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Abstract
We consider the well-known classes of functions U1(v,k) and U2(v,k), and those of
Opial inequalities defined on these classes. In view of these indices, we establish new
aspects of the Opial integral inequality and related inequalities, in the context of
fractional integrals and derivatives defined using nonsingular kernels, particularly the
Caputo–Fabrizio (CF) and Atangana–Baleanu (AB) models of fractional calculus.
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1 Introduction
Fractional calculus, or specifically the subject of fractional differential equations, is usually
considered as a generalization of ordinary differential equations. In many fields they have
been applied as more appropriate models of real world problems, for example in biology,
engineering, finance, and physics [1–10]. Recently, the applications of fractional calculus
have been developing, including control system, anomalous diffusion, petroleum engi-
neering, multi-strain tuberculosis model, and viscoelastic mechanics. For this reason, we
advice the reader to read the book [11] carefully, which includes a collection of different
fractional models.

Many mathematical inequalities are simulated via the fractional calculus that lead to
fractional integral inequalities. Fractional integral inequalities form a basic field of study
within mathematical analysis [12, 13]. They have been used in the study of fractional ordi-
nary and partial differential equations [14–17]. Specifically, they have been used in finding
the uniqueness of solutions for a certain fractional differential equations and in providing
bounds to solve certain fractional boundary value problems [18, 19].

There are many inequalities nowadays which has interested many mathematicians and
in the past ten years much research has been done around this topic; see [20–35] for fur-
ther details on various mathematical inequalities. One of the well-known inequalities aris-
ing in the theory of mathematical analysis, namely, is the Opial integral inequality. It was
firstly found by Opial in 1960 [36], and his result is as follows: for a function ð(t) ∈ C1[0, h]

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13660-020-02419-4
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-020-02419-4&domain=pdf
http://orcid.org/0000-0002-8889-3768
mailto:tabdeljawad@psu.edu.sa


Mohammed and Abdeljawad Journal of Inequalities and Applications        (2020) 2020:148 Page 2 of 12

with ð(0) = ð(h) = 0 and ð(t) > 0 for t ∈ (0, h)

∫ h

0

∣∣ð(t)ð′(t)
∣∣dt ≤

∫ h

0

(
ð

′(t)
)2 dt. (1.1)

A best possibility here is h
4 .

The Opial integral inequality (1.1) has received substantial attention in various field of
mathematics. Moreover, a large number of articles dealing with extensions, new results,
variants, generalizations and discrete analogues of Opial’s integral inequality can be found
in the literature [33, 37–40].

The idea we have considered in the current paper is Farid et al.’s idea [37]. Their results
are as follows.

Definition 1.1 Let v be a continuous function. Denote by U1(v,k) the class of functions
u : [�1,�2] →R having the representation

u(η) =
∫ η

�1

k(η, t)v(t) dt,

where k = k(η, t) is an arbitrary nonnegative kernel such that k(η, t) = 0 for t > η, and
v(η) > 0 implies u(η) > 0 for every η ∈ [�1,�2].

Definition 1.2 Let v be a continuous function. Denote by U2(v,k) the class of functions
u : [�1,�2] →R having the representation

u(η) =
∫

�2

η

k(η, t)v(t) dt,

where k = k(η, t) is an arbitrary nonnegative kernel such that k(η, t) = 0 for t < η, and
v(η) > 0 implies u(η) > 0 for every η ∈ [�1,�2].

Theorem 1.1 Suppose σ ,ð : [0,∞) → R are two differentiable convex and increasing func-
tions with σ (g(0)) = 0. Also, suppose u ∈ U1(ð◦v,k) such that |k(η, t)| ≤K =constant. Then
we have

∫
�2

�1

σ ′(
ð
(∣∣u(η)

∣∣))ð′(∣∣u(η)
∣∣)∣∣ð ◦ v(η)

∣∣dη

≤ 1
Kσ

(
ð

(
K

∫
�2

�1

∣∣ð ◦ v(t)
∣∣dt

))

≤ 1
K(�2 – �1)

∫
�2

�1

σ
(
ð
(
K(�2 – �1)

∣∣ð ◦ v(t)
∣∣))dt. (1.2)

Theorem 1.2 Suppose σ , : [0,∞) → R is a differentiable convex and increasing function
with σ (0) = 0. Also, suppose u ∈ U1(ð◦v,k) such that |k(η, t)| ≤K =constant. Then we have

∫
�2

�1

σ ′(∣∣u(η)
∣∣�̄)(∣∣u(η)

∣∣)�̄–1∣∣(v(η)
)�̄∣∣dη

≤ 1
�̄Kσ

(
ð

(
K

∫
�2

�1

∣∣v(t)
∣∣�̄ dt

)�̄)
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≤ 1
�̄K(�2 – �1)

∫
�2

�1

σ
(
ð
(
K(�2 – �1)

∣∣v(t)
∣∣�̄)�̄)dt, (1.3)

for �̄ ≥ 1.

The most efficient branch of mathematical analysis is fractional calculus, which involves
integrals and derivatives taken to fractional orders, orders outside of the integer or natu-
ral numbers. Here, we present the Riemann–Liouville (RL) definition to facilitate the dis-
cussion of the aforementioned operations, which is most commonly used for fractional
derivatives and integrals.

Definition 1.3 ([1, 2]) For any function f which is L1 on an interval [�1,�2], and for any
η ∈ [�1,�2], the ν̄th left-RL fractional integral of f(η) is defined by the following integral
transform, for Re(ν̄) > 0:

RLI ν̄
�1+f(η) :=

1
Γ (ν̄)

∫ η

�1

(η – ξ )ν̄–1f(ξ ) dξ . (1.4)

For any function f which is Cn on an interval [�1,�2], and for any η ∈ [�1,�2], the ν̄th
left-RL fractional derivative of f(η) is defined, for n – 1 ≤ Re(ν̄) < n, as follows:

RLDν̄
�1+f(η) :=

dn

dηn
RLIn–ν̄

�1+f(η). (1.5)

Between them, these two definitions cover orders of differentiation throughout the en-
tire complex plane, where we interpret RLD–ν̄

�1+f(η) = RLI ν̄
�1+f(η). Equation (1.5) is the an-

alytic continuation in ν̄ of the formula (1.4); thus, differentiation and integration are now
unified in a single operator which we call differintegration.

Definition 1.4 ([1, 2]) For any function f which is L1 on an interval [�1,�2], and for any
η ∈ [�1,�2], the ν̄th right-RL fractional integral of f(η) is defined by the following integral
transform, for Re(ν̄) > 0:

RLI ν̄
�2–f(η) :=

1
Γ (ν̄)

∫
�2

η

(ξ – x)ν̄–1f(ξ ) dξ . (1.6)

For any function f which is Cn on an interval [�1,�2], and for any η ∈ [�1,�2], the ν̄th
right-RL fractional derivative of f(η) is defined, for n – 1 ≤ Re(ν̄) < n, as follows:

RLDν̄
�2–f(η) := (–1)n dn

dηn
RLIn–ν̄

�2–f(η). (1.7)

Recently, many possible definitions have been proposed for fractional integrals and
derivatives, starting from the classical RL formula (1.4)–(1.7) and its modifying and gen-
eralisations it by replacing the power function kernel with other kernel functions; like the
Caputo [41], Hilfer [42, Chapter II], Atangana–Baleanu [43, 44] and Prabhakar [45, 46]
definitions.

Many of those definitions have different properties from the classical RL model. Also,
the definition discussed in this article, namely the Caputo–Fabrizio (CF) definition, is de-
signed with the convolution of an exponential function with an ordinary derivative but it
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has the same supplemental properties of configuration and heterogeneous [47–49] with
different kernels as occur in the Caputo and RL fractional derivatives. The CF-fractional
derivative [50] has formed a new dimension in the study of fractional differential equations
with its nonsingular kernel.

Definition 1.5 ([1, 2]) For any function f which is H1(�1,�2) with 0 < ν̄ < 1, and for any
η ∈ [�1,�2], the ν̄th left-CF-fractional derivative of f(η) in the sense of Caputo is defined
by

CFC
�1 Dν̄f(η) :=

B(ν̄)
1 – ν̄

∫ η

�1

f ′(ξ ) exp
(
λ̄(η – ξ )

)
dξ , (1.8)

and the left-CF-fractional derivative of f(η) in the sense of Caputo is defined by

CFC
�1 Dν̄

�2–f(η) := –
B(ν̄)
1 – ν̄

∫
�2

η

f ′(ξ ) exp
(
λ̄(ξ – x)

)
dξ , (1.9)

where λ̄ = – ν̄
1–ν̄

and B(ν̄) > 0 is a normalization function that satisfies B(0) = B(1) = 1.

The aim of the present article is to establish new Opial integral inequalities type involv-
ing Caputo–Fabrizio fractional models by an extension of Farid et al.’s idea [37] as shown in
Theorems 1.1–1.2. For special cases, our results yield some of the recent integral inequal-
ities of Opial type and offer new estimates on such types of inequalities. Furthermore, we
improve those findings to the higher order Caputo–Fabrizio (CF) and Atangana–Baleanu
(AB) fractional operators, which we define in Sects. 2.2 and 3, respectively.

2 The CF-fractional inequalities
We here utilize CF-fractional integrals and derivatives for the inequalities (1.2) and (1.3)
to obtain new corresponding CF-fractional integral inequalities of Opial type.

2.1 The first order CF-fractional inequalities
Theorem 2.1 Suppose σ ,ð : [0,∞) → R are two differentiable convex and increasing func-
tions with σ (g(0)) = 0 and suppose that f ′ ∈ L[�1,�2]. Then, for 0 < ν̄ < 1, we have

∫
�2

�1

σ ′(
ð
(∣∣CFC

�1 Dν̄f(η)
∣∣))ð′(∣∣CFC

�1 Dν̄f(η)
∣∣)∣∣ð ◦ f ′(η)

∣∣dη

≤ 1 – ν̄

B(ν̄)
σ

(
ð

(B(ν̄)
1 – ν̄

∫
�2

�1

∣∣ð ◦ f ′(t)
∣∣dt

))

≤ 1 – ν̄

B(ν̄)(�2 – �1)

∫
�2

�1

σ

(
ð

(B(ν̄)
1 – ν̄

(�2 – �1)
∣∣ð ◦ f ′(t)

∣∣
))

dt, (2.1)

where CFC
�1 Dν̄f(η) is as in (1.8).

Proof Let v := f ′, so v is a continuous function. Then, we find

u(η) := CFC
�1 Dν̄f(η) =

B(ν̄)
1 – ν̄

∫ η

�1

exp
(
λ̄(η – ξ )

)
v(ξ ) dξ
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=
∫ η

�1

k(η, ξ )v(ξ ) dξ , (2.2)

where

k(η, ξ ) =

⎧⎨
⎩

B(ν̄)
1–ν̄

exp(λ̄(η – ξ )), �1 ≤ ξ ≤ η,

0, η < ξ ≤ �2.
(2.3)

Since B(ν̄)
1–ν̄

> 0 and λ̄ = –ν̄
1–ν̄

< 0 for 0 < ν̄ < 1, the function B(ν̄)
1–ν̄

exp(λ̄(η – ξ )) is a decreasing
function on the interval [�1,�2] and hence

∣∣k(η, ξ )
∣∣ ≤ B(ν̄)

1 – ν̄
:= K.

Then, by applying Theorem 1.1 for the above particular findings, we easily obtain inequal-
ities (2.1). �

Corollary 2.1 Let the assumptions of previous theorem be given. Then, for 0 < ν̄ < 1 and
�̄ ≥ 1, we have

∫
�2

�1

σ ′(∣∣CFC
�1 Dν̄f(η)

∣∣�̄)∣∣CFC
�1 Dν̄f(η)

∣∣�̄–1∣∣(f ′(η)
)�̄∣∣dη

≤ 1 – ν̄

�̄B(ν̄)
σ

((B(ν̄)
1 – ν̄

∫
�2

�1

∣∣f ′(t)
∣∣�̄ dt

)�̄)

≤ 1 – ν̄

�̄B(ν̄)(�2 – �1)

∫
�2

�1

σ

((B(ν̄)
1 – ν̄

(�2 – �1)
∣∣f ′(t)

∣∣�̄
)�̄)

dt. (2.4)

Proof We know that the function x�̄ is an increasing and convex function for �̄ ≥ 1.
Then, by applying Theorem 2.1 for such a function ð(η) := x�̄ , we easily obtain inequalities
(2.4). �

We can obtain the same results for the right-sided CF-fractional integral on the class of
functions U2(ð ◦ v,k) (see Definition 1.2). These are given in the following.

Theorem 2.2 Suppose σ ,ð : [0,∞) → R are two differentiable convex and increasing func-
tions with σ (g(0)) = 0 and suppose that f ′ ∈ L[�1,�2]. Then, for 0 < ν̄ < 1, we have

∫
�2

�1

σ ′(
ð
(∣∣CFCDν̄

�2–f(η)
∣∣))ð′(∣∣CFCDν̄

�2–f(η)
∣∣)∣∣ð ◦ f ′(η)

∣∣dη

≤ 1 – ν̄

B(ν̄)
σ

(
ð

(B(ν̄)
1 – ν̄

∫
�2

�1

∣∣ð ◦ f ′(t)
∣∣dt

))

≤ 1 – ν̄

B(ν̄)(�2 – �1)

∫
�2

�1

σ

(
ð

(B(ν̄)
1 – ν̄

(�2 – �1)
∣∣ð ◦ f ′(t)

∣∣
))

dt, (2.5)

where CFC
�1 Dν̄

�2–f(η) is as in (1.9).

Proof We can use the same method used for Theorem 2.1 to produce the results for The-
orem 2.2. �
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Corollary 2.2 Let the assumptions of previous theorem be given. Then, for 0 < ν̄ < 1 and
�̄ ≥ 1, we have

∫
�2

�1

σ ′(∣∣CFCDν̄
�2–f(η)

∣∣�̄)∣∣CFCDν̄
�2–f(η)

∣∣�̄–1∣∣(f ′(η)
)�̄∣∣dη

≤ 1 – ν̄

�̄B(ν̄)
σ

((B(ν̄)
1 – ν̄

∫
�2

�1

∣∣f ′(t)
∣∣�̄ dt

)�̄)

≤ 1 – ν̄

�̄B(ν̄)(�2 – �1)

∫
�2

�1

σ

((B(ν̄)
1 – ν̄

(�2 – �1)
∣∣f ′(t)

∣∣�̄
)�̄)

dt. (2.6)

Proof We can use the same method used for Corollary 2.1 to produce the results for Corol-
lary 2.2. �

2.2 The higher order CF-fractional inequalities
Here we generalize the previous findings to the new corresponding higher order CF-
fractional inequalities of Opial type. At first, we have to recall the higher order CF-
fractional derivatives.

Definition 2.1 ([18]) For a function f , f (n) ∈ H1(�1,�2) and n < ν̄ < n + 1, we have the
higher order left and right CF-fractional derivatives, respectively, defined by

(CFC
�1 Dν̄

Hf
)
(η) :=

(CFC
�1 Dν̄–nf (n))(η) =

B(ν̄ – n)
n + 1 – ν̄

∫ η

�1

f (n+1)(ξ ) exp
(
λ̄(η – ξ )

)
dξ (2.7)

and

(CFC
H Dν̄

�2 f
)
(η)

:=
(CFCDν̄–n

�2 (–1)nf (n))(η) =
(–1)nB(ν̄ – n)

n + 1 – ν̄

∫
�2

η

f (n+1)(ξ ) exp
(
λ̄(ξ – x)

)
dξ , (2.8)

where λ̄ = – ν̄–n
n+1–ν̄

.

Theorem 2.3 Suppose σ ,ð : [0,∞) → R are two differentiable convex and increasing func-
tions with σ (g(0)) = 0 and suppose that f (n+1) ∈ L[�1,�2]. Then, for n < ν̄ < n + 1, we have

∫
�2

�1

σ ′(
ð
(∣∣CFC

�1 Dν̄
H f(η)

∣∣))ð′(∣∣CFC
�1 Dν̄

H f(η)
∣∣)∣∣ð ◦ f (n+1)(η)

∣∣dη

≤ n + 1 – ν̄

B(ν̄ – n)
σ

(
ð

(B(ν̄ – n)
n + 1 – ν̄

∫
�2

�1

∣∣ð ◦ f (n+1)(t)
∣∣dt

))

≤ n + 1 – ν̄

B(ν̄ – n)(�2 – �1)

∫
�2

�1

σ

(
ð

(B(ν̄ – n)
n + 1 – ν̄

(�2 – �1)
∣∣ð ◦ f (n+1)(t)

∣∣
))

dt, (2.9)

where CFC
�1 Dν̄f(η) is as in (2.7).

Proof Let v := f (n+1), so v is a continuous function. Then we find

u(η) := CFC
�1 Dν̄f(η) =

B(ν̄ – n)
n + 1 – ν̄

∫ η

�1

exp
(
λ̄(η – ξ )

)
v(ξ ) dξ
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=
∫ η

�1

k(η, ξ )v(ξ ) dξ , (2.10)

where

k(η, ξ ) =

⎧⎨
⎩

B(ν̄–n)
n+1–ν̄

exp(λ̄(η – ξ )), �1 ≤ ξ ≤ η,

0, η < ξ ≤ �2.
(2.11)

From this we have

∣∣k(η, ξ )
∣∣ ≤ B(ν̄ – n)

n + 1 – ν̄
:= K.

Hence by applying Theorem 1.1 for the above particular findings, we easily obtain inequal-
ities (2.9). �

Corollary 2.3 Let the assumptions of the previous theorem be given. Then, for n < ν̄ < n + 1
and �̄ ≥ 1, we have

∫
�2

�1

σ ′(∣∣CFC
�1 Dν̄

Hf(η)
∣∣�̄)∣∣CFC

�1 Dν̄
H f(η)

∣∣�̄–1∣∣(f (n+1)(η)
)�̄∣∣dη

≤ n + 1 – ν̄

�̄B(ν̄ – n)
σ

((B(ν̄ – n)
n + 1 – ν̄

∫
�2

�1

∣∣f (n+1)(t)
∣∣�̄ dt

)�̄)

≤ n + 1 – ν̄

�̄B(ν̄ – n)(�2 – �1)

∫
�2

�1

σ

((B(ν̄ – n)
n + 1 – ν̄

(�2 – �1)
∣∣f (n+1)(t)

∣∣�̄
)�̄)

dt. (2.12)

Proof We know that the function x�̄ is an increasing and convex function for �̄ ≥ 1.
Then, by applying Theorem 2.3 for such a function ð(η) := x�̄ , we easily obtain inequalities
(2.12). �

We can obtain the same results for the right-sided higher order CF-fractional integral
on the class of functions U2(ð ◦ v,k) (see Definition 1.2). These are given in the following.

Theorem 2.4 Suppose σ ,ð : [0,∞) → R are two differentiable convex and increasing func-
tions with σ (g(0)) = 0 and suppose that f (n+1) ∈ L[�1,�2]. Then, for n < ν̄ < n + 1, we have

∫
�2

�1

σ ′(
ð
(∣∣CFC

H Dν̄
�2–f(η)

∣∣))ð′(∣∣CFC
H Dν̄

�2–f(η)
∣∣)∣∣ð ◦ f (n+1)(η)

∣∣dη

≤ n + 1 – ν̄

B(ν̄ – n)
σ

(
ð

(B(ν̄ – n)
n + 1 – ν̄

∫
�2

�1

∣∣ð ◦ f (n+1)(t)
∣∣dt

))

≤ n + 1 – ν̄

B(ν̄ – n)(�2 – �1)

∫
�2

�1

σ

(
ð

(B(ν̄ – n)
n + 1 – ν̄

(�2 – �1)
∣∣ð ◦ f (n+1)(t)

∣∣
))

dt, (2.13)

where CFC
H Dν̄

�2–f(η) is as in (2.8).

Proof We can use the same method used for Theorem 2.3 to produce the results for The-
orem 2.4. �
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Corollary 2.4 Let the assumptions of previous theorem be given. Then, for n < ν̄ < n + 1
and �̄ ≥ 1, we have

∫
�2

�1

σ ′(∣∣CFC
H Dν̄

�2–f(η)
∣∣�̄)∣∣CFC

H Dν̄
�2–f(η)

∣∣�̄–1∣∣(f (n+1)(η)
)�̄∣∣dη

≤ n + 1 – ν̄

�̄B(ν̄ – n)
σ

((B(ν̄ – n)
n + 1 – ν̄

∫
�2

�1

∣∣f (n+1)(t)
∣∣�̄ dt

)�̄)

≤ n + 1 – ν̄

�̄B(ν̄ – n)(�2 – �1)

×
∫

�2

�1

σ

((B(ν̄ – n)
n + 1 – ν̄

(�2 – �1)
∣∣f (n+1)(t)

∣∣�̄
)�̄)

dt. (2.14)

Proof We can use the same method used for Corollary 2.3 to produce the results for Corol-
lary 2.4. �

3 The ABC-fractional inequalities
In the final section, we improve our study from the CF-fractional operators with a non-
singular kernel to the Atangana–Baleanu (AB) fractional operators with a Mittag-Leffler
(ML) kernel. For this, we get new inequalities of Opial type. Let us first recall the AB frac-
tional derivatives.

Definition 3.1 ([19, 51]) For any function f which isH1(a, b) with 0 < �1 < �2, and for any
x ∈ [�1,�2], the ν̄th left-AB fractional derivative of f(η) in the sense of Caputo is defined
by

ABC
�1+Dν̄f(η) :=

B(ν̄)
1 – ν̄

∫ x

�1

f ′(ξ )Eν̄

(
λ̄(x – ξ )ν̄

)
) dξ , (3.1)

and the left-CF-fractional derivative of f(η) in the sense of Caputo is defined by

ABCDν̄
�2–f(η) := –

B(ν̄)
1 – ν̄

∫
�2

x
f ′(ξ )Eν̄

(
λ̄(ξ – x)ν̄

)
) dξ , (3.2)

where λ̄ and B(ν̄) are both as before, and Eν̄(·) is a Mittag-Leffler (ML) function defined
by [51]

Eν̄

(
λ̄zν̄

)
= Eν̄(λ̄, z) :=

∞∑
	=0

λ̄	 zν̄	

Γ (ν̄	 + 1)
,

for 0 	= λ̄ ∈R, z ∈ C, and 
(ν̄) > 0.

Theorem 3.1 Suppose φ, g : [0,∞) →R are two differentiable convex and increasing func-
tions with φ(g(0)) = 0 and suppose that f ′ ∈ L[�1,�2]. Then, for 0 < ν̄ < 1, we have

∫
�2

�1

φ′(g
(∣∣ABC

�1+Dν̄f(η)
∣∣))g′(∣∣ABC

�1+Dν̄f(η)
∣∣)∣∣g ◦ f ′(η)

∣∣dη

≤ 1 – ν̄

B(ν̄)
φ

(
g
(B(ν̄)

1 – ν̄

∫
�2

�1

∣∣g ◦ f ′(t)
∣∣dt

))



Mohammed and Abdeljawad Journal of Inequalities and Applications        (2020) 2020:148 Page 9 of 12

≤ 1 – ν̄

B(ν̄)(�2 – �1)

∫
�2

�1

φ

(
g
(B(ν̄)

1 – ν̄
(�2 – �1)

∣∣g ◦ f ′(t)
∣∣
))

dt, (3.3)

where ABC
�1+Dν̄f(η) is as in (3.1).

Proof Let v := f ′, so v is a continuous function. Then we find

u(η) := ABC
�1+Dν̄f(η) =

B(ν̄)
1 – ν̄

∫ x

�1

Eν̄

(
λ̄(x – ξ )ν̄

)
v(ξ ) dξ

=
∫ x

�1

k(x, ξ )v(ξ ) dξ , (3.4)

where

k(x, ξ ) =

⎧⎨
⎩

B(ν̄)
1–ν̄

Eν̄(λ̄(x – ξ )ν̄), a ≤ ξ ≤ x,

0, x < ξ ≤ b.
(3.5)

From [52], we can see that the function B(ν̄)
1–ν̄

Eν̄(λ̄(x – ξ )ν̄) is a monotonically decreasing
function on the interval [�1,�2] and hence

∣∣k(x, ξ )
∣∣ ≤ B(ν̄)

1 – ν̄
:= K.

Then, by applying Theorem 1.1 for the above particular findings, we easily obtain inequal-
ities (3.3). �

Corollary 3.1 Let the assumptions of the previous theorem be given. Then, for 0 < ν̄ < 1
and �̄ ≥ 1, we have

∫
�2

�1

φ′(∣∣ABC
�1+Dν̄f(η)

∣∣�̄)∣∣ABC
�1+Dν̄f(η)

∣∣q–1∣∣(f ′(η)
)�̄∣∣dη

≤ 1 – ν̄

qB(ν̄)
φ

((B(ν̄)
1 – ν̄

∫
�2

�1

∣∣f ′(t)
∣∣�̄ dt

)�̄)

≤ 1 – ν̄

qB(ν̄)(�2 – �1)

∫
�2

�1

φ

((B(ν̄)
1 – ν̄

(�2 – �1)
∣∣f ′(t)

∣∣�̄
)�̄)

dt. (3.6)

Proof We can use the same technique used for Corollary 2.1 to produce the results for
Corollary 3.2. �

We can obtain the same results for the right-sided AB fractional integral on the class of
functions U2(g ◦ v,k) (see Definition 1.2). These are given in the following.

Theorem 3.2 Suppose φ, g : [0,∞) →R are two differentiable convex and increasing func-
tions with φ(g(0)) = 0 and suppose that f ′ ∈ L[�1,�2]. Then, for 0 < ν̄ < 1, we have

∫
�2

�1

φ′(g
(∣∣ABCDν̄

�2–f(η)
∣∣))g′(∣∣ABCDν̄

�2–f(η)
∣∣)∣∣g ◦ f ′(η)

∣∣dη

≤ 1 – ν̄

B(ν̄)
φ

(
g
(B(ν̄)

1 – ν̄

∫
�2

�1

∣∣g ◦ f ′(t)
∣∣dt

))
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≤ 1 – ν̄

B(ν̄)(�2 – �1)

∫
�2

�1

φ

(
g
(B(ν̄)

1 – ν̄
(�2 – �1)

∣∣g ◦ f ′(t)
∣∣
))

dt, (3.7)

where ABCDν̄
�2–f(η) is as in (3.2).

Proof We can use the same technique used for Theorem 3.1 to produce the results for
Theorem 3.2. �

Corollary 3.2 Let the assumptions of the previous theorem be given. Then, for 0 < ν̄ < 1
and �̄ ≥ 1, we have

∫
�2

�1

φ′(∣∣ABCDν̄
�2–f(η)

∣∣�̄)∣∣ABCDν̄
�2–f(η)

∣∣q–1∣∣(f ′(η)
)�̄∣∣dη

≤ 1 – ν̄

qB(ν̄)
φ

((B(ν̄)
1 – ν̄

∫
�2

�1

∣∣f ′(t)
∣∣�̄ dt

)�̄)

≤ 1 – ν̄

qB(ν̄)(�2 – �1)

∫
�2

�1

φ

((B(ν̄)
1 – ν̄

(�2 – �1)
∣∣f ′(t)

∣∣�̄
)�̄)

dt. (3.8)

Proof We can use the same technique used for Corollary 2.1 to produce the results for
Corollary 3.2. �

4 Conclusion
In the current study, we have considered the Opial integral inequalities in the context of
generalized fractional operators with nonsingular kernel. Also, we have studied some re-
lated integral inequalities for the CFC and ABC-fractional integrals. It can be seen that our
obtained formulas will be very helpful in the theoretical study of other models of fractional
calculus.
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