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Abstract
M-eigenvalues of elasticity M-tensors play an important role in nonlinear elasticity
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1 Introduction
A tensor A = (aijkl) ∈ E4,n is called a fourth-order real partially symmetric tensor if

aijkl = ajikl = aijlk , i, j, l, k ∈ [n],

where [n] = {1, 2, . . . , n}. The tensor of elastic moduli for a linearly anisotropic elastic solid
is a fourth-order real partially symmetric tensor [1], and the components of such a tensor
are considered as the coefficients of the following optimization problem:

⎧
⎪⎪⎨

⎪⎪⎩

min f (x, y) = Axyxy =
∑

i,j,k,l∈[n]aijklxixjykyl,

s.t. xT x = 1, yT y = 1,

x, y ∈ R
n.

(1.1)

Problem (1.1) has applications in the ordinary ellipticity and strong ellipticity and non-
linear elastic materials analysis [2–28]. The strong ellipticity condition is stated as f (x, y) >
0 for all nonzero vectors x, y ∈ R

n, which guarantees the existence of solutions of basic
boundary-value problems of elastostatics and ensures an elastic material to satisfy some
mechanical properties [29]. In fact, the KKT condition of (1.1) can be regarded as the
following definition of M-eigenvalues.
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Definition 1.1 ([1]) Let A ∈ E4,n. If there are λ ∈ R and x, y ∈ R
n\{0} such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Axy2 = λx,

Ax2y = λy,

xT x = 1,

yT y = 1,

(1.2)

where (Axy2)i =
∑

j,k,l∈[n]aijklxjykyl , and (Ax2y)l =
∑

i,j,k∈[n]aijklxixjyk , then the scalar λ is
called an M-eigenvalue of A, and x, y are called the corresponding left and right M-
eigenvectors of A, respectively.

Furthermore, Han et al. revealed that the strong ellipticity condition holds if and only if
the smallest M-eigenvalue is positive [1]. Recently, Ding et al. [30] investigated a fourth-
order structured partially symmetric tensors named elasticity M-tensors, and some suffi-
cient conditions for the strong ellipticity were provided. Since the strong ellipticity condi-
tion and M-positive definiteness can be identified by the smallest M-eigenvalue, He et al.
[31] proposed some lower bounds for the minimum M-eigenvalue of elasticity M-tensors.

In this paper, we present several new bounds for the minimum M-eigenvalue of elasticity
M-tensors. We prove that the bounds are tighter than those proposed in [31]. Numerical
examples illustrate the efficiency of the obtained results. As applications, we give some
checkable sufficient conditions for the strong ellipticity and positive definiteness of elas-
ticity tensors.

2 Main results
For an elasticity tensor A ∈ E4,n, its M-spectral radius is denoted by

ρ(A) = max
{|λ| : λ is an M-eigenvalue of A

}
.

The identity tensor I = (eijkl) ∈ E4,n is defined by

eijkl =

⎧
⎨

⎩

0 if i = j, k = l,

1 otherwise.

Let αi = maxl∈[n]{aiill}, βl = maxi∈[n]{aiill}, and

ri(A) =
∑

j,k,l∈[n],k �=l

|aijkl|, γi =
∑

j∈[n],j �=i

max
l∈[n]

{|aijll|
}

,

ri
i(A) =

∑

k,l∈[n],k �=l

|aiikl|, Ri(A) = ri(A) + γi,

cl(A) =
∑

i,j,k∈[n],i�=j

|aijkl|, δl =
∑

k∈[n],k �=l

max
i∈[n]

{|aiikl|
}

,

cl
l(A) =

∑

i,j∈[n],i�=j

|aijll|, Cl(A) = cl(A) + δl.

To continue, we need the following definitions and technical results.
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Definition 2.1 ([30]) A tensor A ∈ E4,n is called an elasticity M-tensor if there exist a
nonnegative tensor B ∈ E4,n and a real number s ≥ ρ(B) such that A = sI –B, where ρ(B)
is the M-spectral radius of B. Furthermore, if s > ρ(B), then A is called a nonsingular
elasticity M-tensor.

Definition 2.2 ([32]) A tensor A = (ai1i2...im ) of order m and dimension n is called re-
ducible if there exists a nonempty proper index subset J ∈ {1, 2, . . . , n} ⊂ [n] such that

ai1i2...im = 0, ∀i1 ∈ J ,∀i2 . . . im ∈ [n]\J .

If A is not reducible, then we say that A is irreducible.

Theorem 2.1 ([31]) Let A = (aijkl) ∈ E4,n be an irreducible and nonnegative partially sym-
metric tensor, and let τ (A) be the minimal M-eigenvalue of A. Then τ (A) ≥ 0 is an M-
eigenvalue of A with positive eigenvectors. Moreover, there exist a nonnegative tensor B
and a real number c ≥ ρ(B) such that A = cI – B.

Theorem 2.2 ([31]) Let A = (aijkl) ∈ E4,n be an irreducible elasticity M-tensor. Then

τ (A) ≤ min
i,l∈[n]

{aiill}.

Theorem 2.3 ([31]) Let A = (aijkl) ∈ E4,n be an irreducible elasticity M-tensor. Then

τ (A) ≥ max
{

min
i∈[n]

αi – Ri(A), min
l∈[n]

βl – Cl(A)
}

.

Now we are in a position to propose some lower bounds for τ (A).

Theorem 2.4 Let A = (aijkl) ∈ E4,n be an irreducible elasticity M-tensor. Then the mini-
mum M-eigenvalue satisfies

τ (A) ≥ max
{

min
i,j∈[n],i�=j

{
η1(A)

}
, min

k,l∈[n],k �=l

{
η2(A)

}}
,

where η1(A) =
αi–ri

i (A)+αj–

1
2
i,j

2 , η2(A) =
βk –ck

k (A)+βl–Θ
1
2

k,l
2 , and


i,j =
(
αi – ri

i(A) – αj
)2 + 4

(
ri(A) – ri

i(A) + γi
)
Rj(A),

Θk,l =
(
βk – ck

k(A) – βl
)2 + 4

(
ck(A) – ck

k(A) + δk
)
Cl(A).

Proof By Theorem 2.1 suppose that x = {xi}n
i=1 > 0 ∈ R

n and y = {yl}n
l=1 > 0 ∈ R

n are the
corresponding left and right M-eigenvectors, respectively. Let xp ≥ xs ≥ maxi∈[n],i�=p,s{xi}.
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From the pth equation of Axy2 = τ (A)x in (1.2) we obtain

τ (A)xp =
∑

j,k,l∈[n]

apjklxjykyl

=
∑

k,l∈[n],k �=l

appklxpykyl +
∑

j,k,l∈[n],j �=p,k �=l

apjklxjykyl

+
∑

j,l∈[n],j �=p

apjllxjy2
l +

∑

l∈[n]

appllxpy2
l ,

that is,

∑

l∈[n]

appllxpy2
l – τ (A)xp

= –
∑

k,l∈[n],k �=l

appklxpykyl –
∑

j,k,l∈[n],j �=p,k �=l

apjklxjykyl –
∑

j,l∈[n],j �=p

apjllxjy2
l .

Let αp = minl∈[n]{appll}. It follows from Theorem 2.2 that

0 ≤ (
αp – τ (A)

)
xp ≤

(∑

l∈[n]

appllxpy2
l – τ (A)

)

xp

≤
∑

k,l∈[n],k �=l

|appkl|xp +
∑

j,k,l∈[n],j �=p,k �=l

|apjkl|xs +
∑

j,l∈[n],j �=p

|apjll|xs
∣
∣y2

l
∣
∣.

Note that

∑

j,l∈[n],j �=p

|apjll|xs
∣
∣y2

l
∣
∣ =

∑

j∈[n],j �=p

(∑

l∈[n]

|apjll|
∣
∣y2

l
∣
∣

)

xs

≤
∑

j∈[n],j �=p

max
l∈[n]

|apjll|
(∑

l∈[n]

∣
∣y2

l
∣
∣

)

xs

=
∑

j∈[n],j �=p

max
l∈[n]

{|apjll|
}

xs.

Furthermore,

(
αp – τ (A) – rp

p(A)
)
xp ≤ (

rp(A) – rp
p(A) + γp

)
xs. (2.1)

From the sth equation of Axy2 = τ (A)x in (1.2) we have

τ (A)xs =
∑

j,k,l∈[n]

asjklxjykyl

=
∑

j,k,l∈[n],k �=l

asjklxjykyl +
∑

j,l∈[n],j �=s

asjllxjy2
l +

∑

l∈[n]

asslly2
l xs.

Let αs = minl∈[n]{assll}. It follows from Theorem 2.2 that

(
αs – τ (A)

)
xs ≤ Rs(A)xp. (2.2)
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Multiplying (2.1) and (2.2), we have

(
αp – τ (A) – rp

p(A)
)(

αs – τ (A)
) ≤ (

rp(A) – rp
p(A) + γp

)
Rs(A),

which means that

τ (A) ≥ αp – rp
p(A) + αs – 


1
2
p,s

2
, (2.3)

where 
p,s = (αp – rp
p(A) – αs)2 + 4(rp(A) – rp

p(A) + γp)Rs(A).
On the other hand, let |yq| ≥ |yt| ≥ maxl∈[n],l �=q,t |yl|. From the qth equation of Ax2y =

τ (A)y in (1.2) it follows that

τ (A)yq =
∑

i,j,k∈[n]

aijkqxixjyk

=
∑

i,j∈[n],i�=j

aijqqxixjyq +
∑

i,j,k∈[n],i�=j,k �=q

aijkqxixjyk +
∑

i,k∈[n],k �=q

aiikqx2
i yk +

∑

i∈[n]

aiiqqyqx2
i .

Let βq = mini∈[n]{aiiqq}. It follows from Theorem 2.2 that

0 ≤ (
βq – τ (A)

)
yq ≤

(∑

i∈[n]

aiiqqyqx2
i – τ (A)

)

yq

= –
∑

i,j∈[n],i�=j

aijqqxixjyq –
∑

i,j,k∈[n],i�=j,k �=q

aijkqxixjyk –
∑

i,k∈[n],k �=q

aiikqx2
i yk

≤
∑

i,j∈[n],i�=j

|aijqq|yq +
∑

i,j,k∈[n],i�=j,k �=q

|aijkq|yt +
∑

i,k∈[n],k �=q

|aiikq|yt ,

that is,

(
βq – τ (A) – cq

q(A)
)
yq ≤ (

cq(A) – cq
q(A) + δq

)
yt . (2.4)

From the tth equation of Ax2y = τ (A)y in (1.2) we obtain

τ (A)yt =
∑

i,j,k∈[n]

aijktxixjyk

=
∑

i,j,k∈[n],i�=j

aijktxixjyk +
∑

i,k∈[n],k �=t

aiiktx2
i yk +

∑

i∈[n]

aiittx2
i yt .

Let βt = mini∈[n]{aiitt}. This yields

(
βt – τ (A)

)
yt ≤ Ct(A)yq. (2.5)

Multiplying (2.4) and (2.5), we have

(
βq – τ (A) – cq

q(A)
)(

βt – τ (A)
) ≤ (

cq(A) – cq
q(A) + δq

)
Ct(A), (2.6)
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which means that

τ (A) ≥ βq – cq
q(A) + βt – Θ

1
2

q,t

2
, (2.7)

where Θq,t = (βq –cp
p(A)–βt)2 +4(cp(A)–cp

p(A)+δq)Ct(A). Then the conclusion follows.�

Next, we compare the bound in Theorem 2.3 with that in Theorem 2.4 and obtain the
following conclusion.

Theorem 2.5 Let A = (aijkl) ∈ E4,n be an irreducible elasticity M-tensor. Then

τ (A) ≥ max
{

min
i,j∈[n],i�=j

{
η1(A)

}
, min

k,l∈[n],k �=l

{
η2(A)

}}

≥ max
{

min
i∈[n]

{
αi – Ri(A)

}
, min

l∈[n]

{
βl – Cl(A)

}}
.

Proof We first show that mini,j∈[n],i�=j{η1(A)} ≥ mini∈[n]{αi –Ri(A)} and divide the argument
into two cases.

Case 1. For any i, j ∈ [n], i �= j, if αi – Ri(A) ≤ αj – Rj(A), then

αj – αi + Ri(A) ≥ Rj(A) ≥ 0. (2.8)

From (2.8) we deduce

(
αi – ri

i(A) – αj
)2 + 4

(
ri(A) – ri

i(A) + γi
)
Rj(A)

≤ (
αi – ri

i(A) – αj
)2 + 4

(
ri(A) – ri

i(A) + γi
)(

αj – αi + Ri(A)
)

=
(
αi – ri

i(A) – αj
)2 + 4

(
Ri(A) – ri

i(A)
)(

αj – αi + Ri(A)
)

=
(
αi – ri

i(A) – αj
)2 + 4

(
Ri(A) – ri

i(A)
)(

αj – αi + ri
i(A) – ri

i(A) + Ri(A)
)

=
(
αi – ri

i(A) – αj
)2 + 4

(
Ri(A) – ri

i(A)
)(

αj – αi + ri
i(A)

)
+ 4

(
Ri(A) – ri

i(A)
)2

=
(
αj – αi – ri

i(A) + 2Ri(A)
)2.

Thus

1
2

(
αi – ri

i(A) + αj –
√

(
αi – ri

i(A) – αj
)2 + 4

(
ri(A) – ri

i(A) + γi
)
Rj(A)

)

≥ 1
2
(
αi – ri

i(A) + αj –
(
αj – αi – ri

i(A) + 2Ri(A)
))

= αi – Ri(A),

which means that

1
2

min
i,j∈[n],i�=j

{
αi – ri

i(A) + αj –
√

(
αi – ri

i(A) – αj
)2 + 4

(
ri(A) – ri

i(A) + γi
)
Rj(A)

}

≥ min
i∈[n]

{
αi – Ri(A)

}
.
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Case 2. For any i, j ∈ [n], i �= j, if αi – Ri(A) ≥ αj – Rj(A), then

αi – ri(A) – αj + Rj(A) ≥ γi. (2.9)

From (2.9) we have

(
αi – ri

i(A) – αj
)2 + 4

(
ri(A) – ri

i(A) + γi
)
Rj(A)

≤ (
αi – ri

i(A) – αj
)2 + 4

(
ri(A) – ri

i(A) + αi – ri(A) – αj + Rj(A)
)
Rj(A)

=
(
αi – ri

i(A) – αj
)2 + 4

(
αi – ri

i(A) – αj + Rj(A)
)
Rj(A)

=
(
αi – ri

i(A) – αj + 2Rj(A)
)2.

Then

1
2

(
αi – ri

i(A) + αj –
√

(
αi – ri

i(A) – αj
)2 + 4

(
ri(A) – ri

i(A) + γi
)
Rj(A)

)

≥ 1
2

(αi – ri
i(A) + αj –

(
αi – ri

i(A) – αj + 2Rj(A)
)

= αj – Rj(A),

which implies

1
2

min
i,j∈[n],i�=j

{
αi – ri

i(A) + αj –
√

(
αi – ri

i(A) – αj
)2 + 4

(
ri(A) – ri

i(A) + γi
)
Rj(A)

}

≥ min
j∈[n]

{
αj – Rj(A)

}
.

Therefore we obtain mini,j∈[n],i�=j{η1(A)} ≥ mini∈[n]{αi – Ri(A)}.
Similarly, we have mini,j∈[n],i�=j{η2(A)} ≥ minl∈[n]{βl – Cl(A)}. Thus we deduce

max
{

min
i,j∈[n],i�=j

{
η1(A)

}
, min

k,l∈[n],k �=l

{
η2(A)

}} ≥ max
{

min
i∈[n]

{
αi – Ri(A)

}
, min

l∈[n]

{
βl – Cl(A)

}}
,

and the desired result follows. �

In what follows, we propose another lower bound for τ (A).

Theorem 2.6 Let A = (aijkl) ∈ E4,n be an irreducible elasticity M-tensor. Then

τ (A) ≥ max
{

min
i,j∈[n],i�=j

{
θ1(A),αi – ri

i(A),αj – rj
j(A)

}
,

min
k,l∈[n],k �=l

{
θ2(A),βk – ck

k(A),βl – cl
l(A)

}}
,

where

θ1(A) =
(αi – ri

i(A)) + (αj – rj
j(A)) – Ω

1
2

i,j

2
,

θ2(A) =
(βk – ck

k(A)) + (βl – cl
l(A)) – Φ

1
2

k,l

2
,
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Ωi,j =
(
αi – ri

i(A) –
(
αj – rj

j(A)
))2 + 4

(
Ri(A) – ri

i(A)
)(

Rj(A) – rj
j(A)

)
,

and

Φk,l =
(
βk – ck

k(A) –
(
βl – cl

l(A)
))2 + 4

(
Ck(A) – ck

k(A)
)(

Cl(A) – cl
l(A)

)
.

Proof Let τ (A) be the minimal M-eigenvalue of tensor A. From Theorem 2.1 we suppose
that x = {xi}n

i=1 > 0 ∈ R
n and y = {yl}n

l=1 > 0 ∈ R
n are the corresponding left and right M-

eigenvectors, respectively. Let xp ≥ xs ≥ maxi∈[n],i�=p,s{xi}. From the sth equation of Axy2 =
τ (A)x in (1.2) we have

τ (A)xs =
∑

j,k,l∈[n]

asjklxjykyl

=
∑

k,l∈[n],k �=l

assklxsykyl +
∑

j,k,l∈[n],j �=s,k �=l

asjklxjykyl +
∑

j,l∈[n],j �=s

asjllxjy2
l +

∑

l∈[n]

asslly2
l xs.

Let αs = minl∈[n]{assll}. It follows from Theorem 2.2 that

0 ≤ (
αs – τ (A)

)
xs ≤

(∑

l∈[n]

assllxsy2
l – τ (A)

)

xp

≤
∑

k,l∈[n],k �=l

|asskl|xs +
∑

j,k,l∈[n],j �=s,k �=l

|apjkl|xp +
∑

j,l∈[n],j �=s

|asjll|xp
∣
∣y2

l
∣
∣.

Moreover,

(
αs – τ (A) – rs

s(A)
)
xs ≤ (

rs(A) – rs
s(A) + γs

)
xp. (2.10)

When αs – rs
s(A) > τ (A) or αp – rp

p(A) > τ (A), multiplying (2.1) and (2.10), we have

(
αp –τ (A)–rp

p(A)
)(

αs –τ (A)–rs
s(A)

) ≤ (
rp(A)–rp

p(A)+γp
)(

rs(A)–rs
s(A)+γs

)
, (2.11)

that is,

τ (A) ≥ (αp – rp
p(A)) + (αs – rs

s(A)) – Ω
1
2

p,s

2
, (2.12)

where Ωp,s = (αp – rp
p(A) – (αs – rs

s(A)))2 + 4(Rp(A) – rp
p(A))(Rs(A) – rs

s(A)).
On the other hand, let |yq| ≥ |yt| ≥ maxl∈[n],l �=q,t |yl|. From the tth equation of Ax2y =

τ (A)y in (1.2) we obtain

τ (A)yt =
∑

j,k,l∈[n]

aijktxixjyk

=
∑

i,j∈[n],i�=j

aijttxixjyt +
∑

i,j,k∈[n],i�=j,k �=t

aijktxixjyk +
∑

i,k∈[n],k �=t

aiiktx2
i yk +

∑

i∈[n]

aiittx2
i yt .
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Let βt = mini∈[n]{aiitt}. It follows from Theorem 2.2 that

0 ≤ (
βt – τ (A)

)
yt ≤

(∑

i∈[n]

aiittytx2
i – τ (A)

)

yt

= –
∑

i,j∈[n],i�=j

aijttxixjyt –
∑

i,j,k∈[n],i�=j,k �=t

aijktxixjyk –
∑

i,k∈[n],k �=t

aiiktx2
i yk

≤
∑

i,j∈[n],i�=j

|aijtt|yt +
∑

i,j,k∈[n],i�=j,k �=t

|aijkt|yq +
∑

i,k∈[n],k �=t

|aiikt|x2
i yq,

that is,

(
βt – τ (A) – ct

t(A)
)
yt ≤ (

ct(A) – ct
t(A) + δt

)
yq. (2.13)

When βt – ct
t(A) > τ (A) or βq – cq

q(A) > τ (A), multiplying (2.6) and (2.13), we have

(
βq –τ (A)–cq

q(A)
)(

βt –τ (A)–ct
t(A)

) ≤ (
cq(A)–cq

q(A)+γq
)(

ct(A)–ct
t(A)+γt

)
, (2.14)

which means that

τ (A) ≥ (βq – cq
q(A)) + (βt – ct

t(A)) – Φ
1
2

q,t

2
, (2.15)

where Φq,t = (βq – cq
q(A) – (βt – ct

t(A)))2 + 4(Cq(A) – cq
q(A))(Ct(A) – ct

t(A)). �

Next, we compare the bound in Theorem 2.3 with that in Theorem 2.6 and obtain the
following result.

Theorem 2.7 Let A = (aijkl) ∈ E4,n be an irreducible elasticity M-tensor. Then

τ (A) ≥ max
{

min
i,j∈[n],i�=j

{
θ1(A),αi – ri

i(A),αj – rj
j(A)

}
,

min
k,l∈[n],k �=l

{
θ2(A),βk – ck

k(A),βl – cl
l(A)

}}

≥ max
{

min
i∈[n]

{
αi – Ri(A)

}
, min

l∈[n]

{
βl – Cl(A)

}}
.

Proof We will show mini,j∈[n],i�=j{θ1(A),αi – ri
i(A),αj – rj

j(A)} ≥ mini∈[n]{αi – Ri(A)} and di-
vide the argument into two cases.

Case 1. For any i, j ∈ [n], i �= j, if αi – Ri(A) ≤ αj – Rj(A), then from (2.8) we have

(
αi – ri

i(A) –
(
αj – rj

j(A)
))2 + 4

(
Ri(A) – ri

i(A)
)(

Rj(A) – rj
j(A)

)

≤ (
αi – ri

i(A) –
(
αj – rj

j(A)
))2

+ 4
(
Ri(A) – ri

i(A)
)(

αj – αi + ri
i(A) – rj

j(A) + Ri(A) – ri
i(A)

)

=
(
αj – αi + ri

i(A) – rj
j(A) + 2Ri(A) – 2ri

i(A)
)2.
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Since

αj – αi + ri
i(A) – rj

j(A) + 2Ri(A) – 2ri
i(A)

= αj – αi + Ri(A) – Rj(A) + Rj(A) – rj
j(A) + Ri(A) – ri

i(A) ≥ 0,

we have

θ1(A) =
(αi – ri

i(A)) + (αj – rj
j(A)) – Ω

1
2

i,j

2

≥ 1
2
(
αi – ri

i(A)
)

+
(
αj – rj

j(A) –
(
αj – αi + ri

i(A) – rj
j(A) + 2Ri(A) – 2ri

i(A)
))

= αi – Ri(A),

which means that

min
i,j∈[n],i�=j

{
θ1(A),αi – ri

i(A),αj – rj
j(A)

} ≥ min
i∈[n]

{
αi – Ri(A)

}
.

Case 2. For any i, j ∈ [n], i �= j, if αi – Ri(A) ≥ αj – Rj(A), then

αi – αj + Rj(A) ≥ Ri(A). (2.16)

From (2.16) we have

(
αi – ri

i(A) –
(
αj – rj

j(A)
))2 + 4

(
Ri(A) – ri

i(A)
)(

Rj(A) – rj
j(A)

)

≤ (
αi – ri

i(A) –
(
αj – rj

j(A)
))2 + 4

(
αi – αj + Rj(A) – ri

i(A)
)(

Rj(A) – rj
j(A)

)

=
(
αi – ri

i(A) –
(
αj – rj

j(A)
))2

+ 4
(
αi – αj + rj

j(A) – ri
i(A) + Rj(A) – rj

j(A)
)(

Rj(A) – rj
j(A)

)

=
(
αi – ri

i(A) –
(
αj – rj

j(A)
)

+ 2Rj(A) – 2rj
j(A)

)2.

Since

αi – ri
i(A) –

(
αj – rj

j(A)
)

+ 2Rj(A) – 2rj
j(A)

= αi – αj + Rj(A) – Ri(A) + Ri(A) – ri
i(A) + Rj(A) – rj

j(A) ≥ 0,

we have

θ1(A) =
(αi – ri

i(A)) + (αj – rj
j(A)) – Ω

1
2

i,j

2

≥ 1
2
(
αi – ri

i(A)
)

+
(
αj – rj

j(A) –
(
αi – ri

i(A) –
(
αj – rj

j(A)
)

+ 2Rj(A) – 2rj
j(A)

))

= αj – Rj(A),

which means that

min
i,j∈[n],i�=j

{
θ1(A),αi – ri

i(A),αj – rj
j(A)

} ≥ min
i∈[n]

{
αi – Ri(A)

}
.
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Similarly, we have mink,l∈[n],k �=l{θ2(A),βk – ck
k(A),βl – cl

l(A)} ≥ minl∈[n]{βl – Cl(A)}. Thus
we deduce

τ (A) ≥ max
{

min
i,j∈[n],i�=j

{
θ1(A),αi – ri

i(A),αj – rj
j(A)

}
,

min
k,l∈[n],k �=l

{
θ2(A),βk – ck

k(A),βl – cl
l(A)

}}

≥ max
{

min
i∈[n]

{
αi – Ri(A)

}
, min

l∈[n]

{
βl – Cl(A)

}}
,

and the desired result follows. �

The following example shows the superiority of the conclusions obtained in Theorems
2.4 and 2.6.

Example 2.1 ([30]) Let A = (aijkl) ∈ E4,2 be an elasticity M-tensor defined by

aijkl =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a1111 = 13, a2222 = 12, a1122 = 2, a2211 = 2,

a1112 = a1121 = –2, a2212 = a2221 = –1,

a2111 = a1211 = –2, a1222 = a2122 = –1,

a1212 = a2112 = a1221 = a2121 = –4.

From the matrices

A(·, f1) =

[
a1111 a1211

a2111 a2211

]

=

[
13 –2
–2 2

]

, A(·, f2) =

[
a1122 a1222

a2122 a2222

]

=

[
2 –1

–4 12

]

,

A(g1, ·) =

[
a1111 a1112

a1121 a1122

]

=

[
13 –2
–2 2

]

, A(g2, ·, ) =

[
a2211 a2212

a2221 a2222

]

=

[
2 –1

–1 12

]

,

we know that A is irreducible. By simple computation, A has six M-eigenvalues: 13.4163,
12.1118, 11.2036, 6.1778, 0.2442, and 0.1964. The minimal M-eigenvalue of A is 0.1964.
Furthermore, we obtain

α1 = 13, α2 = 12, β1 = 13, β2 = 12,

r1(A) = 12, r2(A) = 10, c1(A) = 12, c2(A) = 10,

γ1 = 2, γ2 = 2, δ1 = 2, δ2 = 2,

r1
1(A) = 4, r2

2(A) = 2, c1
1(A) = 4, c2

2(A) = 2,

R1(A) = 14, R2(A) = 12, C1(A) = 14, C2(A) = 12.

From Theorems 3.1 and 3.2 in [31] we have τ (A) ≥ –1 and τ (A) ≥ –0.8655, respectively.
By Theorem 2.4 we have τ (A) ≥ –0.5567, and by Theorem 2.6 we have τ (A) ≥ –0.5125.
Their comparison is drawn in Fig. 1, which reveals that our bounds are tighter than those
of [31].
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Figure 1 Comparison of the bound estimations of
Theorems 3.1 and 3.2 in [31], Theorem 2.4, and
Theorem 2.6

3 Strong ellipticity and positive definiteness
In this section, based on the results in Theorems 2.4 and 2.6, we present some sufficient
conditions for the strong ellipticity and positive definiteness.

Theorem 3.1 Let A = (aijkl) ∈ E4,n be an irreducible elasticity M-tensor. If

max
{

min
i,j∈[n],i�=j

{
η1(A)

}
, min

k,l∈[n],k �=l

{
η2(A)

}}
> 0,

then A is positive definite, and the strong ellipticity condition holds.

Proof From Theorem 2.4 we have

τ (A) ≥ max
{

min
i,j∈[n],i�=j

{
η1(A)

}
, min

k,l∈[n],k �=l

{
η2(A)

}}
> 0.

Hence A is positive definite, and the strong ellipticity condition holds. �

Theorem 3.2 Let A = (aijkl) ∈ E4,n be an irreducible elasticity M-tensor. If

max
{

min
i,j∈[n],i�=j

{
θ1(A),αi – ri

i(A),αj – rj
j(A)

}
, min

k,l∈[n],k �=l

{
θ2(A),βk – ck

k(A),βl – cl
l(A)

}}
> 0,

then A is positive definite, and the strong ellipticity condition holds.

Proof From Theorem 2.6 we have

τ (A) ≥ max
{

min
i,j∈[n],i�=j

{
θ1(A),αi – ri

i(A),αj – rj
j(A)

}
,

min
k,l∈[n],k �=l

{
θ2(A),βk – ck

k(A),βl – cl
l(A)

}}

> 0.

Hence A is positive definite, and the strong ellipticity condition holds. �

The following example reveals that Theorems 3.1 and 3.2 can identify the positive defi-
niteness of elasticity M-tensors.
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Example 3.1 Let A = (aijkl) ∈ E4,2 be an elasticity M-tensor such that

aijkl =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a1111 = 7, a2222 = 8, a1122 = 7, a2211 = 8,

a1112 = a1121 = –1, a2212 = a2221 = –1,

a2111 = a1211 = –1, a1222 = a2122 = –1,

a1212 = a2112 = a1221 = a2121 = –0.5.

By a direct computation we have

A(·, f1) =

[
7 –1

–1 8

]

, A(·, f2) =

[
7 –1

–1 8

]

,

A(g1, ·) =

[
7 –1

–1 7

]

, A(g2, ·, ) =

[
8 –1

–1 8

]

.

Then A is irreducible. Furthermore, by simple computation we obtain

α1 = 7, α2 = 8, β1 = 7, β2 = 7,

r1(A) = 3, r2(A) = 3, c1(A) = 3, c2(A) = 3,

γ1 = 1, γ2 = 1, δ1 = 1, δ2 = 1,

r1
1(A) = 2, r2

2(A) = 2, c1
1(A) = 2, c2

2(A) = 2,

R1(A) = 4, R2(A) = 4, C1(A) = 4, C2(A) = 4.

From Theorem 3.1 we have

τ (A) ≥ max
{

min
i,j∈[n],i�=j

{
η1(A)

}
, min

k,l∈[n],k �=l

{
η2(A)

}}
= 3.2984 > 0.

From Theorem 3.2 we have

τ (A) ≥ max
{

min
i,j∈[n],i�=j

{
θ1(A),αi – ri

i(A),αj – rj
j(A)

}
,

min
k,l∈[n],k �=l

{
θ2(A),βk – ck

k(A),βl – cl
l(A)

}}

= 3.4384 > 0.

Thus from Theorems 3.1 and 3.2 we obtain that A is positive definite.

4 Conclusion
In this paper, we present some bounds for the minimum M-eigenvalue of elasticity M-
tensors, which are tighter than some existing results. We propose numerical examples that
illustrate the efficiency of the obtained results. As applications, we provide some checkable
sufficient conditions for the strong ellipticity and positive definiteness.
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