2Xi

Win

)2

=
4(μ2 + σ 2)

W 2
inε

2 → 0 as n → ∞,

that is,

2Xi

Win

P−→ 0 as n → ∞.

Then the Slutsky theorem together with the result that 1
Win

∑n
j=1 wij(d)(Xj – μ) � Z as

n → ∞ guarantees C
P−→ 0 as n → ∞.

Applying the Slutsky theorem to Eq. (18), we have

1
W 2

in

n∑

j=1

wij(d)(Xi – Xj)2 � A as n → ∞.

Let c(d) � A
σ 2 . From the Slutsky theorem and S2

n
a.s.−→ σ 2, we obtain ci(d) � c(d). Then,

according to Lemma 1 and the assumption that the distribution function of c(d) is contin-
uous, we obtain

sup
x∈R

∣
∣P

(
ci(d) ≤ x

)
– P

(
c(d) ≤ x

)∣
∣ → 0 as n → ∞.

By the triangle inequality for the Kolmogorov distance, it is then sufficient to prove

sup
x∈R

∣
∣P∗(c∗

i (d) ≤ x
)

– P
(
c(d) ≤ x

)∣
∣

a.s.−→ 0 as n → ∞. (19)

Similarly, the numerator of c∗
i (d) can be expressed as

1
W 2

in

n∑

j=1

wij(d)
(
X∗

i – X∗
j
)2 = A∗ + B∗ + C∗, (20)
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where

A∗ =
(
X∗

i
)2 – 2X̄X∗

i + (X̄)2 + S2
n; B∗ =

1
W 2

in

n∑

j=1

wij(d)
[(

X∗
j
)2 – (X̄)2 – S2

n
]
;

C∗ = –
2X∗

i
W 2

in

n∑

j=1

wij(d)
(
X∗

j – X̄
)
.

Firstly, according to Lemmas 3, 4 and 5, we obtain

d1
((

X∗
i
)2 – 2μX∗

i + μ2 + σ 2, X2
i – 2μXi + μ2 + σ 2)

≤ d1
((

X∗
i
)2, X2

i
)

+ 2μd1
(
X∗

i , Xi
) a.s.−→ 0,

which implies that the distribution of (X∗
i )2 – 2μX∗

i +μ2 +σ 2 converges to the distribution
of A. According to the strong law of large numbers, we therefore obtain A∗ � A as n → ∞
for almost all sample sequences of X1, X2, . . . .

Moreover, with the same argument in the proof of Theorem 1, we write B∗ as

1
kn

kn∑

j=1

[(
X∗

j
)2 – (X̄)2 – S2

n
]
.

Noting that (X∗
j )2 – (X̄)2 – S2

n (j = 1, . . . , n) are conditionally i.i.d. random variables and

using the strong law of large numbers, we obtain B∗ a.s.−→ 0 as n → ∞ for almost all sample
sequences of X1, X2, . . . .

Finally, for any ε > 0, we obtain from the Markovian inequality that

P∗
(∣

∣
∣
∣
2X∗

i
Win

∣
∣
∣
∣ ≥ ε

)

≤ 1
ε2 E∗

(
2X∗

i
Win

)2

=
4

W 2
inε

2 E∗(X∗
i
)2 =

4
W 2

inε
2

1
n

n∑

j=1

X2
j .

Because 1
n
∑n

j=1 X2
j

a.s.−→ μ2 +σ 2 < ∞, we have, for almost all sample sequences of X1, X2, . . . ,

P∗
(∣

∣
∣
∣
2X∗

i
Win

∣
∣
∣
∣ ≥ ε

)

→ 0 as n → ∞.

That is, for almost all sample sequences of X1, X2, . . . , it is true that

2X∗
i

Win

P∗
−→ 0 as n → ∞,

which implies that C∗ P∗
−→ 0 as n → ∞ for almost all sample sequences.

In conclusion, according to the Slutsky theorem and Lemma 6, we obtain c∗
i (d) � c(d)

as n → ∞ for almost all sample sequences of X1, X2, . . . . Equation (19) is then proved ac-
cording to Lemma 1. �

Remark 4 In the proofs of the three theorems, different ways are used to prove the consis-
tency of the bootstrap approximations for Cases 1 and 2. For Case 2, the distributions of



Mei et al. Journal of Inequalities and Applications        (2020) 2020:217 Page 14 of 19

each local statistic and its bootstrap scenario are bridged by a same normal distribution.
Therefore, it can be inferred that the bootstrap approximation performs at least as well as
the normal distribution in this case. For Case 1, however, the numerator of each statistic
is the sum of a fixed number of random variables in the process of n → ∞. The limit dis-
tribution of each statistic cannot be a normal distribution if the population for drawing
the sample does not follow a normal distribution. Therefore, the normal approximation
fails to approximate the null distribution of each statistic in this case, but the bootstrap ap-
proximation still works according to the proof of each theorem, which is possibly the main
reason for the empirical finding that the normal approximation is sometimes problematic
as mentioned in the introduction. In practice, the neighbors of a reference location is gen-
erally very few relatively to the sample size and, as aforementioned, the bootstrap method
can provide a valid approximation to the null distribution of each local statistic. In sum-
mary, the bootstrap approximation outperforms the normal approximation especially in
practice.

4 Application to the spatial pattern detection of the Boston housing price data
In order to demonstrate the application of the bootstrap approximations, a real-world ex-
ample based on the Boston housing price data is analyzed for the significance test of local
spatial association. As mentioned in Remark 4, the bootstrap method can provide a valid
approximation for the null distribution of each local statistic. However, for a local-statistic-
based test with the bootstrap approximation, some other issues such as the Monte-Carlo
implementation of the bootstrap method and the multiple test problem should be con-
sidered. The purpose of this section is to provide a full process of using the bootstrap
approximation in practice.

4.1 Description of the data set and determination of the spatial linkage matrix
The Boston housing price data set, which is publicly available in the R package spdep
(http://eran.r-project.org/), consists of observations of the median house value (in $1000)
of owner-occupied homes and 13 explanatory variables in 506 US census tracts of the
Boston area in 1970. Moreover, a list of influential neighbors for each tract is also attached,
where a tract is an influential neighbor of another tract if these two tracts share a common
part of the boundary.

Here, we chose the median house value, which we denoted by X henceforth, as the tar-
get variable to detect its spatial variation patterns based on the observations x1, x2, . . . , xn

of X in the n = 506 census tracts. The spatial linkage matrix W = (wij)n×n was obtained
from the list of influential neighbors of each tract. Specifically, let wij = 1 if tract j is the
influential neighbor of tract i; wij = 0 if otherwise; and wii = 0 by convention. The number
of neighbors for the 506 census tract ranges from 1 to 8 with the averaged value being 4.25
which is much smaller than the sample size n = 506.

First of all, we conducted the Kolmogorov–Smirnov test for the normality of the ob-
servations of the target variable X. The p-value of the test is p = 0.0000, providing strong
evidence of non-normality of the observations. As mentioned in Remark 4, the normal
approximation to the null distributions of the three local statistics is problematic while
the bootstrap approximation works for this data set.

http://eran.r-project.org/
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4.2 Monte Carlo implementation of the bootstrap distribution functions
In general, the exact bootstrap distribution of a statistic is difficult to derive, although it
is theoretically known for a given sample drawn from the population. In practice, Monte
Carlo simulation is commonly used to compute the bootstrap distribution of the statistic.
Here, we take the Getis and Ord’s Gi statistic (we omit the distance threshold d in the
statistic here because the spatial linkage matrix was determined without using it explic-
itly) as an example to show the Monte Carlo procedure. The procedure for the other two
statistics is essentially the same.

Let x1, x2, . . . , xn be the observations of the target variable X with xi located at the loca-
tion si. Given a reference location si, the Monte Carlo procedure for approximating the
bootstrap distribution of Gi is as follows.

Step 1. Draw with replacement a bootstrap sample (x∗
1, x∗

2, . . . , x∗
n) from (x1, x2, . . . , xn).

Specifically, for each of k = 1, 2, . . . , n, draw a random number u from the uniform distri-
bution U(0, 1), and let x∗

k = x[nu]+1.
Step 2. Compute the bootstrap value G∗

i of Gi according to Eq. (4).
Step 3. Repeat Steps 1 and 2 for N times and obtain N bootstrap values of Gi which we

denote G∗
i(1), G∗

i(2), . . . , G∗
i(N).

Step 4. Compute the empirical distribution function of G∗
i(1), G∗

i(2), . . . , G∗
i(N) and take it

as an estimator of the bootstrap distribution of Gi. That is, for each real number x, the
bootstrap distribution function of Gi is approximated by

P∗(G∗
i ≤ x

)
=

1
N

N∑

k=1

I{G∗
i(k)≤x}. (21)

4.3 Spatial association detection of the Boston housing price data
4.3.1 Alternative hypotheses and p-values of the tests
As pointed out by Getis and Ord [11], Gi measures the concentration or lack concentra-
tion of the values associated with the variable X on the reference location si. Therefore,
Gi is commonly used to identify a location which is surrounded by large values or small
values of X in its neighborhood. Ii and ci can be employed to test whether the value of X
located at the reference location si is similar (local positive autocorrelation) or dissimilar
(local negative autocorrelation) to those located at its neighbors. To be specific, we mainly
focused in this case study on identifying such a location that is surrounded by large values
located at its neighbors by Gi, that is, a location with extremely large value of Gi, and test-
ing local positive autocorrelation using Ii and ci, that is, a location with extremely large
value of Ii or with extremely small value of ci. These above objectives amount to the Gi-,
Ii- and ci-based tests for the following alternative hypotheses, respectively:

H1G: a tract surrounded by its neighbors with high housing price;
H1I : a tract with the housing price being positively correlated to those in its neighbors;
H1c: a tract with the housing price being similar to those in its neighbors.

The above alternative hypotheses all lead to one-sided tests. Specifically, the p-value of
the Gi test derived by the bootstrap distribution in Eq. (21) is

pGi =
1
N

N∑

k=1

I{G∗
i(k)≥G(0)

i }, (22)
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where G(0)
i is the observed value of Gi at the reference location si and is computed accord-

ing to Eq. (1) with the sample (X1, X2, . . . , Xn) replaced by its observed value (x1, x2, . . . , xn).
Similarly, the p-values of the Ii test and the ci test are, respectively,

pIi =
1
N

N∑

k=1

I{I∗i(k)≥I(0)
i } (23)

and

pci =
1
N

N∑

k=1

I{c∗i(k)≤c(0)
i }, (24)

where I(0)
i and c(0)

i are the observed values of Ii and ci computed according to Eqs. (2) and
(3), respectively.

4.3.2 Method for dealing with multiple testing problem
When a local statistic is used to identify local spatial association of geo-referenced data,
the test is generally performed at each location over the study region based on the same
observations, which involves the multiple testing problem. Therefore, a given overall sig-
nificance level, say α, should be properly adjusted in order to control the overall type I
error to be less than α. Although the commonly used Bonferroni and Sidák criterions can
readily be used here for adjusting the overall significance level, both methods are very
conservative especially when the sample size is large [1]. Caldas and Singer [6] have used
the so-called false discovery rate (FDR) criterion, developed by Benjamini and Hochberg
[2], to handle the multiple testing problem associated with local spatial statistics and the
results demonstrated that the FDR criterion is much more powerful than the Bonferroni
and the Sidák methods. Therefore, the FDR criterion is employed here for dealing with
the multiple testing problem in the analysis of the Boston housing price data with the Gi,
Ii and ci statistics. We introduce in what follows the FDR criterion in its general case.

Suppose that a total of K tests are simultaneously conducted based on a local statistic
and the resultant p-values are p1, p2, . . . , pK , respectively. Sort the p-values in ascending
order as p(1) ≤ p(2) ≤ · · · ≤ p(K ), and let

k0 = max

{

k : p(k) ≤ k
K

α, k = 1, 2, . . . , K
}

,

where α is the given overall significance level. The adjusted significance level for each
individual test is αA = k0

K α.

4.3.3 Testing results with analysis
For the Boston housing price data, the sample size is n = 506. Given each of the three local
statistics Gi, Ii and ci, the bootstrap procedure was used to compute the p-value at each of
the 506 tracts, in which the number of the bootstrap replications is N = 500. The overall
significance level was set to be α = 0.05. Using the FDR criterion, we saw that the adjusted
significance levels are αG

A = 0.00198 for Gi, αI
A = 0.00573 for Ii, and αc

A = 0.01107 for ci,
respectively. The maps of the testing results are shown in Fig. 1, where the black areas
represent the tracts with the original p-values being less than the overall significance level
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Figure 1 Maps of the categorized p-values for the Gi , Ii and ci tests. The black areas represent the tracts with
the p-values less than the overall significance level α = 0.05 (left-hand column) or less than the corresponding
adjusted significance levels αG

A = 0.00198, αI
A = 0.00573, and αc

A = 0.01107 (right-hand column)

α = 0.05 (left-hand column) or less than the corresponding adjusted significance levels
(right-hand column).

The result of the Gi test (panels in the first row) shows that the tracts with high housing
price concentration appear mainly in the middle western region. After the adjustment of
the overall significance level, only a few of tracts show the pattern that they are surrounded
by their respective neighbors with high housing price.

The result of the Ii test (panels in the second row) shows a similar pattern to that of
the Gi test especially under the overall significance level of α = 0.05. That is, the tracts
with similar housing price to those of their respective neighbors also locate on the middle
western region except for some tracts on the middle eastern part. After the significance
level is adjusted to αI

A = 0.0057, a belt region where positive spatial autocorrelation is sig-
nificant is clearly shown. By the combination of the results from Gi and Ii tests, we know
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that these common tracts colored in black and their respective neighbors all share high
housing price, indicating “hot” spots of housing price in the Boston area.

The result of the ci test (panels in the last row) demonstrates a totally opposite spatial
pattern to that of the Ii test for the significant tracts, although both tests focus on detect-
ing such tracts that share a similar housing price with their respective neighbors. Given
the foregoing analysis showing that the Ii test uncovers the tracts with high housing price
sharing with their respective neighbors, it can be inferred that the ci test clarifies such
tracts that share low house price with their respective neighbors. According to the struc-
tures of the Ii and ci statistics, the opposite spatial patterns identified by the Ii and the ci

tests may imply that a large difference generally exists in the high housing price shared
by a reference tract and its neighbors, while the low housing prices shared by a reference
tract and its neighbors are relatively homogeneous. Moreover, it can be observed from the
figure that the tracts sharing low housing price with their respective neighbors are more
separately spatially distributed than those sharing high housing price with their respec-
tive neighbors. That is to say, the “cool” spots in the housing price are separately spatially
distributed and the “hot” spots crowd in space.

5 Final remarks
There has been a growing interest in using local statistics to explore local patterns of spa-
tial association in geo-referenced data, in which the null distributions of the local statistics
play a key role in the related statistical inference. Considering that the bootstrap method
can well account for non-normality of data and can easily be implemented with modern
computers, we propose in this paper a bootstrap method to approximate the null distri-
butions of the commonly used local spatial statistics of Getis and Ord’s Gi, Moran’s Ii

and Geary’s ci. More importantly, strong consistency of the bootstrap approximation is
established, which provides not only a theoretical basis for using the bootstrap method
to approximate the null distributions of these three statistics, but also some evidence that
normal approximation sometimes fails to approximate the null distributions of these local
statistics. Furthermore, the practical implementation procedure of the local spatial statis-
tics based bootstrap tests is fully given by a case study of the Boston housing price data.

Methodologically, the bootstrap procedure can readily be used to approximate the null
distributions of other local spatial statistics such as Ord and Getis’s LOSH statistic [19, 25].
However, establishing a common theoretical framework for the validity of the bootstrap
approximation seems not easy. Therefore, consistency of the bootstrap approximation for
other local spatial statistics or, furthermore, convergence rate of the current bootstrap
approximation deserves to be investigated in the future research.
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