
Tan et al. Journal of Inequalities and Applications        (2020) 2020:143 
https://doi.org/10.1186/s13660-020-02409-6

R E S E A R C H Open Access

Gel’fand-N-width in probabilistic setting
Xin Tan1, Yanan Wang1, Lu Sun1, Xingfeng Shao1,3 and Guanggui Chen2*

*Correspondence:
ggchen@mail.xhu.edu.cn
2Graduate Department, Xihua
University, Chengdu, China
Full list of author information is
available at the end of the article

Abstract
In this article, we first put forward a new definition of probabilistic
Gel’fand-(N,δ)-width which is the classical Gel’fand-N-width in a probabilistic setting.
Then we estimate the sharp order of the probabilistic Gel’fand-(N,δ)-width of
finite-dimensional space. Furthermore, we obtain the exact order of probabilistic
Gel’fand-(N,δ)-width of univariate Sobolev space by the discretization method
according to the result of finite-dimensional space.
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1 Introduction
It is well-known that the width plays an important role in computational complexity which
is a core aspect of the theoretical basis of computer science. The relationship between the
width and computational complexity can be found in the monograph [1] by the works
of Traus and Waskikawski. It is worth noting that the relationship between Gel’fand-N-
width and diameter of information has been stated in the worst case setting, and a se-
ries of perfect results of the width in worst case setting have been provided by Pinkus
in [2]. Moreover, Maiorov has furthered the width theory by introducing the probabilistic
Kolomogorov-(N , δ)-width and probabilistic linear-(N , δ)-width which are Kolomogorov-
N-width and linear N-width in a probabilistic setting, respectively. Maiorov, Fang Gen-
sun and Ye Peixin have studied probabilistic Kolomogorov-(N , δ)-width and probabilistic
linear-(N , δ)-width of finite-dimensional space and univariate Sobolev space, and obtained
some pretty conclusions in [3–6]. Chen Guanggui and Fang Gensun have discussed prob-
abilistic Kolomogorov-(N , δ)-width and probabilistic linear-(N , δ)-width of multivariate
Sobolev space with mixed derivative and obtained some useful results in [7, 8]. In 2010,
Chen Guanggui, Nie Pengjuan and Luo Xinjian have putted forward the width of oper-
ator in a probabilistic setting by the first definition of probabilistic linear-(N , δ)-width of
operator, and have estimated the exact order of probabilistic linear-(N , δ)-width of finite-
dimensional diagonal operator in [9]. Later, on the basis of random process, Dai Feng and
Wang Heping have discussed probabilistic linear-(N , δ)-width of finite-dimensional diag-
onal operator in [10], and have acquired profound result.

In this article, we continue the research above by proposing the definition of a probabilis-
tic Gel’fand-(N , δ)-width, and estimate the sharp order of probabilistic Gel’fand-(N , δ)-
width in both finite-dimensional space and univariate Sobolev space.
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In order to present the relevant results, we first introduce some notations. Let R, Z and
N denote the real number set, the integer set and the nonnegative integer set, respectively.
Assume that c, ci, c′

i, i = 0, 1, . . . , are positive constants depending only on the parameters
p, q, r, ρ . The notation a(y) � b(y) or a(y) � b(y) for two positive functions a(y) and b(y)
means that there exist constants c, c1 and c2 such that c1 ≤ a(y)/b(y) ≤ c2 or a(y) ≤ cb(y)
for any y ∈ D.

This article is arranged as follows. In Sect. 2, we review notions of width and define prob-
abilistic Gel’fand-(N , δ)-width. In Sect. 3, we introduce the probabilistic Gel’fand-(N , δ)-
width of finite-dimensional space. In Sect. 4, we investigate the probabilistic Gel’fand-
(N , δ)-width of univariate Sobolev space.

2 Gel’fand-N-width in a probabilistic setting
In this section, we first review notions of the width in worst case setting, then introduce
the definitions of probabilistic Kolomogorov-(N , δ)-width and probabilistic linear-(N , δ)-
width. Finally, we propose the new definition of the probabilistic Gel’fand-(N , δ)-width.

Definition 2.1 Suppose that X is a normed linear space equipped with a norm ‖ · ‖, W is
a non-null subset of X, N is nonnegative integer. Then

dN (W , X) := inf
FN

sup
x∈W

inf
y∈FN

‖x – y‖,

λN (W , X) := inf
TN

sup
x∈W

‖x – TN x‖,

dN (W , X) := inf
LN

sup
x∈W∩LN

‖x‖,

are called Kolomogorov-N-width, linear N-width, Gel’fand-N-width of W in X, respec-
tively. Here, FN runs through all linear subspaces of X with dimension at most N , TN runs
through all bounded linear operators on X with rank at most N , LN runs all linear sub-
spaces of X with codimension at most N .

The codimension is defined as follows.
A linear subspace LN of the normed linear space X is called codimension N , if there are

N linear independent continuous linear functionals f1, f2, . . . , fN on X, such that

LN =
{

x ∈ X : fi(x) = 0, i = 0, 1, . . . , N
}

.

We simply write inf∅ = +∞.

Definition 2.2 Let (X,‖ ·‖X) and (Y ,‖ ·‖Y ) be normed linear spaces, and X can be imbed-
ded continuously into Y . Then

dN (X, Y ) := dN
(
B(X), Y

)
,

λN (X, Y ) := inf
TN

sup
x∈B(X)

‖x – TN x‖Y ,

dN (X, Y ) := inf
LN

sup
x∈B(X)∩LN

‖x‖Y ,
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are regarded as Kolomogorov-N-width, linear N-width and Gel’fand-N-width of X in Y ,
respectively. Here, TN is taken over all continuous linear operators from X into Y of rank
at most N , LN is taken over all subspaces of X of the codimension at most N , B(X) is the
unit ball of X.

There are a series of useful properties of the width in worst case setting which are as
follows.

Proposition 2.1 ([2]) Let X and Y be normed linear spaces, and X can be imbedded con-
tinuously into Y . Then

1. dN (X, Y ) ≤ λN (X, Y ), dN (X, Y ) ≤ λN (X, Y ).
2. If X is the Hilbert space, then

dN (X, Y ) = λN (X, Y ).

More details about the width in worst case setting can be consulted in [2]. Now, we
tend to introduce the width in a probabilistic setting. Maiorov [3, 4] has proposed the
definitions of Kolomogorov-N-width and linear N-width in a probabilistic setting.

Definition 2.3 Suppose that X is a normed linear space, W ⊂ X, and B is a Borel field
formed by all opened sets in W , μ is a probabilistic measure on B, δ ∈ (0, 1], then

dN ,δ(W ,μ, X) = inf
Gδ

dN (W\Gδ , X)

and

λN ,δ(W ,μ, X) = inf
Gδ

λN (W\Gδ , X)

are called probabilistic Kolomogorov-(N , δ)-width and probabilistic linear-(N , δ)-width of
W in X with measure μ, respectively. Here Gδ is taken over all subsets in B with the mea-
sure at most δ.

Remark 2.1 Comparing Definition 2.1 with Definition 2.3, we can obviously find that the
N-width in a probabilistic setting is just the N-width in a worst case setting by eliminating
the subset whose measure is at most δ.

In order to define the Gel’fand-N-width in a probabilistic setting, we first introduce the
following obvious result.

Let H be a Hilbert space with the probabilistic measure μ, F be a closed subspace in H .
Let F⊥ denote the orthogonal complement of F . Any x ∈ H can be decomposed uniquely
in the form

x = y + z, where y ∈ F , z ∈ F⊥.

The element y will be denoted by Px and P is called projection operator upon F . For any
Borel set GF in F , let

μF (GF ) := μ
({x ∈ H : Px ∈ GF}). (1)

Then μF is a probabilistic measure on F .
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With Definitions 2.1, 2.2, 2.3 and Remark 2.1, we now can put foreword the new defini-
tion of Gel’fand-N-width in a probabilistic setting.

Definition 2.4 Let H be a Hilbert space, (X,‖ · ‖) be a normed linear space, and H can be
imbedded continuously into X, μ be a probabilistic measure on H , δ ∈ (0, 1]. Then

dN
δ (H ,μ, X) = inf

Gδ

inf
LN

sup
x∈(H\Gδ )∩LN

‖x‖

is called probabilistic Gel’fand-(N , δ)-width of H in X with the measure μ. Here LN runs
over all linear subspaces of H with codimension at most N . Gδ is taken over all subsets of H
with the measure at most δ, and satisfies the following condition: for any closed subspace
F in H ,

μF (Gδ ∩ F) ≤ δ. (2)

Here μF refers to Eq. (1).

Remark 2.2 Here we add the condition (2) in order to make sure that (H\Gδ) ∩ LN has
enough elements.

There is a very useful relationship between the probabilistic linear-(N , δ)-width and the
probabilistic Gel’fand-(N , δ)-width.

Theorem 2.1 Suppose H is a Hilbert space, (X,‖ · ‖) is a normed linear space, H can be
imbedded continuously into X, δ ∈ (0, 1], μ is a probabilistic measure on H . Then

λN ,δ(H ,μ, X) ≤ dN
δ (H ,μ, X).

Proof ∀ε > 0, by the definition of dN
δ (H ,μ, X), there is subspace LN of H with codimension

at most N , and subset Q ⊂ H , for which

μ(Q) ≥ 1 – δ, μLN
(
Q ∩ LN) ≥ 1 – δ,

sup
x∈Q∩LN

‖x‖X ≤ dN
δ (H ,μ, X) + ε.

We have μ(Q′) ≥ 1 – δ, where Q′ = {x ∈ H : PLN x ∈ Q ∩ LN }, PLN is a projection operator
on LN .

Let TN = I – PLN . Then TN is a bounded linear operator from H into X with the rank at
most N .

It is clear that

λN ,δ(H ,μ, X) ≤ sup
x∈Q′

‖x – TN x‖X

= sup
x∈Q′

‖PLN x‖X
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= sup
x∈Q∩LN

‖x‖X

≤ dN
δ (H ,μ, X) + ε.

Since ε is arbitrary, one has

λN ,δ(H ,μ, X) ≤ dN
δ (H ,μ, X). �

3 Gel’fand-N-width of finite-dimensional space in a probabilistic setting
In this section, we will discuss the Gel’fand-N-width of finite-dimensional space in a prob-
abilistic setting. We first review the finite-dimensional space.

Let lm
p (1 ≤ p ≤ ∞) be a m-dimensional normed linear space of vector x = (x1, . . . , xm) ∈

R
m with the norm

‖x‖lmp =

⎧
⎨

⎩
(
∑m

i=1 |xi|p)
1
p , 1 ≤ p < ∞,

Max1≤i≤m |xi|, p = ∞.

We denote by Bm
p (ρ) := {x ∈ lm

p : ‖x‖lmq ≤ ρ} a ball with the radius ρ in lm
q , and Bm

p := Bm
p (1).

It is clear that lm
2 is a Hilbert space with inner product

〈x, y〉 =
m∑

i=1

xiyi,

where x = (x1, x2, . . . , xm), y = (y1, y2, . . . , ym) ∈ Rm.
There are several useful results about linear width and Gel’fand width of finite-

dimensional space in worst case setting as follows.

Theorem 3.1 ([2]) Let N ≤ m, 1 ≤ p ≤ 2, 1 ≤ q ≤ ∞. Then

λN
(
Bm

2 , lm
p
)

= dN(
Bm

2 , lm
p
)

= (m – N)
1
p – 1

2 ,

λN
(
Bm

q , lm
q
)

= dN(
Bm

q , lm
q
)

= 1.

Considering the space of lm
2 with the standard Gaussian measure γ = γm, which is de-

fined as

γ (G) = (2π )– m
2

∫

G
exp

(
–

1
2
‖x‖2

lm2

)
dx,

where G is any Borel subset in lm
2 . Obviously, γ (lm

2 ) = 1.
Maiorov, Fang Gensun and Ye Peixin have obtained the sharp order of linear width of

finite-dimensional space in probabilistic setting which can be summarized as follows.

Theorem 3.2 ([4–6]) Let 2N ≤ m, δ ∈ (0, 1
2 ]. Then:

(1) For 1 ≤ q < 2,

λN ,δ
(
lm
2 ,γ , lm

q
) � m

1
q – 1

2

√

m + ln
1
δ

.
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(2) For 2 ≤ q < ∞,

λN ,δ
(
lm
2 ,γ , lm

q
) � m

1
q +

√

ln
1
δ

.

(3) For q = ∞,

λN ,δ
(
lm
2 ,γ , lm

∞
) �

√

ln
(m – n)

δ
.

Here the upper bounds only need the condition of N ≤ m.

For discussing the sharp order of Gel’fand-(N , δ)-width of finite-dimensional space, we
introduce two special Borel sets in finite-dimensional space.

Lemma 3.1 ([3]) For any δ ∈ (0, 1
2 ], there exists an absolute positive constant c0 such that

γ

({
x ∈ Rm : ‖x‖2 ≥ c0

(√
m +

√

ln
1
δ

)})
≤ δ.

Lemma 3.2 ([4]) For 2 ≤ q < ∞ and any δ ∈ (0, 1
2 ], there exists a positive constant cq de-

pending only on the q such that

γ

({
x ∈ Rm : ‖x‖lmq ≥ cq

(
m

1
q +

√

ln
1
δ

)})
≤ δ.

We now start to estimate the exact order of the Gel’fand-(N , δ)-width of finite-dimen-
sional space.

Theorem 3.3 Let 2N ≤ m, δ ∈ (0, 1
2 ]. Then:

(1) For 1 ≤ q < 2,

dN
δ

(
lm
2 ,γ , lm

q
) � m

1
q – 1

2

√

m + ln
1
δ

.

(2) For 2 ≤ q < ∞,

dN
δ

(
lm
2 ,γ , lm

q
) � m

1
q +

√

ln
1
δ

.

Here the upper bounds hold if N ≤ m.

Remark 3.1 Moreover, we conjecture that if 2N ≤ m, δ ∈ (0, 1
2 ], then dN

δ (lm
2 ,γ , lm∞) �√

ln (m–N)
δ

.

Proof It is obvious that the lower bound holds by the Theorem 2.1 and Theorem 3.2.
Now,we estimate the upper bound.
(1) For 1 ≤ q < 2.
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Let Gδ = {x ∈ R
m : ‖x‖lm2 ≥ c0(

√
m +

√
ln 1

δ
)}, where c0 is the constant of Lemma 3.1. By

Lemma 3.1, γ (Gδ) ≤ δ. It is clear that Gδ which is the subset in lm
2 satisfies condition in

Definition 2.4. From the definition of the Gel’fand-(N , δ)-width, we have

dN
δ

(
lm
2 ,γ , lm

q
) ≤ dN(

lm
2 \Q, lm

q
)

= dN
(

Bm
2

(
C0

(
m

1
2 +

√

ln
1
δ

))
, lm

q

)

≤ C0

(
m

1
2 +

√

ln
1
δ

)
dN(

Bm
2 , lm

q
)

≤ C0

(
m

1
2 +

√

ln
1
δ

)
(m – N)

1
q – 1

2

� m
1
q – 1

2

√

m + ln
1
δ

.

(2) For 2 ≤ q < ∞.
Let Gδ = {x ∈ R

m : ‖x‖lmq ≥ cq(m
1
q +

√
ln 1

δ
)}, where cq is the constant of Lemma 3.2. By

Lemma 3.2, γ (Gδ) ≤ δ. Obviously, Gδ also satisfies the condition of Definition 2.4. Using
the definition of Gel’fand-(N , δ)-width, we have

dN
δ

(
lm
2 ,γ , lm

q
) ≤ dN(

lm
2 \Q, lm

q
)

= dN
(

Bm
q

(
Cq

(
m

1
q +

√

ln
1
δ

))
, lm

q

)

= Cq

(
m

1
q +

√

ln
1
δ

)
dN(

Bm
q , lm

q
)

= Cq

(
m

1
q +

√

ln
1
δ

)

� m
1
q +

√

ln
1
δ

. �

4 Gel’fand-(N,δ)-width of univariate Sobolev space
In this section, we estimate the exact order of Gel’fand-(N , δ)-width of univariate Sobolev
space.

Denote by Lq(T), 1 ≤ q ≤ ∞, the classical q-integral Lebesgue space of 2π-periodic
functions with the usual norm, ‖ · ‖Lq := ‖ · ‖Lq(T). It is clear that L2(T) is a Hilbert space
with inner product

〈x, y〉 =
1

2π

∫ 2π

0
x(t)y(t) dt, x, y ∈ L2(T).

For any x ∈ L2(T), the Fourier series of x can be regarded as

x(t) =
∞∑

k=–∞
x̂(k)eikt

=
∞∑

k=–∞
x̂(k)ek(t),

where x̂(k) = 1
2π

∫
T

x(t)eikt dt, ek(t) = eikt .
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For arbitrary r ∈R, we define the rth order derivative of x in the sense of Weyl by

x(r)(t) =
(
Drx

)
(t)

:=
∑

n∈Z
x̂(k)(ik)rek(t),

where (ik)r = |k|re iπr
2 sgn k .

Let

W r
2 (T) :=

{
x ∈ L2(T) : x(r) ∈ L2(T), x̂(0) = 0

}
.

It is well-known that W r
2 (T) is a Hilbert space with the inner product

〈x, y〉r :=
〈
x(r), y(r)〉, x, y ∈ W r

2 (T),

and the norm can be obtained

‖x‖2
W r

2 (T) =
〈
x(r), x(r)〉.

By the Parseval equality, we can obtain

‖x‖W r
2 (T) =

(∑

k∈Z0

∣∣(ik)rck
∣∣2

)1/2

,

where Z0 = Z \ {0}.
W r

2 (T) is named as univariate Sobolev space. It is well-known that W r
2 (T) (r > 1

2 ) can be
embedded continuously into the Lq(T), 1 ≤ q ≤ ∞. Numerous approximation character-
istic of the univariate Sobolev space, such as Kolomogorov-N-width, linear N-width in
worst case setting, probabilistic setting and average setting, have been referred to in the
literature.

Now we equipped W r
2 (T) with a Gaussian measure μ whose mean is zero and correlation

operator Cμ has eigenfunctions ek(t) and eigenvalues

λk = |k|–ρ , ρ > 1, k ∈ Z0. (3)

That is,

Cμek = λkek , ∀k ∈ Z0.

Let y1, . . . , yn be any orthogonal system of functions in L2(T), σj = 〈Cμyj, yj〉, j = 1, . . . , n,
and B be an arbitrary Borel subset of ln

2 . Then the Gaussian measure μ on the cylindrical
subset G in the space W r

2 (T) is given by

μ(G) =
n∏

j=1

(2πσj)–1/2
∫

B
exp

(

–
n∑

j=1

|uj|2
2σj

)

du1 · · ·dun,
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where

G =
{

x ∈ W r
2 (T) :

(〈
x, y(–r)

1
〉
r , . . . ,

〈
x, y(–r)

n
〉
r

) ∈ B
}

.

More detailed information about the Gaussian measure in Banach space can be found in
the books by Kuo [11], Ledoux and Talagrand [12].

Maiorov, Fang Gensun and Ye Peixin have researched the exact order of the Kolomogo-
rov-(N , δ)-width and the linear-(N , δ)-width of univariate Sobolev space W r

2 (T).

Theorem 4.1 ([3–6]) Let r > 1
2 , δ ∈ (0, 1

2 ], 1 ≤ q ≤ ∞, N ∈N. Then

dN ,δ
(
W r

2 (T),μ, Lq(T)
) � N–(r+ ρ–1

2 )
√

1 +
1
N

ln
1
δ

,

and

λN ,δ
(
W r

2 (T),μ, Lq(T)
) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N–(r+ ρ–1
2 )

√
1 + 1

N ln 1
δ
, 1 ≤ q < 2,

N–(r+ ρ–1
2 )(1 + N– 1

q
√

ln 1
δ
), 2 ≤ q < ∞,

N–(r+ ρ–1
2 )

√
ln N

δ
, q = ∞.

We now discuss the order of Gel’fand-(N , δ)-width of W r
2 (T) in Lq(T). It is the main

result of this section.

Theorem 4.2 Let r > 1
2 , δ ∈ (0, 1

2 ], 1 ≤ q < ∞, N ∈ N. Then

dN
δ

(
W r

2 (T),μ, Lq(T)
) �

⎧
⎨

⎩

N–(r+ ρ–1
2 )

√
1 + 1

N ln 1
δ
, 1 ≤ q < 2,

N–(r+ ρ–1
2 )(1 + N– 1

q
√

ln 1
δ
), 2 ≤ q < ∞.

According to Theorem 2.1 and Theorem 4.1, we can easily obtain the lower bound of
Theorem 4.2. Now, we just need to estimate the upper bound of Theorem 4.2 by the dis-
cretization method. At first, we introduce some notations and results.

For natural number k, set

Sk =
{

n ∈ Z0 : 2k–1 ≤ |n| < 2k , k ∈ N
}

, Fk = span
{

eint : n ∈ Sk
}

.

It is obvious that

|Sk| = 2k , dim Fk = |Sk| = 2k , (4)

where |A| denotes the cardinality of A.
For arbitrary natural number k and x =

∑
n∈Z0

cneint, denote

Fk = span{en | n ∈ Sk}

and

	kx(t) =
∑

n∈Sk

cneint.
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Lemma 4.1 ([13]) Let r ∈R, 1 < q < ∞ and x ∈ Fk . Then

2rk‖x‖Lq � ∥∥x(r)∥∥
Lq

, ‖x‖Lq � 2– k
q
∥∥x(tj)2k

j=1
∥∥

lq |Sk | ,

where tj = 2π j
2k , j = 1, 2, . . . , 2k .

For arbitrary x ∈ Fk , by Lemma 4.1, we have

‖x‖Lq � 2–rk∥∥x(r)∥∥
Lq

� 2–rk– k
q
∥∥x(r)(tj)2k

j=1
∥∥

lq |Sk | . (5)

In order to establish the discrete theorem to estimate the upper bound, we consider the
polynomial in the space Fk

ϕk,j(t) =
∑

n∈Sk

ein(t–tj), j ∈ 1, 2, . . . , 2k .

We have

(
Drx

)
(tj) =

〈
Drx,ϕk,j

〉
, x ∈ Fk .

Plugging this into Eq. (5), we obtain

‖x‖Lq � 2–rk– k
q
∥∥{〈

Drx,ϕk,j
〉}mk

j=1

∥∥
lq |Sk | . (6)

For any k ∈N, we consider the following mapping:

Ik : Fk → l|Sk |
q , x �→ {〈

Drx,ϕk,j
〉}2k

j=1.

By (6), Ik is linear isomorph from the space Fk into the space l|Sk |
q .

For any k ∈N, let

σk,j =:
〈
Cμϕk,j(t),ϕk,j(t)

〉
=

∑

n∈Z0

|n|–ρ
∣∣〈ϕk,j(t), eint〉∣∣ =

∑

n∈Sk

|n|–ρ � 2–k(ρ–1), j = 1, . . . , 2k ,

and

σ := σk,j, j = 1, . . . , 2k .

Then there is c′ > 0 such that σ = c′2–k(ρ–1).

Theorem 4.3 Suppose 1 < q < ∞, r > 1
2 , δ ∈ (0, 1

2 ], N ∈N. Let {Nk} and {δk} be nonnegative
integer sequence and nonnegative real sequence, respectively, in which

∑
k∈Z Nk ≤ N and

∑
k∈Z δk ≤ δ. Then

dN
δ

(
W r

2 (T),μ, Lq(T)
) �

∑

k∈Z

2–(r+ ρ–1
2 )k– k

q dNk
δk

(
l|Sk |
2 ,γ , l|Sk |

q
)
.
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Proof For any k ∈N. From Theorem 3.3, there is a positive constant c′
q such that

dNk
δk

(
l|Sk |
2 ,γ , l|Sk |

q
)

=

⎧
⎨

⎩

c′
q|Sk|

1
q – 1

2
√

|Sk| + ln 1
δk

, 1 ≤ q < 2,

c′
q(|Sk|

1
q +

√
ln 1

δk
), 2 ≤ q < ∞.

Let

Qk =
{

y ∈ l|Sk |
q : ‖y‖

l
|Sk |
q

> c′′c′
q

–1dNk
δk

}
,

where dNk
δk

=: dNk
δk

(l|Sk |
2 ,γ , l|Sk |

q ), c′′ = c0, if 1 ≤ q ≤ 2, and c′′ = cq, if 2 ≤ q ≤ ∞. For c0 and cq

see Lemma 3.1 and Lemma 3.2, respectively. By

‖x‖
l
|Sk |
q

≤ |Sk|
1
q – 1

2 ‖x‖
l
|Sk |
2

, 1 ≤ q ≤ 2,

and Theorem 3.3, we can conclude that if y ∈ Qk , then

y ∈
{

x ∈R
|Sk | : ‖x‖

l|Sk |
2

> c0(
√|Sk| +

√

ln
1
δk

}
, 1 ≤ q ≤ 2,

y ∈
{

x ∈R
|Sk | : ‖x‖

l|Sk |
q

> cq

(
|Sk|

1
q +

√

ln
1
δk

)}
, 2 ≤ q < ∞.

From Lemma 3.1 and Lemma 3.2, we have

γ (Qk) ≤ δk .

It is clear that Qk satisfies the condition (2) in Definition 2.4.
Let Lk be a subspace in l|Sk |

2 with codimension at most Nk . Then

‖y‖
l|Sk |
q

≤ c′′c′
q

–1dNk
δk

, y ∈ Lk ∩ (
l|Sk |
2 \ Qk

)
.

For any x ∈ W r
2 (T), by (5), there is a constant c′′′ > 0 such that

‖	kx‖Lq ≤ c′′′2–rk– k
q
∥∥{〈

Drx,ϕk,j
〉}2k

j=1

∥∥
lq |Sk | . (7)

Consider the set of W r
2 (T)

Gk =
{

x ∈ W r
2 (T) : ‖	kx‖Lq > c′′c′

q
–1c′′′2–rk– k

q σ
1
2 dNk

δk

}
.

Then

μ(Gk) ≤ μ
({

x ∈ W r
2 (T) :

∥
∥{〈

Drx,ϕk,j
〉}|Sk |

j=1

∥∥
lq |Sk | > c′′c′

q
–1

σ
1
2 dNk

δk

})

= γ
{

y ∈R
|Sk | :

∥∥σ
1
2 y

∥∥
lq |Sk | > c′′c′

q
–1

σ
1
2 dNk

δk

}

= γ
{

y ∈R
|Sk | : ‖y‖lq |Sk | > c′′c′

q
–1dNk

δk

}
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= γ (Qk)

≤ δk .

It is clear that the subspace Fk := D–rI–1
k Lk has codimension at most Nk in W r

2 (T) and

‖	kx‖Lq � 2–(r+ ρ–1
2 )k– k

q dNk
δk

(
l|Sk |
2 ,γ , l|Sk |

q
)
, x ∈ (

W r
2 (T) \ Gk

) ∩ Fk . (8)

Consider the set G =
⋃∞

k=1 Gk and the subspace FN =
∑

k Fk ⊂ W r
2 (T), where the sum is a

direct sum. We obtain

μ(G) ≤
∑

k

μ(Gk) ≤
∑

k

δk ≤ δ, codim FN ≤
∑

k

Nk ≤ N .

By the definition of the Gel’fand-(N , δ)-width and (8), we have

dN
δ

(
W r

2 (T),μ, Lq(T)
) ≤ sup

x∈(W r
2 (T)\G)∩FN

‖x‖Lq

≤ sup
x∈(W r

2 (T)\G)∩FN

∑

k

‖	x‖Lq

≤
∑

k

sup
x∈(W r

2 (T)\Gk )∩Fk

‖	x‖Lq

�
∑

k

2–(r+ ρ–1
2 )k– k

q dNk
δk

(
l|Sk |
2 ,γ , l|Sk |

q
)
. �

In order to estimate the upper bound of Theorem 4.3, we also need the following lemma.

Lemma 4.2 ([13]) Let N be natural number set, k′ = [log2 N]. For arbitrary k ∈N, let

Nk =

⎧
⎨

⎩
|Sk|, k ≤ k′,

[N2k′–k], k > k′,

δk =

⎧
⎨

⎩
0, k ≤ k′,

δ2k′–k , k > k′.

Then {Nk}, {δk} satisfy the condition of Theorem 4.3, where [x] denotes the largest integer
no larger than x.

Now we prove Theorem 4.2.

Proof According to Theorem 2.1 and Theorem 4.1, we can easily obtain the lower bound
of Theorem 4.2. We now just need to prove the upper bound.

(1) For 1 ≤ q ≤ 2, by the definition of ‖ · ‖Lq ,

dN
δ

(
W r

2 (T),μ, Lq(T)
) ≤ dN

δ

(
W r

2 (T),μ, L2(T)
)
.

Considering dj
0(lj

2,γ , lj
2) = 0, by Theorem 4.3, Lemma 4.2 and Theorem 3.3, we have

dN
δ

(
W r

2 (T),μ, Lq(T)
) ≤ dN

δ

(
W r

2 (T),μ, L2(T)
)
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�
∑

k

2–(r+ ρ–1
2 )k– k

2 dNk
δk

(
l|Sk |
2 ,γ , l|Sk |

2
)

�
∑

k>k′
2–(r+ ρ–1

2 )k– k
2 dNk

δk

(
l|Sk |
2 ,γ , l|Sk |

2
)

�
∑

k>k′
2–(r+ ρ–1

2 )k– k
2

√

|Sk| + ln
1
δk

�
∑

k>k′
2–(r+ ρ–1

2 )k– k
2
√

2k +
∑

k>k′
2–(r+ ρ–1

2 )k– k
2

√

ln
2k–k′

δ

�
∑

k>k′
2–(r+ ρ–1

2 )k +
∑

k>k′
2–(r+ ρ–1

2 )k– k
2
√

k – k′
√

ln
1
δ

� 2–(r+ ρ–1
2 )k′

+ 2–(r+ ρ–1
2 )k′– k′

2

√

ln
1
δ

� 2–(r+ ρ–1
2 )k′

(
1 + 2– k′

2

√

ln
1
δ

)

� N–(r+ ρ–1
2 )

√

1 +
1
N

ln
1
δ

.

(2) For 2 < q < ∞, by Theorem 4.3, Lemma 4.2 and Theorem 3.3, we have

dN
δ

(
W r

2 (T),μ, Lq(T)
) �

∑

k>k′
2–(r+ ρ–1

2 )k– k
q dNk

δk

(
l|Sk |
2 ,γ , l|Sk |

q
)

�
∑

k>k′
2–(r+ ρ–1

2 )k– k
q

(
|Sk|

1
q +

√

ln
1
δk

)

�
∑

k>k′
2–(r+ ρ–1

2 )k– k
q 2

k
q +

∑

k>k′
2–(r+ ρ–1

2 )k– k
q

√

ln
2k–k′

δ

�
∑

k>k′
2–(r+ ρ–1

2 )k +
∑

k>k′
2–(r+ ρ–1

2 )k– k
q
√

k – k′
√

ln
1
δ

� 2–(r+ ρ–1
2 )k′

+ 2–(r+ ρ–1
2 )k′– k′

q

√

ln
1
δ

� 2–(r+ ρ–1
2 )k′

(
1 + 2– k′

q

√

ln
1
δ

)

� N–(r+ ρ–1
2 )

(
1 + N– 1

q

√

ln
1
δ

)
. �
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