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1 Introduction and preliminaries

The Chebyshev inequality, which has a well-known place in inequality theory, generates
limit values for synchronous functions and helps to produce new variance inequalities of
many different types. The basis for this inequality lies in the following Chebyshev func-
tional (see [3]):

b b b
16.9- - [ swewas- (1 [rwa) (2 [ewar),

where f and g are two integrable functions that are synchronous on [a, b], that is,

(f®) -f»)(gx) —g(») =0

for x,y € [a, b]. The Chebyshev inequality states that T'(f,g) > 0.
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Many studies have been done on the Chebyshev inequality and its generalizations, iter-
ations, extensions, and modifications for various classes of functions. They have found a
wide usage in numerical analysis, functional analysis, and statistics; for these results, we
refer the reader to [3, 4, 17].

Another aesthetic and useful inequality is known the Pélya—Szeg6 inequality, which con-
stitutes the main motivation point in our study. It is expressed as follows (see [19]):

fabfz(x)dxfabgz(x)dx - l(\/@Jr\/E)z
([P fx)gx)dn? ~ 4\V mn  VMN) -

The following inequality for bounded and positive functions was proved by Dragomir

and Diamond [10] as a good example of the use of Pélya—Szego inequality in achieving a
Griss-type inequality.

Theorem 1 Letf,g:[a,b] — R, be integrable functions such that
O<m<f(x) <M<oo

and
O<n<gx)<N<oo

for x € [a,b]. Then we have

. I1M-m(N-n){ 1 [* 1 [P
T )] < 3 e (b_ﬂ / f(x)dx>(m / g(x)dx) @

The constant i is the best possible in (2) in the sense it cannot be replaced by a smaller one.

Since one of the main motivation points of fractional analysis is obtaining more general
and useful integral operators, the generalized fractional integral operator is a good tool to
generalize many previous studies and results (see [6-9, 14, 18, 20]). Similarly, in inequality
theory, researchers use such general operators to generalize and extend their inequalities
(see[1,11,13,16,22-28, 30]). Now we will remind some important concepts, which guide
the researchers working in fractional analysis.

Definition 1 (Diaz and Parigun [5]) The k-gamma function I, a generalization of the
classical gamma function, is defined as

n!k”(nk)% -1

, k>0.
(x)n,k

Ti(x) = lim

K
L

It is shown that Mellin transform of the exponential function e ¥ is the k-gamma function

given by

o0 tk
Ii(x) = / e F L dt.
0

Obviously, Ik (x + k) = xIk(x), I"(x) = limg_,1 T (x), and Ty (x) = k%_ll"(%).
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Definition 2 (See [20]) We define

oo

ok o (m) "
4 = _— ,)\, O; R ]
Foi ) ; ki (okm + A)x (p,2> 0l < R)

where the coefficients o (m) for m € Ny = NU {0} form a bounded sequence of positive real
numbers, and R is the set of real numbers.

Definition 3 (See [29]) Let k >0, and let g : [a,b] — R be an increasing function having
a continuous derivative g’(x) on (a,b). The left- and right-side generalized k-fractional
integrals of a function f with respect to g on [a, b] are respectively defined as follows:

Tt [ ot g0 Yo wsa G
and
b /
Tyl @ )‘/ ﬁf;’.ﬂw(gm—g(x))”lﬂt)dn x<b, (3b)
_gx k

where A, p>0and w € R.

Remark 1 (See [29]) The significant particular cases of the integral operators given in (3a)
and (3b) are as follows:
1. For k =1, the operator in (3a) leads to the generalized fractional integral of f with

respect to g on [a, b] given as

* g

o gy rele@ —g0) YO, x>a.

pkm—mf( )_

2. For g(t) = t, the operator in (3a) leads to the generalized k-fractional integral of f
given as

T o) = / (-0 o — 0O dt, x> a.

3. For g(¢) = In(¢t), the operator in (3a) leads to the generalized Hadamard k-fractional

integral of f given as

x A p
ok X\ k ok X dt
H v (%) = /a <ln ;) Foi [w (ln ;) }/(t) 4 x>a

4. Forg(t) = g, s € R — {1}, the operator in (3a) leads to the generalized
(k, s)-fractional integral of f given as

ST s ®)
e s Lt ) o
_ +s j o w 1 ) xX>dad.
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Remark 2 Similarly, all these particular cases can be generalized for the operator given in

(3b).

Remark 3 For k =1 and g(¢) = ¢ the operators defined in (3a) and (3b) take the generalized
fractional integral operators defined by Agarwal (see [3]) and Raina et al. (see [6]) given as

T pravil ®) = /x(x -t (o - 0 f(t)dt,  x>a, (4)

b
T i ) = / (t—x) 7 (ot -x)|f(0)dt, x<b. (5)

Remark 4 For different choices of g, we can obtain other new generalized fractional inte-
grals operators.

Remark 5 For w =0, A =, and 0(0) = 1 in Definition 3, we get the generalized fractional
operators defined by Akkurt et al. [2].

Remark 6 For w =0, A = «, and ¢(0) = 1 in Definition 3, we have the following particular
cases:
1. for k =1, the fractional integrals of a function f with respect to a function g (see
[14]);

2. for g(t) = ¢, the k-fractional integrals (see [15]);

3. for g(¢) =1In(¢) and k = 1, the Hadamard fractional integrals (see [14]);

4. for g(t) = %, s € R — {-1}, the (k, s)-fractional integral operators (see [21]);

5. forg(?) = i%l, s € R —{-1},and k = 1, the Katugampola fractional integral operators
(see [12]).

In the main section of this paper, using the generalized fractional integral operator men-
tioned in the Introduction, we obtain new and motivating Pélya—Szeg6- and Chebyshev-
type inequalities. We emphasize that the findings obtained by including the particular
cases of the results are general.

2 Main results
We start with certain Pélya—Szego-type integral inequalities for positive integral functions
involving generalized fractional integral operator.

Theorem 2 Assume that
o f and g are two positive integrable functions on [0, 00);
e h:la,bl > R is an increasing positive function with continuous derivative on (a, b);
o there exist four positive integrable functions v1, v, w1, and wy such that

0 <v1(2) <f (&) <wald), 0<wi(t) <g(t) <wa(t) (te[0,x],x>0), (6a)

0<vi(t) <f(t) < na(2), 0<wi(t) <g(t) <wa(®) (¢€[0,x],x>0). (6b)
Then we have the following inequality for generalized fractional integral operators:

o J,h
jZA,o+;w {w1 W2f2}(x)«75,)h0+;w{vl V2g2}(x)

(T 11 + vaws)fg} ()2

< i )
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Proof From (6a) and (6b), for ¢ € [0,x], x > 0, we have

n(t) f(t))

(wlm ©)>° ®)
and

f@) v

((t) wZ(w)ZO‘ ®)

By multiplying (8) and (9) we get

(w) _@)(@_ vl(t)> o
w0 \e®  wa)) =

By the last inequality we can write

(M @Ow1(2) + va(E)wa (1)) (£)g(2)

= wiOwa () () + i (Ova(0)g* (7). (10)
Multiplying both sides of (10) by

H(t) ok
(h(x) — h(£))' %

and integrating the resulting inequality with respect to ¢ over (0,x), we get
j;ik,f)h*;w{(vlwl + vawn)fg}(x) > \7 AO* {wiwaf?} () + \7 AO* {nvag*} (), (11)

and by applying the AM-GM inequality a + b > 2+/ab, a, b € R*, we have

Jk,h Jkh o, k,h
Toh A iw + vaw)fe) @) 2 2/ 250 (wwaf2) (@) x T2, vivag?} @),

which implies that

1
j/fkkopi {wiwaf?}(x) x .7“,\0+ {ning?} ) < Z(jp“ﬁ {(viwr + vzwzyg}(x))z.
So, we get the desired result. O
Corollary 1 Ifvy =m, vy =M, wy = n, and wy = N, then we have

T, 'kk{)li (nNF) (%) T’ "kkoli (mMg?)(x) 1

(T (mn + MNR) )2 ~ 4

Theorem 3 Let
« fand g be two positive integrable functions on [0, 00);
o h:la,b] = R be an increasing positive function with a continuous derivative on (a, b);
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« there exist four positive integrable functions vy, vy, wi, and wy such that condition (6a)
and (6b) is satisfied.

Then we have the following inequality for generalized fractional integral operators:

j;fl’f&;w{v1vz}(x)j;i];’f(’ﬁ;w{wlwz}(x) X jﬁ)ﬁ%Jr w{fz}( )jaA];lZ)+ {g2}(X)
1
< (T NI, w18) (1)

F TR Y@ TSR, wagh ) (12)

Proof From conditions (6a) and (6b) we get

(w(t)_@>>
wi§)  g®) "

and

(@ 0 ) o
a®  w®) =

which leads to

( Vl(t) va(2) >f(t) fz(t) v1()va(2) (13)
wa (&) Wl(f) g&) ~ g%&) W1(‘§)W2(§)‘
Multiplying both sides of (13) by w1 (&)w,(£)g?(£), we have
vi(O)f (Ow1(5)g(§) + va(e)f () w2(§)g(§)
> w1(E)wa (&) (1) + vi(E)va ()G (§). (14)

Multiplying both sides of (10) by

h/
(h(x) 22))1—1_1 Tyiiorinl @ (h) = (€)"]
x) — %

and integrating the resulting inequality with respect to ¢ and & over (0,x)2, we get

TN NOT o)+ T VO T 0281

:’A/(llfé)+ w{fz}( )ng];}(l)+ {W1W2}(x) + jo-)\kl;(lﬁ {VIVZ}(x)jU)\kZ}(Iy {g2}(x)'
Applying the AM-GM inequality, we obtain

TS YDT Q)@ + T YT (w22} @)

> 2\/ T L@ T TN wiwa}(x) x TT viva) 0 T g2} ),

which leads to the desired inequality (12). The proof is completed. d
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Corollary 2 Ifv; =m, vy = M, wy = n, and wp = N, then we have

okh 2 akh 2
v VNI o )(x) /mn | M.
Cl C2 AIO mf plgO ( >
)»(x) )L(x) ((jﬂkh wf)(x)(jakh

pr1,0%; p,lz,O*

where

>

A

Coy () = () ¥ Fo£ L (0(h()"),

]'—Z 2+1( ( (x))p)'

~3

Ci, (%) = (h(x))

Theorem 4 Let
« fand g be two positive integrable functions on [0, 00);
o h:la,b] = R be an increasing positive function with a continuous derivative on (a, b);
« there exist four positive integrable functions v1, vy, w1, and wy such that condition (6a)
and (6b) is satisfied.

Then we have the following inequality for generalized fractional integrals:

O' (o U v 0, w:

Tl 0T 0 (€@ = T { s }< )T {_V{g }m (15)
Proof Using condition (6a) and (6b), we get

< 2

g0 (16)
Multiplying both sides of (10) by

h/
Ot Lol - )

(h(x) - h()'

and integrating the resulting inequality with respect to ¢ over (0, x), we obtain

[ O g ol - o) e de
0 (h(x) - k()%

X h/
< [ gt e ) ) 2D st
() —h(o)'

which leads to
Fokh Fokh Vofg
Toiss 0+w{fz} T o0t {_w }(x). (17)
1
Similarly, we can write

wa(§)
(E)f(%‘)g(é)

2
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By a similar argument we have
X h/
/ ﬁjpﬁ% [wo(h(x) - h(&))" %) de
h(x

x h/
=[O ot ) e a,
0 (h(x) - h(£)) 7

which implies

(2 (2 w
jﬂ:ﬁ%*;w {gz}(x) = jﬂ:ﬁ%*:”{ % }(x). a9
Multiplying (17) and (18), we get (15). The proof is completed. d

Corollary 3 Ifvy =m, vy =M, wy = n, and wy = N, then we have

Tyl o VT8V _ MN
(TS ST SO )2~ mn

Theorem 5 Let
« f and g be two positive integrable functions on [0, 00);
e h:la,b] > R be an increasing positive function with a continuous derivative on (a, b);
« there exist four positive integrable functions vy, v, w1, and wy such that condition (6a)
and (6b) is satisfied.
Then we have the following inequality generalized fractional integral operators:

|G (T 0r,f0) ) + Coy ()T, f8) ()
= (Tl VTS 5008) ) = (T35 00 ) (T 0 8) )]

12
< AL, v, v2) (&) + Ao (f,v1,v2) (%)
112

x |A1(g, wi, w2)(x) + Aa(g, w1, wa)(x)| 7, (19)
where
(T v+ W)} ()2 70 70
Arli 1, w)0) = Gy )22 JE’% ot~ et (T35 )
and
(Tl 0 + W) ()2 7 77
At v, w)() = Gy, (1) —22 »7(:53? T — (TS ) @) (T 1) ().

Proof Let f and g be two positive integrable functions on [0, 00). For £,§ € (0,%) with x > 0,
we define

H(t,€) = (f() - £(§)) (g(®) - g(6)),
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that is,

H(t,§) =f(0)g(t) +£(5)g(8) —f(1)g(§) —f(£)g(®). (20)
Multiplying both sides of (20) by

H(t)

h/
e ©) o [w(h) - )]
(h@) - ()"~

]—"’"[ o(h@x) - h®)] x —————F
(h(x) - h(£))" %

Pir1

and integrating the resulting inequality with respect to ¢ and & over (0,x)?, we get

X h/
[ [k - o)
0 (h(x) - h(e)F

4G)
(h(x) - h(§))~ *
= Clz(x)( :xkl}fﬁ afg) + G, (% )( :Akz}:r mfg)
— (T )T o) @) = (T ) (T 08) ().

—Foi [o(hx) - h©)) H(t,§) de dg

P2

Applying the Cauchy—Schwarz inequality, we can write

Foiilo(n@) - n(o)"]

0 (h(x) - h(t))l'_
()
(h(x) — h(E)' 7

h/
=\ [ et o)
0 (h(x) - h(H)* T

o

(h(x) — (&)~
h/

/ fo () — 2 Fo (k) - )]

(h(x) - (D)~ 7

h
ﬁf%[ w(h(x) - h(g))"|f*(¢) dt d
X

H(t) ok p
) Foo h(x) — h(t)
[ [ et s

=Tk [w(h@) - b)) JH (2, ) de d

A2

Fok [o(h(x) - h(§)) (¢ dt de

()
o

U/ h/(t MO Lo - o))

h
#}_gﬁ[ (h(x) - h(§))"|g*(t) dt d&
(hx) - h(é)) Tr

//0 o~ h(t))l—* p, [w(h(x)—h(t))P]
x

1/2
—F7E (k) - h(©)) O €) e dg]
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()
(h(x) - h(§)"

TZ
_ h o,k _ 14
[ [ Tl o)'

— h(¢) )1‘*

Fof [o(h(x) - h(£)) 1g*(E) dt de

n(§)

1/2
(h(x) — ())& Friale(ht) - )" ]g(t)g(é)dtdg} ,
x) —

As a consequence,

()
0 (h(x) - h(H)'"
i (E)
(h(x) - h(&))~ %
<[C,)( ;’A’;lz)+mf)(x)+C,\l(x)( ;’lefﬁafz(x))(x)
(T @)@ (T )]
X [Co@) (T 2 @) + Coy () (TE 820 ()

— 2T 8 @) (T e@)] .

fg;fl [o(h(x) - h(£))"]

Fof [o(h(x) - h(€)) 1H (&) dt dg

Applying Lemma 2 with w;(£) = wy(£) = g(£) = 1, we get

_ T + v )

cr Jk,h (fZ)
}\( 0+ i
p L 4\70;\](1;& (v1v)(x)

This implies that

(Tl + )N

4T @)

Coy (T304, () %) < G, ()

Further calculations produce the following inequalities:

Cro DT @) = (T ) @ (T30 ) @)

(j;}\kf}fy {(V1+v2)f}(x))2 p_y o
477 k10+ {viva}(x) ~ (T30l ) @I 5 000f ) @)

=A:(f,v1,v2) (21)

=< C)Lz (x)

and

Gy, (%) ;AI;IZ)Jf w {fz} ( ;Akll,(l)* a)f) (x)(j;'xl;,%mf) ()

(J;”f;% {(V1+v2)f}(x))2 - ™
ENAf )»20* {viva}(x) ~ (T30l ) @I 5 000f ) @)

= As(f,v1,v2). (22)

=< CA.I (x)

Page 10 0of 13
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Similarly, applying Lemma 2 with v;(t) = v5(7) =f(7) = 1, we have

@) T 100,18} 0) = (T 00 ) (T 3501,,8) )

<Ai(g,wi,wy) (23)
and
T30 1871 06) = (T 000 8) (T 8) )
< Ay(g, w1, wa). (24)
Using (21)—(24), we obtain the result. O

Theorem 6 Let
« f and g be two positive integrable functions on [0, 00);
o h:la,b] - R be an increasing positive function with a continuous derivative on (a, b);
« there exist four positive integrable functions v1, v, w1, and wy such that condition (6a)
and (6b) is satisfied.

Then we have the following inequality for generalized fractional integral operators:

|Gy T ARV @) = (T ) @) (T 08) )]

< [A(f,vi, v) @ A(g, wi, wa) ()|, (25)

where

(Tl L+ W) )?

A, v, w)(x) = Cy, (%) TR ) @))%
1 4j§iﬁ'ﬁ)+;w{"w}(x) (( 21,05 ) )
Proof Setting A1 = A, in (19), we obtain (25). O

Corollary 4 Ifvi =m, vy =M, wy = n, and wy = N, then we have

|Co )T 1) = (T ) (T 08) )]

= % X (jﬂr?k]?.%*;wf ) (x) (J;ikl‘,lz)*;wg) (x)
3 Conclusion
In this paper, we obtained several new inequalities of Pélya—Szeg6- and Chebyshev-type
by using generalized fractional integral operators. The main findings offer new estima-
tions for various integral inequalities. Many particular cases can be revealed by using the
operators. The interested researchers can investigate similar cases by using different types
of integral operators. Also, the problem can be discussed in different spaces by expanding
the motivation of this study.
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