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Abstract
Spacelike submanifolds usually appear in the study of questions related to causality in
general relativity. In this paper, we study an n-dimensional spacelike submanifold in
(n + p)-dimensional connected de Sitter space Sn+pq (c) of index q (1≤ q≤ p) and of
constant curvature c, and we obtain some integral inequalities of Simons type and
rigidity theorems.
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1 Introduction
During the last decades, the study of spacelike submanifolds in semi-Riemannian man-
ifolds has got increasing interest motivated by their importance in problems related to
Physics, such as the theory of general relativity. Furthermore, the unique properties of
spacelike submanifolds are of great significance for solving the Cauchy initial value prob-
lem of hypersurfaces and the propagation of gravity in arbitrary space-time (see, for ex-
ample, [1–3]). Therefore, many authors have focused on the development of spacelike
submanifolds in semi-Riemannian manifolds; see, for example, [4–7] and the reference
therein.

Let M be a finite dimensional manifold, we assume that M can be endowed with a Rie-
mannian metric to become a Riemannian manifold. The structure and pinching problem
of some special submanifolds such as totally geodesic submanifolds, minimal submani-
folds, submanifolds with parallel mean curvature vector and totally umbilical subman-
ifolds are the research focus of submanifolds on Riemannian manifolds. The pinching
problem of submanifolds is to restrict norm square of the second fundamental form, sec-
tional curvature, Ricci curvature and scalar curvature of submanifolds, so as to obtain
some special properties.

Let Nn+p
q (c) be an (n + p)-dimensional connected semi-Riemannian manifold with con-

stant curvature c, and of index q, where 1 ≤ q ≤ p. It is called an indefinite space form
of index q. More specifically, it may be considered, up to isometries, as de Sitter space
Sn+p

q (c), semi-Euclidean space Rn+p
q , and semi-hyperbolic space Hn+p

q (c), if c > 0, c = 0, and
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c < 0, respectively. A submanifold immersed in Nn+p
q (c) is said to be spacelike, timelike,

lightlike, if the metric in Mn induced by that of the ambient space Nn+p
q (c) is positive def-

inite, negative definite, vanishing, respectively. As is usual, the spacelike submanifold is
said to be complete if the Riemannian induced metric is a complete metric. For further
details, see [8].

Let ϕ : M → Nn+p
q (c) be an n-dimensional spacelike submanifold in Nn+p

q (c). If q = p =
1, this initial step in this context is due to Goddard’s conjecture in 1977 (see [9]) that
complete spacelike hypersurfaces of Sn+1

1 with constant mean curvature H must be totally
umbilical. In order to prove this conjecture, many researchers began to study spacelike
submanifolds in constant curvature space. Although the conjecture turned out to be false
in its original statement, it motivated a great deal of work of several authors trying to find
a positive answer to the conjecture under appropriate additional hypotheses (see [10–
15]). In the case of higher codimension (i.e. q = p > 1) in Nn+p

q (c), several fruitful results
have been achieved in recent years. Among them, Cheng [16] extended Akugatawa’s result
[10] to complete spacelike submanifolds with parallel mean curvature vector fields in de
Sitter space Sn+p

p . Li [17] proved that the conclusion of Motiel [12] is still valid in spacelike
submanifolds. For relevant conclusions, refer to [18–26].

When q = p, we note here that complete maximal spacelike submanifold M in Nn+p
p (c)

is totally geodesic for c ≥ 0 (see [27]). Thus the class of all such submanifolds is very
small. While if 0 ≤ q < p, and M is a complete minimal submanifold in sphere Sm(c)
(m > n), which is embedded in Sm+q

q (c) as a totally geodesic spacelike submanifold such
that m – n + q = p, we know from [28] and [29] that M is a complete maximal spacelike
submanifold in Sn+p

q (c). This implies that the class of complete maximal spacelike subman-
ifold in Sn+p

q (c) is very large. From the above discussion, it is necessary and important to
study the classification of spacelike submanifold in Sn+p

q (c) (1 ≤ q < p). But to the best of
our knowledge, the progress of this research topic is slow.

There are several authors have tried relevant topic and obtained some important prop-
erties. By calculating the divergence of certain tangent vector fields and using the diver-
gence theorem, Alías and Romero [28] proved an integral formula for the compact space-
like n-dimensional submanifolds in a de Sitter spaces Sn+p

q (c) (1 ≤ q < p), and obtained a
Bernstein type result for the complete maximal submanifolds in Sn+p

q (c) (1 ≤ q < p). Cheng
and Ishikawa [29] studied compact maximal spacelike submanifold in Sn+p

q (c) (1 ≤ q < p),
and obtained some important results in terms of the pinching conditions on scalar curva-
ture, sectional curvature and Ricci curvature, respectively. Under the assumption that the
second fundamental form of M is locally timelike, Mariano [30] obtained some results of
complete spacelike submanifold with parallel mean curvature vector in Sn+p

q (c) (1 ≤ q < p).
And Yang and Li [31] obtained some classification results for spacelike submanifold in
Sn+p

q (c) (1 ≤ q < p), but they not only assume the mean curvature vector is parallel but also
it is spacelike or timelike.

Inspired and motivated by the research work above, in this paper, only assuming the
mean curvature vector is parallel, we continue to study this topic and prove some integral
inequalities of Simons’ type and rigidity theorems for n-dimensional spacelike submani-
folds in a de Sitter space Sn+p

q (c) (1 ≤ q < p), which is a further generalization of the results
obtained in [29].
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It should be noted that Simons’ method [32] is widely used in minimal hypersurfaces, or
hypersurfaces with constant mean curvature H in Sn+1. Many rigidity results are obtained
by using Simons’ method (see, for example, [32–36]) .

Next, we will make a brief introduction to the main results present in this paper. We
denote by ρ2 the nonnegative function ρ2 = S – nH2, where S and H are the norm square
of the second fundamental form and the mean curvature vector of M, we see that ρ2 = 0
if and only if M is a totally umbilical spacelike submanifold. We also denote by K and Q
the functions which assign to each point of M the infimum of the sectional curvature and
the Ricci curvature at the point, we will present the following theorems.

Theorem 1.1 Let ϕ : M → Sn+p
q (c) (1 ≤ q < p) be an n (n ≥ 2)-dimensional compact space-

like submanifold in a de Sitter space Sn+p
q (c) with parallel mean curvature vector. Then the

following integral inequality holds:

∫
M

ρ2
{

aρ2 +
n(n – 2)√
n(n – 1)

Hρ – n
(
c – H2)}dv ≥ 0,

where a = 1 if p – q = 1, and a = 3
2 if p – q > 1.

In particular, if ρ2 ≤ b2
+(a, H , c) and H2 ≤ c, where b+(a, H , c) is the nonnegative root of

the multinomial

P(x, H , a) = ax2 +
n(n – 2)√
n(n – 1)

Hx – n
(
c – H2),

then
(i) if p – q = 1, M is totally umbilical, or M lies in the totally geodesic spacelike

submanifold Sn+1(c) of Sn+q+1
q (c) and is isometric to the Clifford torus

Sk( n
k c) × Sn–k( n

n–k c);
(ii) if p – q > 1, M is totally umbilical, or n = 2, p – q = 2, M lies in the totally geodesic

spacelike submanifold S4(c) of S4+q
q (c) and is isometric to the Veronese surface.

Theorem 1.2 Let ϕ : M → Sn+p
q (c) (1 ≤ q < p) be an n (n ≥ 2)-dimensional compact space-

like submanifold in a de Sitter space Sn+p
q (c) with parallel mean curvature vector. Then the

following integral inequality holds:

∫
M

ρ2
{

nK –
(

1 –
1

p – q

)
ρ2

}
dv ≤ 0.

In particular, if

K ≥ 1
n

(
1 –

1
p – q

)
ρ2,

then M is totally umbilical, or M is a spacelike submanifold with parallel second funda-
mental form.

Theorem 1.3 Let ϕ : M → Sn+p
q (c) (1 ≤ q < p) be an n (n ≥ 2)-dimensional compact space-

like submanifold in a de Sitter space Sn+p
q (c) with parallel mean curvature vector. Then the
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following integral inequality holds:

∫
M

ρ2
{

Q – (n – 2)c – nH2 –
n – 2√
n(n – 1)

Hρ –
1
n

(
3 –

p + q
(p – q)q

)}
dv ≤ 0.

In particular, if

Q ≥ (n – 2)c + nH2 +
n – 2√
n(n – 1)

Hρ +
1
n

(
3 –

p + q
(p – q)q

)
,

then M is totally umbilical, or M is a maximal Einstein submanifold with parallel second
fundamental form, and the Ricci curvature

Ric(M) = (n – 2)c +
1
n

(
3 –

p + q
(p – q)q

)
.

From Theorem 1.3, we also have the following corollary.

Corollary 1.4 Let ϕ : M → Sn+p
q (c) (1 ≤ q < p) be an n (n ≥ 2)-dimensional compact max-

imal spacelike submanifold in a de Sitter space Sn+p
q (c). Then the following integral inequal-

ity holds:

∫
M

ρ2
{

Q – (n – 2)c –
1
n

(
3 –

p + q
(p – q)q

)}
dv ≤ 0.

In particular, if

Q ≥ (n – 2)c +
1
n

(
3 –

p + q
(p – q)q

)
,

then M is totally geodesic, or M is a maximal Einstein submanifold with Ricci curvature

Ric(M) = (n – 2)c +
1
n

(
3 –

p + q
(p – q)q

)
.

Remark 1 If H = 0, i.e. M is maximal, we see that the second part of Theorem 1.1, Theo-
rem 1.2, and Corollary 1.4 are reduced to Theorem 1, Theorem 2 (if p – q = 1) and The-
orem 3 (if p = 2, q = 1) of [29], respectively. Thus, we generalize the results of [29] to
spacelike submanifold with parallel mean curvature vector for any 1 ≤ q < p.

2 Preliminaries
In this section, we will introduce some basic facts and notations that will appear on the
paper. Let Nn+p

q (c) be an (n+p)-dimensional indefinite space form with index q (1 ≤ q ≤ p).
Let M be an n-dimensional connected spacelike submanifold immersed in Nn+p

q (c). We
choose a local field of semi-Riemannian orthonormal frames e1, . . . , en+p in Nn+p

q (c), such
that at each point of M, e1, . . . , en span the tangent space of M and form an orthonormal
frame there. We use the following convention on the range of indices:

1 ≤ A, B, C, . . . ≤ n + p, 1 ≤ i, j, k, . . . ≤ n, n + 1 ≤ α,β ,γ , . . . ≤ n + p.
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Let ω1, . . . ,ωn+p be its dual frame field, so that the semi-Riemannian metric of Nn+p
q (c) is

given by ds2 =
∑

A εAω2
A, where

εA =

⎧⎨
⎩

1, 1 ≤ A ≤ n + p – q,

–1, n + p – q + 1 ≤ A ≤ n + p.

Then the structure equations of Nn+p
q (c) are given by (see [29])

dωA = –
∑

B

εBωAB ∧ ωB, ωAB + ωBA = 0,

dωAB = –
∑

C

εCωAC ∧ ωCB –
1
2

∑
C,D

εCεDKABCDωC ∧ ωD,

KABCD = cεAεB(δADδBC – δACδBD).

If we restrict these form to M, then ωα = 0 (n + 1 ≤ α ≤ n + p), and

ωαi =
∑

j

hα
ijωj, hα

ij = hα
ji .

The second fundamental form II , the mean curvature vector �H of M are defined by

II =
∑
α,i,j

εαhα
ijωiωjeα , �H =

∑
α

εαHαeα , Hα =
1
n

∑
k

hα
kk .

The norm square of the second fundamental form and the mean curvature of M are de-
fined by

S = |II|2 =
∑
i,j,α

(
εαhα

ij
)2 =

∑
i,j,α

(
hα

ij
)2, H = | �H| =

√∑
α

(
Hα

)2.

The Gauss equations are

Rijkl = c(δilδjk – δikδjl) +
∑

α

εα

(
hα

ilh
α
jk – hα

ikhα
jl
)
, (2.1)

Rjk = (n – 1)cδjk +
∑

α

εα

(∑
i

hα
iih

α
jk –

∑
i

hα
ikhα

ji

)
. (2.2)

Defining the first and the second covariant derivatives of hα
ij , say hα

ijk and hα
ijkl by

∑
k

hα
ijkωk = dhα

ij –
∑

k

hα
ikωkj –

∑
k

hα
jkωki –

∑
β

εβhβ

ijωβα , (2.3)

∑
l

hα
ijklωl = dhα

ijk –
∑

m
hα

mjkωmi –
∑

m
hα

imkωmj –
∑

m
hα

ijmωmk –
∑

β

εβhβ

ijkωβα , (2.4)

we have the Codazzi equations and the Ricci identities

hα
ijk = hα

ikj, (2.5)
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hα
ijkl – hα

ijlk = –
∑

m
hα

imRmjkl –
∑

m
hα

jmRmikl –
∑

β

εβhβ

ij Rβαkl. (2.6)

The Ricci equations are

Rαβij = –
∑

m

(
hα

imhβ

mj – hα
jmhβ

mi
)
. (2.7)

The Laplacian of hα
ij is defined by 
hα

ij =
∑

k hα
ijkk . From (2.6), we obtain for any α (n + 1 ≤

α ≤ n + p),


hα
ij =

∑
k

hα
kkij –

∑
k,m

hα
kmRmijk –

∑
k,m

hα
imRmkjk –

∑
k,β

εβhβ

ikRβαjk .

We need the following lemma (see [37]).

Lemma 2.1 Let A, B be symmetric n × n matrices satisfying AB = BA and tr A = tr B = 0.
Then

∣∣tr A2B
∣∣ ≤ n – 2√

n(n – 1)
(
tr A2)(tr B2)1/2,

and the equality holds if and only if (n – 1) of the eigenvalues xi of B, and the corresponding
eigenvalues yi of A satisfy |xi| = (tr B2)1/2/

√
n(n – 1), xixj ≥ 0, yi = (tr A2)1/2/

√
n(n – 1).

3 Basic formulas
This section introduces some basic formulas which plays a crucial role in the proof of the
theorems in this paper. Define the tensors

h̃α
ij = hα

ij – Hαδij, (3.1)

σ̃αβ =
∑

i,j

h̃α
ij h̃

β

ij , σαβ =
∑

i,j

hα
ijh

β

ij . (3.2)

Then the (p × p)-matrix (σ̃αβ) is symmetric and can be assumed to be diagonalized for a
suitable choice of en+1, . . . , en+p. We set

σ̃αβ = σ̃αδαβ . (3.3)

By a direct calculation, we have

∑
k

h̃α
kk = 0, σ̃αβ = σαβ – nHαHβ , ρ2 =

∑
α

σ̃α = S – nH2, (3.4)

where σ̃α = σ̃αα .
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From (2.5) and (2.6), we have

1
2

S =

∑
i,j,k,α

(
hα

ijk
)2 +

∑
i,j,α

hα
ij
hα

ij

= |∇h|2 +
∑
i,j,α

hα
ij
(
nHα

)
,ij –

∑
α

∑
i,j,k,l

hα
ijh

α
klRlijk

–
∑

α

∑
i,j,k,l

hα
ijh

α
liRlkjk –

∑
α,β

∑
i,j,k

εβhα
ijh

β

kiRβαjk . (3.5)

In general, for a matrix A = (aij) we denote by N(A) the square of the norm of A, that
is, N(A) = trace(A · At) =

∑
i,j(aij)2. Clearly, N(A) = N(TtAT) for any orthogonal matrix T .

From (2.7), we have

–
∑
α,β

∑
i,j,k

εβhα
ijh

β

kiRβαjk = –
∑
α,β

∑
i,j,k,l

εβhα
ijh

β

ki
(
hβ

klh
α
lj – hβ

jl h
α
lk
)

= –
1
2

∑
α,β ,j,k

εβ

(∑
l

hβ

klh
α
lj –

∑
l

hα
klh

β

lj

)2

= –
1
2

∑
α,β ,j,k

εβ

(∑
l

h̃β

klh̃
α
lj –

∑
l

h̃α
klh̃

β

lj

)2

= –
1
2

∑
α,β

εβN(ÃαÃβ – ÃβÃα), (3.6)

where Ãα := (h̃α
ij ) = (hα

ij – Hαδij).
Combining (2.1), (2.7), (3.1) (3.2), (3.4) and (3.6), we conclude that

–
∑

α

∑
i,j,k,l

hα
ij
(
hα

klRlijk + hα
liRlkjk

)

= ncρ2 –
∑
α,β

εβσ 2
αβ + n

∑
α,β

∑
i,j,k

εβHβhβ

kjh
α
ijh

α
ik –

∑
α,β ,i,j,k

εβhα
jih

β

ikRβαjk

= ncρ2 –
∑
α,β

εβσ̃ 2
αβ – 2n

∑
α,β

∑
i,j

εβHαHβ h̃α
ij h̃

β

ij – n2
∑

α

(
Hα

)2 ∑
β

εβ

(
Hβ

)2

+ n
∑
α,β

∑
i,j,k

εβHβ h̃β

kjh̃
α
ij h̃

α
ik + nρ2

∑
β

εβ

(
Hβ

)2 + 2n
∑
α,β

∑
i,j

εβHαHβ h̃α
ij h̃

β

ij

+ n2
∑

α

(
Hα

)2 ∑
β

εβ

(
Hβ

)2 –
1
2

∑
α,β

εβN(ÃαÃβ – ÃβÃα)

= ncρ2 –
∑
α,β

εβσ̃ 2
αβ + nρ2

∑
β

εβ

(
Hβ

)2 + n
∑
α,β

∑
i,j,k

εβHβ h̃β

kjh̃
α
ij h̃

α
ik

–
1
2

∑
α,β

εβN(ÃαÃβ – ÃβÃα). (3.7)

Since the mean curvature vector is parallel, that is, |∇⊥ �H|2 =
∑

i,α(Hα
,i )2 = 0, we see that

Hα
,i = 0 for all i, α and Hα are constant for all α, this implies that H is constant. Putting
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(3.6) and (3.7) into (3.5), we have

1
2

ρ2 = |∇h|2 + ncρ2 + nρ2

∑
β

εβ

(
Hβ

)2 + n
∑
α,β

∑
i,j,k

εβHβ h̃β

kjh̃
α
ij h̃

α
ik

–
∑
α,β

εβN(ÃαÃβ – ÃβÃα) –
∑
α,β

εβσ̃ 2
αβ . (3.8)

4 Proofs of theorems
Proof of Theorem 1.1 We first have the following:

nρ2
∑

β

εβ

(
Hβ

)2 = nρ2
n+p–q∑
β=n+1

(
Hβ

)2 – nρ2
n+p∑

β=n+p–q+1

(
Hβ

)2

= 2nρ2
n+p–q∑
β=n+1

(
Hβ

)2 – nρ2
n+p∑

β=n+1

(
Hβ

)2 ≥ –nρ2H2. (4.1)

We use
∑

i(h̃
β

ii)2 = σ̃β ,
∑

i h̃β

ii = 0,
∑

i μ
α
i = 0, and

∑
i(μα

i )2 = σ̃α . It follows from Lemma 2.1
that

n
∑

α,β ,i,j,k

εβHβ h̃β

kjh̃
α
ij h̃

α
ik

= n
∑
α,i,j,k

n+p–q∑
β=n+1

Hβ h̃β

kjh̃
α
ij h̃

α
ik – n

∑
α,i,j,k

n+p∑
β=n+p–q+1

Hβ h̃β

kjh̃
α
ij h̃

α
ik

= n
∑
α,i

n+p–q∑
β=n+1

Hβ h̃β

ii
(
μα

i
)2 – n

∑
α,i

n+p∑
β=n+p–q+1

Hβ h̃β

ii
(
μα

i
)2

≥ –
n(n – 2)√
n(n – 1)

∑
α

n+p–q∑
β=n+1

∣∣Hβ
∣∣σ̃α

√
σ̃β –

n(n – 2)√
n(n – 1)

∑
α

n+p∑
β=n+p–q+1

∣∣Hβ
∣∣σ̃α

√
σ̃β

= –
n(n – 2)√
n(n – 1)

∑
α

σ̃α

(n+p–q∑
β=n+1

∣∣Hβ
∣∣√σ̃β +

n+p∑
β=n+p–q+1

∣∣Hβ
∣∣√σ̃β

)

= –
n(n – 2)√
n(n – 1)

∑
α

σ̃α

n+p∑
β=n+1

∣∣Hβ
∣∣√σ̃β

≥ –
n(n – 2)√
n(n – 1)

ρ2
(√∑

β

(
Hβ

)2 ∑
β

σ̃β

)

= –
n(n – 2)√
n(n – 1)

Hρ3. (4.2)

And

–
∑
α,β

εβN(ÃαÃβ – ÃβÃα) –
∑
α,β

εβσ̃ 2
αβ

= –
∑

α

n+p–q∑
β=n+1

N(ÃαÃβ – ÃβÃα) +
∑

α

n+p∑
β=n+p–q+1

N(ÃαÃβ – ÃβÃα)
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–
∑

α

n+p–q∑
β=n+1

σ̃ 2
αβ +

∑
α

n+p∑
β=n+p–q+1

σ̃ 2
αβ

= –
n+p–q∑
α=n+1

n+p–q∑
β=n+1

N(ÃαÃβ – ÃβÃα) –
n+p–q∑
α=n+1

n+p–q∑
β=n+1

σ̃ 2
αβ

+
n+p∑

α=n+p–q+1

n+p∑
β=n+p–q+1

N(ÃαÃβ – ÃβÃα) +
n+p∑

α=n+p–q+1

n+p∑
β=n+p–q+1

σ̃ 2
αβ

≥ –
n+p–q∑
α=n+1

n+p–q∑
β=n+1

N(ÃαÃβ – ÃβÃα) –
n+p–q∑
α=n+1

n+p–q∑
β=n+1

σ̃ 2
αβ , (4.3)

where the inequality N(ÃαÃβ – ÃβÃα) ≥ 0 for any α, β is used.
If p – q = 1, we have

–
n+p–q∑
α=n+1

n+p–q∑
β=n+1

N(ÃαÃβ – ÃβÃα) –
n+p–q∑
α=n+1

n+p–q∑
β=n+1

σ̃ 2
αβ = –σ̃ 2

n+1n+1 ≥ –ρ4. (4.4)

If p – q > 1, from Anmin and Jimin [38, Lemma 1], we have

–
n+p–q∑
α=n+1

n+p–q∑
β=n+1

N(ÃαÃβ – ÃβÃα) –
n+p–q∑
α=n+1

n+p–q∑
β=n+1

σ̃ 2
αβ ≥ –

3
2

(n+p–q∑
α=n+1

σ̃ 2
α

)
≥ –

3
2
ρ4. (4.5)

From (3.8), (4.1)–(4.5), we have

1
2

ρ2 ≥ |∇h|2 + ρ2

{
n
(
c – H2) –

n(n – 2)√
n(n – 1)

Hρ – aρ2
}

, (4.6)

where a = 1 if p – q = 1 and a = 3
2 if p – q > 1.

From the Stokes formula, we get

∫
M

ρ2
{

aρ2 +
n(n – 2)√
n(n – 1)

Hρ – n
(
c – H2)}dv ≥ 0. (4.7)

In particular, if ρ2 ≤ b2
+(a, H , c) and H2 ≤ c, since b+(a, H , c) is the nonnegative root of the

multinomial P(x, H , a) = ax2 + n(n–2)√
n(n–1) Hx – n(c – H2), we easily see that aρ2 + n(n–2)√

n(n–1) Hρ –
n(c – H2) ≤ 0. From (4.7), we have ρ2 = 0 and M is totally umbilical, or aρ2 + n(n–2)√

n(n–1) Hρ –
n(c – H2) = 0. In the latter case, if ρ2 = 0, then M is totally umbilical, if ρ2 
= 0, we see that
the equalities in (4.6), (4.1)–(4.3) hold. Thus, we have

n+p–q∑
β=n+1

(
Hβ

)2 = 0,
∑

β

∣∣Hβ
∣∣√σ̃β = Hρ,

n+p∑
α=n+p–q+1

n+p∑
β=n+p–q+1

σ̃ 2
αβ = 0.

This implies that Hβ = 0 for β = n + 1, . . . , n + p – q, and σ̃β = 0 for β = n + p – q + 1, . . . , n + p.
Therefore, we get Hρ =

∑
β |Hβ |√σ̃β = 0. Since ρ 
= 0, we have H = 0, that is, M is a com-

pact maximal spacelike submanifold in Sn+p
q (c).

By Cheng and Ishikawa [29, Theorem 1], if p – q = 1, we know that M lies in the totally
geodesic spacelike submanifold Sn+1(c) of Sn+q+1

q (c), and is isometric to the Clifford torus
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Sk( n
k c) × Sn–k( n

n–k c). If p – q > 1, we know that n = p – q = 2, and M lies in the totally
geodesic spacelike submanifold S4(c) of S4+q

q (c), and is isometric to the Veronese surface.
This completes the proof of Theorem 1.1. �

Proof of Theorem 1.2 For a fixed α, n + 1 ≤ α ≤ n + p, we can take a local orthonormal
frame field {e1, . . . , en} such that hα

ij = λα
i δij, then h̃α

ij = μα
i δij with μα

i = λα
i – Hα ,

∑
i μ

α
i = 0.

Thus

–
∑

α,i,j,k,l

hα
ij
(
hα

klRlijk – hα
liRlkjk

)
=

1
2

∑
α,i,k

(
λα

i – λα
k
)2Rkiik

=
1
2

∑
α,i,k

(
μα

i – μα
k
)2Rkiik ≥ nKρ2, (4.8)

where K denotes the infimum of the sectional curvature of M and the equality in (4.8)
holds if and only if Rkiik = K for any i 
= k.

From Chern et al. [39, Lemma 1], we see that

–
1
2

∑
α,β

εβN(ÃαÃβ – ÃβÃα)

= –
1
2

∑
α

n+p–q∑
β=n+1

N(ÃαÃβ – ÃβÃα) +
1
2

∑
α

n+p∑
β=n+p–q+1

N(ÃαÃβ – ÃβÃα)

= –
1
2

n+p–q∑
α=n+1

n+p–q∑
β=n+1

N(ÃαÃβ – ÃβÃα)

+
1
2

n+p∑
α=n+p–q+1

n+p∑
β=n+p–q+1

N(ÃαÃβ – ÃβÃα)

≥ –
1
2

n+p–q∑
α=n+1

n+p–q∑
β=n+1

N(ÃαÃβ – ÃβÃα) ≥ –
∑
α 
=β

σ̃ασ̃β

= –

(n+p–q∑
α=n+1

σ̃α

)2

+
n+p–q∑
α=n+1

σ̃ 2
α ≥ –

(n+p–q∑
α=n+1

σ̃α

)2

+
1

p – q

(n+p–q∑
α=n+1

σ̃α

)2

= –
(

1 –
1

p – q

)(n+p–q∑
α=n+1

σ̃α

)2

≥ –
(

1 –
1

p – q

)
ρ4. (4.9)

Thus, from (3.5), (3.6), (4.8), (4.9), we have

1
2

ρ2 ≥ |∇h|2 + nKρ2 –

(
1 –

1
p – q

)
ρ4.

From the Stokes formula, we get

0 ≥
∫

M
ρ2

{
nK –

(
1 –

1
p – q

)
ρ2

}
dv. (4.10)
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In particular, if K ≥ 1
n (1 – 1

p–q )ρ2, from (4.10), we see that ρ2 = 0 and M is totally umbilical,
or K = 1

n (1– 1
p–q )ρ2. In the latter case, we see that |∇h| = 0 and M is a spacelike submanifold

with parallel second fundamental form. This completes the proof of Theorem 1.2. �

Proof of Theorem 1.3 From (2.2) and (3.1), we have

Rkk = (n – 1)c + (n – 2)
∑

α

εαHαh̃α
kk + (n – 1)

n+p–q∑
α=n+1

(
Hα

)2

– (n – 1)
n+p∑

α=n+p–q+1

(
Hα

)2 –
n+p–q∑

i,α=n+1

(
h̃α

ik
)2 +

n+p∑
i,α=n+p–q+1

(
h̃α

ik
)2

≤ (n – 1)c + (n – 2)
∑

α

εαHαh̃α
kk + (n – 1)H2

–
n+p–q∑

i,α=n+1

(
h̃α

ik
)2 +

n+p∑
i,α=n+p–q+1

(
h̃α

ik
)2. (4.11)

Thus

nQ ≤
∑

k

Rkk = n(n – 1)c + n(n – 1)H2 –
n+p–q∑

i,k,α=n+1

(
h̃α

ik
)2 +

n+p∑
i,k,α=n+p–q+1

(
h̃α

ik
)2.

From (3.2) and (3.3), we have

–
n+p–q∑
α=n+1

σ̃α +
n+p∑

α=n+p–q+1

σ̃α ≥ nQ – n(n – 1)c – n(n – 1)H2. (4.12)

From (4.12), we see that

–
∑
α,β

εβσ̃ 2
αβ = –

∑
α

εασ̃ 2
α = –

n+p–q∑
α=n+1

σ̃ 2
α +

n+p∑
α=n+p–q+1

σ̃ 2
α

≥ –

(n+p–q∑
α=n+1

σ̃α

)2

+
1
q

( n+p∑
α=n+p–q+1

σ̃α

)2

= –

(n+p–q∑
α=n+1

σ̃α

)2

+

( n+p∑
α=n+p–q+1

σ̃α

)2

+
(

1
q

– 1
)( n+p∑

α=n+p–q+1

σ̃α

)2

≥
(

–
n+p–q∑
α=n+1

σ̃α +
n+p∑

α=n+p–q+1

σ̃α

)(n+p–q∑
α=n+1

σ̃α +
n+p∑

α=n+p–q+1

σ̃α

)
–

(
1 –

1
q

)
ρ4

≥ (
nQ – n(n – 1)c – n(n – 1)H2)ρ2 –

(
1 –

1
q

)
ρ4. (4.13)

From (4.9), we have

–
n+p–q∑
α=n+1

n+p–q∑
β=n+1

N(ÃαÃβ – ÃβÃα) ≥ –2
(

1 –
1

p – q

)
ρ4. (4.14)
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Thus, from (3.8), (4.1), (4.2), (4.13) and (4.14), we have

1
2

ρ2 ≥ |∇h|2 + ncρ2 – nρ2H2 –

n(n – 2)√
n(n – 1)

Hρ3 – 2
(

1 –
1

p – q

)
ρ4

+
(
nQ – n(n – 1)c – n(n – 1)H2)ρ2 –

(
1 –

1
q

)
ρ4

= |∇h|2 + nρ2
{

Q – (n – 2)c – nH2 –
n – 2√
n(n – 1)

Hρ

–
1
n

(
3 –

p + q
(p – q)q

)
ρ2

}
. (4.15)

From the Stokes formula, we get

0 ≥
∫

M
ρ2

{
Q – (n – 2)c – nH2 –

n – 2√
n(n – 1)

Hρ –
1
n

(
3 –

p + q
(p – q)q

)
ρ2

}
dv. (4.16)

In particular, if Q ≥ (n – 2)c + nH2 + n–2√
n(n–1) Hρ + 1

n (3 – p+q
(p–q)q ), from (4.16), we see that

ρ2 = 0 and M is totally umbilical, or

Q = (n – 2)c + nH2 +
n – 2√
n(n – 1)

Hρ +
1
n

(
3 –

p + q
(p – q)q

)
.

In the latter case, we see that the equalities in (4.15), (4.1) and (4.11) hold. Thus, we have

|∇h| = 0,
n+p–q∑
α=n+1

(
Hα

)2 = 0,
n+p∑

α=n+p–q+1

(
Hα

)2 = 0.

This implies that Hα = 0 for α = n + 1, . . . , n + p, and H = 0, that is, M is a compact maximal
spacelike submanifold with parallel second fundamental form, and the Ricci curvature
Ric(M) = (n – 2)c + 1

n (3 – p+q
(p–q)q ). This completes the proof of Theorem 1.3. �
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