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Abstract
In this paper, we present the best possible parameters α(r), β(r) such that the double
inequality

[α(r)Mr(a,b) + (1 – α(r))Nr(a,b)]1/r < TD
[
M(a,b),N(a,b)

]

<
[
β(r)Mr(a,b) + (1 – β(r))Nr(a,b)

]1/r
,

holds for all r ≤ 1 and a,b > 0 with a �= b, where

TD(a,b) :=
∫ π /2

0

√
a2 cos2 θ + b2 sin2 θ dθ

is the Toader mean, andM, N are means. As applications, we attain the optimal
bounds for the Toader mean in terms of arithmetic, contraharmonic, centroidal and
quadratic means, and then we provide some new bounds for the complete elliptic
integral of the second kind.
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1 Introduction
Let I ⊂R be an open interval. A two-variable function M : I2 → I is called a mean on the
interval I if

min{a, b} ≤ M(a, b) ≤ max{a, b}, a, b ∈ I.

If for all a, b ∈ I , a �= b, these inequalities are strict, M is called strict mean. M is called
symmetric if M(b, a) = M(a, b) holds for all a, b ∈ I . If M(ta, tb) = tM(a, b) holds for all
a, b, t ∈ R+, then M is called homogeneous.
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For all a, b ∈R+, the power mean or the Hölder mean Mp for p ∈R is defined by

Mp(a, b) =

⎧
⎨

⎩
( ap+bp

2 )
1
p , p �= 0,√

ab, p = 0.

As some special cases,

M1 =
a + b

2
=: A(a, b), M0 =

√
ab =: G(a, b),

M–1 =
2ab

a + b
=: H(a, b), M2 =

√
a2 + b2 =: Q(a, b),

are, respectively, the classical arithmetic mean, geometric mean, harmonic mean and
quadratic mean.

For a, b ∈ R+, the Gauss-iteration of the arithmetic mean A and the geometric mean G
defined by

a1 := a, b1 := b; an+1 :=
an + bn

2
, bn+1 :=

√
anbn, n ∈N,

satisfies

lim
n→∞ an = lim

n→∞ bn =: A ⊗ G(a, b),

which is called the Gauss arithmetic–geometric mean [1]. As is well known, Gauss found
the general formula for A ⊗ G as follows:

A ⊗ G(a, b) =
(

2
π

∫ π
2

0

dt√
a2 cos2 t + b2 sin2 t

)–1

, a, b ∈R+,

which can be rewritten as

A ⊗ G(a, b) =

⎧
⎨

⎩

( 2a
π

κ(
√

1 – ( b
a )2))–1, if a ≥ b,

( 2b
π

κ(
√

1 – ( a
b )2))–1, if a < b,

a, b ∈R+,

where

κ(r) =
∫ π/2

0

1√
1 – r2 sin2 θ

dθ , r ∈ (0, 1), (1.1)

is the complete elliptic integral of the first kind.
In 1991, Haruki considered a more general mean [2]:

Mϕ,n(a, b) := ϕ–1
(

1
2π

∫ 2π

0
ϕ
(
rn(θ )

)
dθ

)
,

where ϕ : R+ → R is strictly monotonic function and rn(θ ) is given by

rn(θ ) =

⎧
⎨

⎩
(an cos2 θ + bn sin2 θ )1/n, if n �= 0,

acos2 θ bsin2 θ , if n = 0,
a, b ∈R+.

It is well known that Mϕ,n = A ⊗ G for the case n = 2 and ϕ(x) = x–1.
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In 1998, Toader found that, for the case n = 2 and ϕ(x) = x, the mean ϕϕ,n(a, b) becomes
another new mean TD(a, b), called the Toader mean later, which has a close relationship
with the complete elliptic integral of the second kind [3], that is,

TD(a, b) =
∫ π/2

0

√
a2 cos2 θ + b2 sin2 θ dθ , a, b ∈R+. (1.2)

It can be rewritten as

TD(a, b) =

⎧
⎨

⎩

2a
π

ε(
√

1 – ( b
a )2), if a ≥ b,

2b
π

ε(
√

1 – ( a
b )2), if a < b,

a, b ∈R+,

where

ε(r) =
∫ π

2

0

√
1 – r2 sin2 θ dθ , r ∈ (0, 1), (1.3)

is the complete elliptic integral of the second kind.
For a, b ∈R+ with a �= b, the contraharmonic mean C(a, b), the centroidal mean C(a, b),

the logarithmic mean L(a, b), the identric mean I(a, b) and the first Seiffert mean P(a, b)
[4] are, respectively, defined by

C(a, b) =
a2 + b2

a + b
, C(a, b) =

2(a2 + ab + b2)
3(a + b)

, L(a, b) =
b – a

log b – log a
,

I(a, b) =
1
e

(
aa

bb

) 1
a–b

, P(a, b) =
a – b

2 arcsin( a–b
a+b )

,
(1.4)

which satisfy the well-known chain of inequalities

H(a, b) < G(a, b) < L(a, b) < P(a, b) < I(a, b)

< A(a, b) < TD(a, b) < C(a, b) < Q(a, b) < C(a, b).

In 1997, Vuorinen [5] conjectured that

TD(a, b) > M3/2(a, b),

for all a, b > 0 with a �= b. The conjecture was proved by Qiu and Shen [6], and Barnard,
Pearce and Richards [7], respectively.

In [8], Alzer and Qiu presented a best possible upper power mean bound for the Toader
mean as follows:

TD(a, b) < Mlog 2/ log(π/2)(a, b),

for all a, b > 0 with a �= b.
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Neuman [9] proved that the inequalities

(a + b)
√

ab – ab
A ⊗ G(a, b)

< TD(a, b) <
4(a + b)

√
ab + (a – b)2

8A ⊗ G(a, b)

hold for all a, b > 0 with a �= b.
Kazi and Neuman [10] proved the inequality

TD(a, b) <
1
4
(√

(2 +
√

2)a2 + (2 –
√

2)b2 +
√

(2 +
√

2)b2 + (2 –
√

2)a2
)

holds for all a, b > 0 with a �= b.
In [11], the authors proved the inequalities

α1A(a, b) + (1 – α1)C(a, b) < TD
(
A(a, b), C(a, b)

)
< β1A(a, b) + (1 – β1)C(a, b),

Aα2 (a, b)C1–α2 (a, b) < TD
(
A(a, b), C(a, b)

)
< Aβ2 (a, b)C1–β2 (a, b),

α3

A(a, b)
+

1 – α3

C(a, b)
<

1
TD(A(a, b), C(a, b))

<
β3

A(a, b)
+

1 – β3

C(a, b)
,

C
(
α4a + (1 – α4)b,α4b + (1 – α4)a

)
< TD

(
A(a, b), C(a, b)

)

< C
[
β4a + (1 – β4)b,β4b + (1 – β4)a

]
,

hold for all a, b > 0 with a �= b if and only if

α1 ≥ 1/2, β1 ≤ 2
[

1 –
3
π

ε(1/3) +
4

3π
κ(1/3)

]
,

α2 ≥ 1/2, β2 ≤ log
[
3π/

(
9ε(1/3) – 4κ(1/3)

)]
,

α3 ≤ [
3π – 9ε(1/3) + 4κ(1/3)

]
/
[
9ε(1/3) – 4κ(1/3)

]
, β3 ≥ 1/2,

α4 ≤ (2 +
√

2)/4, β4 ≥ (
1 +

√[
18ε(1/3) – 8κ(1/3)

]
/3π – 1

)
/2.

Recently, there were published numerous articles which focus on the bounds for the
Toader mean [12–23]. For example, Zhao, Chu and Zhang [24] presented the best possible
parameters α(r) and β(r) such that the double inequality

[α(r)Ar(a, b) + (1 – α(r)Qr(a, b))]1/r < TD
[
A(a, b), Q(a, b)

]

<
[
β(r)Ar(a, b) +

(
1 – β(r)Qr(a, b)

)]1/r

holds for all r ≤ 1 and a, b > 0 with a �= b.
Motivated by the above mentioned work, in this paper, for two means M, N , we present

the best possible parameters α(r), β(r) such that the double inequality

[α(r)Mr(a, b) + (1 – α(r)Nr(a, b))]1/r < TD
[
M(a, b), N(a, b)

]

<
[
β(r)Mr(a, b) +

(
1 – β(r)Nr(a, b)

)]1/r

holds for all r ≤ 1 and a, b > 0 with a �= b.
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2 Lemmas
In what follows, we will need some useful functional relations about complete elliptic in-
tegrals which we collect.

Lemma 1 ([1]) For r ∈ (0, 1),
(i)

κ
(
0+)

= ε
(
0+)

=
π

2
,

(ii)

dκ(r)
dr

=
ε(r) – (1 – r2)κ(r)

r(1 – r2)
,

dε(r)
dr

=
ε(r) – κ(r)

r
,

(iii)

ε(r) =
(
1 + r′)ε

(
1 – r′

1 + r′

)
–

2r′

1 + r′ κ
(

1 – r′

1 + r′

)
,

where r′ =
√

1 – r2.

Lemma 2 For all 0 < r < 1, the following inequalities hold:
(i) ε(r) > π

4 (1 +
√

1 – r2),
(ii)

√
1 – r2κ(r) + ε(r) < π

2 (1 +
√

1 – r2),
(iii) (1 – r2)κ(r) < ε(r) < (1 – r2

2 )κ(r) < κ(r).

Proof (i) In fact, by the definition of ε(r), we get

ε(r) –
π

4
(
1 +

√
1 – r2

)

=
∫ π

2

0

√
1 – r2 sin2 θ dθ –

π

4
(
1 +

√
1 – r2

)

=
∫ π

4

0

(√
1 – r2 sin2 θ +

√
1 – r2 cos2 θ

)
dθ –

∫ π
4

0

(
1 +

√
1 – r2

)
dθ

=
∫ π

4

0

(
√

2 – r2 + 2
√

1 – r2 + r4 sin2 θ cos2 θ –
√

2 – r2 + 2
√

1 – r2
)

dθ > 0.

(ii) By the definition of ε(r) and κ(r), we get

√
1 – r2κ(r) + ε(r) –

π

2
(
1 +

√
1 – r2

)

=
√

1 – r2
∫ π

2

0

1√
1 – r2 sin2 θ

dθ +
∫ π

2

0

√
1 – r2 sin2 θ dθ –

∫ π
2

0

(
1 +

√
1 – r2

)
dθ

= –
∫ π

2

0

r2 cos2 θ (1 –
√

1 – r2 sin2 θ )√
1 – r2 sin2 θ (

√
1 – r2 +

√
1 – r2 sin2 θ )

dθ < 0.
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(iii) By the definition of ε(r) and κ(r), we get

(
1 – r2)κ(r) – ε(r)

=
(
1 – r2)

∫ π
2

0

1√
1 – r2 sin2 θ

dθ –
∫ π

2

0

√
1 – r2 sin2 θ dθ

=
∫ π

2

0

r2(sin2 θ – 1)√
1 – r2 sin2 θ

dθ < 0

and
(

1 –
r2

2

)
κ(r) – ε(r)

=
(

1 –
r2

2

)∫ π
2

0

1√
1 – r2 sin2 θ

dθ –
∫ π

2

0

√
1 – r2 sin2 θ dθ

=
∫ π

2

0

r2(sin2 θ – 1
2 )√

1 – r2 sin2 θ
dθ

= r2
∫ π

4

0

(
sin2 θ – 1

2√
1 – r2 sin2 θ

+
cos2 θ – 1

2√
1 – r2 cos2 θ

)
dθ

= r2
∫ π

4

0

(
sin2 θ –

1
2

)
·
(

1√
1 – r2 sin2 θ

–
1√

1 – r2 cos2 θ

)
dθ > 0. �

Lemma 3 Let 0 < k0 < 1, k′
0 =

√
1 – k2

0 , t ∈ (0, k′
0), λ = 1– 2

π ε(k′
0)

1–k0
and

f (t) :=
πp
2

√
1 – t2 +

π

2
(1 – p) – ε(t). (2.1)

Then
(i) f (t) < 0 for all t ∈ (0, k′

0) if and only if p ≥ 1/2,
(ii) f (t) > 0 for all t ∈ (0, k′

0) if and only if p ≤ λ.

Proof Firstly, we can, respectively, give the first-, second- and third-order derivatives of f
as follows:

f ′(t) =
f1(t)

t
√

1 – t2
, f1(t) =

√
1 – t2

[
κ(t) – ε(t)

]
–

πp
2

t2, (2.2)

f ′
1(t) =

t[2ε(t) – κ(t)]√
1 – t2

– πpt, (2.3)

f ′′
1 (t) =

(3 – 2t2)ε(t) – (2 – t2)κ(t)
(1 – t2) 3

2
– πp, (2.4)

f ′′′
1 (t) = –

(1 + t2)[κ(t) – ε(t)] + t2κ(t)

t(1 – t2) 5
2

< 0, (2.5)

for all t ∈ (0, k′
0).

Letting t → 0, from (2.1)–(2.4), we have

f
(
0+)

= f1
(
0+)

= f ′
1
(
0+)

= 0, f ′′
1
(
0+)

= π

(
1
2

– p
)

, (2.6)
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and substituting t = k′
0 into (2.1)–(2.4), we get

f
(
k′

0
)

=
π

2
(1 – k0)(λ – p), f1

(
k′

0
)

=
πk′2

0
2

(
λ∗ – p

)
, (2.7)

f ′
1
(
k′

0
)

= πk′
0
(
λ∗∗ – p

)
, f ′′

1
(
k′

0
)

= π
(
λ∗∗∗ – p

)
, (2.8)

where

λ =
π – 2ε(k′

0)
π (1 – k0)

, λ∗ =
2k0(κ(k′

0) – ε(k′
0))

π (1 – k2
0)

,

λ∗∗ =
(2ε(k′

0) – κ(k′
0))

πk0
, λ∗∗∗ =

(3 – 2k′2
0 )ε(k′

0) – (2 – k′2
0 )κ(k′

0)
πk3

0
.

By Lemma 2, we can easily prove that

λ∗∗∗ < λ∗∗ < λ∗ < λ <
1
2

. (2.9)

Since f ′′′(t) < 0, t ∈ (0, k′
0), f ′′(t) is strictly decreasing on (0, k′

0). Then we divide the proof
into six cases in the following.

Case 1 p ≥ 1/2. Then from (2.6) we can clearly see that

f ′′
1
(
0+) ≤ 0. (2.10)

It follows from (2.10) and the monotonicity of f ′′
1 (t) that f ′

1(t) is strictly decreasing on (0, k′
0).

Therefore f (t) < 0 for all t ∈ (0, k′
0), as follows easily from (2.2), (2.6) and the monotonicity

of f ′
1(t).

Case 2 λ < p < 1/2. From (2.6), (2.7) and (2.8), we have

f
(
k′

0
)

< 0, f1
(
k′

0
)

< 0, f ′
1
(
k′

0
)

< 0, f ′′
1
(
k′

0
)

< 0, (2.11)

and

f ′′
1
(
0+)

> 0. (2.12)

It follows from (2.11), (2.12) and the monotonicity of f ′′
1 (t) that there exists t1 ∈ (0, k′

0)
such that f ′

1(t) is strictly increasing on (0, t1] and strictly decreasing on [t1, k′
0). Then from

(2.6), (2.11) and the piecewise monotonicity of f ′
1(t) we clearly see that there exists t2 ∈

(0, k′
0) such that f1(t) is strictly increasing on (0, t2] and strictly decreasing on [t2, k′

0). The
piecewise monotonicity of f1(t) and f1(0+) = 0, f1(k′

0) < 0, show as a result that there exists
t3 ∈ (0, k′

0) such that f (t) is strictly increasing on (0, t3] and strictly decreasing on [t3, k′
0).

Therefore, we find that there exists t4 ∈ (0, k′
0) such that f (t) > 0 on (0, t4] and f (t) < 0

[t4, k′
0) as follows easily from f (0+) = 0, f (k′

0) < 0 and the piecewise monotonicity of f (t).
Case 3 λ∗ < p ≤ λ. Then (2.7) and (2.8) lead to

f
(
k′

0
) ≥ 0, f1

(
k′

0
)

< 0, f ′
1
(
k′

0
)

< 0, f ′′
1
(
k′

0
)

< 0,
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and

f ′′
1
(
0+)

> 0.

Similar to Case 2, the piecewise monotonicity of f (t) can be proved, that is, f (t) is firstly
strictly increasing and then strictly decreasing on (0, k′

0). It follows from f (0+) = 0, f (k′
0) ≥ 0

that f (t) > 0 for all t ∈ (0, k′
0).

Case 4 λ∗∗ < p ≤ λ∗. Then (2.7) and (2.8) lead to

f
(
k′

0
)

> 0, f1
(
k′

0
) ≥ 0, f ′

1
(
k′

0
)

< 0, f ′′
1
(
k′

0
)

< 0,

and

f ′′
1
(
0+)

> 0.

We can similarly prove that f1(t) has piecewise monotonicity, that is, f1(t) is firstly strictly
increasing and then strictly decreasing on (0, k′

0).
It follows from f1(0+) = 0, f1(k′

0) ≥ 0 and the piecewise monotonicity of f1(t) that

f1(t) > 0 (2.13)

for all t ∈ (0, k′
0). By (2.2) and (2.13), then f (t) is strictly increasing on (0, k′

0). Therefore, we
get f (t) > 0 for all t ∈ (0, k′

0) from f (0+) = 0.
Case 5 λ∗∗∗ < p ≤ λ∗∗. Then (2.7) and (2.8) lead to

f
(
k′

0
)

> 0, f1
(
k′

0
)

> 0, f ′
1
(
k′

0
) ≥ 0, f ′′

1
(
k′

0
)

< 0,

and

f ′′
1
(
0+)

> 0.

Since f ′′
1 (0+) > 0, f ′′

1 (k′
0) < 0 and f ′′

1 (t) is strictly decreasing, we find that f ′
1(t) is firstly strictly

increasing and then strictly decreasing on (0, k′
0). Then f ′

1(t) > 0 holds for all t ∈ (0, k′
0) for

f ′
1(0+) = 0, f ′

1(k′
0) ≥ 0. Therefore, we get f (t) > 0 for all t ∈ (0, k′

0) from (2.2) and (2.6).
Case 6 p ≤ λ∗∗∗. Then (2.7) and (2.8) lead to

f ′′
1
(
0+)

> 0, f ′′
1
(
k′

0
) ≥ 0.

Since f ′′
1 (t) is strictly decreasing, we have f ′′

1 (t) > 0 for all t ∈ (0, k′
0). So f ′

1(t), f1(t), f (t) are
strictly increasing from f1(0+) = f ′

1(0+) = 0. Therefore, we get f (t) > 0 for all t ∈ (0, k′
0) from

f (0+) = 0.
Therefore, we have f (t) < 0 for all t ∈ (0, k′

0) if and only if p ≥ 1/2, and f (t) > 0 for all
t ∈ (0, k′

0) if and only if p ≤ λ. �

Lemma 4 Let 0 < k0 < 1, r ∈R, a, b > 0 with k0 < a/b < 1, c0 = 2
π
ε(k′

0), k′
0 =

√
1 – k2

0 , c1 = k0,
λ(r) and U(r; a, b) be, respectively, defined by

λ(r) =
1 – cr

0
1 – cr

1
(r �= 0), λ(0) =

log c0

log c1
, (2.14)
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and

U(r; a, b) =
[
λ(r)ar +

(
1 – λ(r)

)
br] 1

r (r �= 0), U(0; a, b) = aλ(0)b1–λ(0). (2.15)

Then the function r → U(r; a, b) is strictly decreasing on (–∞,∞).

Proof When 0 < t < 1,

ε
(√

1 – t2
)

–
π

2
t =

∫ π
2

0

(√
cos2 θ + t2 sin2 θ – t

)
dθ > 0.

Hence, 0 < c1 < c0 < 1.
Let x = a/b ∈ (k0, 1), r �= 0. Then

log U(r; a, b) = log b +
1
r

log
[
λ(r)

(
xr – 1

)
+ 1

]
, (2.16)

∂ log U(r; a, b)
∂r

=
λ′(r)(xr – 1) + λ(r)xr log x

r(λ(r)(xr – 1) + 1)
–

log[λ(r)(xr – 1) + 1]
r2 , (2.17)

where

λ′(r) =
(cr

1 – 1)cr
0 log c0 – (cr

0 – 1)cr
1 log c1

(cr
1 – 1)2 . (2.18)

Substituting x = k0 and x = 1 into (2.17), we get

∂ log U(r; a, b)
∂r

∣∣
∣∣
x=k0

=
∂ log U(r; a, b)

∂r

∣∣
∣∣
x=1

= 0. (2.19)

Now we give the derivative of (2.17) with respect to x as follows:

∂2 log U(r; a, b)
∂r ∂x

=
λ(r)xr–1

(λ(r)(xr – 1) + 1)2 V (r, x), (2.20)

where

V (r, x) :=
(
1 – λ(r)

)
log x +

λ′(r)
λ(r)

. (2.21)

Substituting x = k0 and x = 1 into (2.21), we get

V (r, k0) = cr
0

(
log c0

cr
0 – 1

–
log c1

cr
1 – 1

)
, V (r, 1) =

log 1
c0

( 1
c0

)r – 1
–

log 1
c1

( 1
c1

)r – 1
. (2.22)

Because the function t 
→ log t/(tr – 1) is strictly decreasing on (0, +∞) and c0 > c1, we find
that V (r, k0) < 0 and V (r, 1) > 0. Note that the function x 
→ V (r, x) is strictly increasing on
(1, k0) for λ(r) ∈ (0, 1). There exists x0 ∈ (0, 1) such that the function x 
→ ∂ log U(r; a, b)/∂r
is strictly decreasing on (1, x0) and strictly increasing on (x0, k0). Therefore, we have, for
all a, b > 0 with k0 < a/b < 1, r �= 0,

∂ log U(r; a, b)
∂r

< 0. (2.23)
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Since

lim
r→0

λ(r) = λ(0), lim
r→0

U(r; a, b) = U(0; a, b),

the function r 
→ U(r; a, b) is strictly decreasing on (–∞, +∞) from (2.23). �

3 Main result
Theorem 1 Let 0 < k0 < 1, k′

0 =
√

1 – k2
0 and the functions M, N : ((0, +∞), (0,∞)) 
→

(0, +∞) be two means which satisfy

k0 <
M(a, b)
N(a, b)

< 1,

for all a, b > 0 with a �= b. Suppose c0 = 2ε(k′
0)/π , c1 = k0 and λ(r) be defined by (2.14). Then

the double inequality

[
α(r)Mr(a, b) +

(
1 – α(r)Nr(a, b)

)]1/r < TD
[
M(a, b), N(a, b)

]

<
[
β(r)Mr(a, b) +

(
1 – β(r)Nr(a, b)

)]1/r (3.1)

holds for all r ≤ 1 and a, b > 0 with a �= b if and only if

α(r) ≥ 1/2, β(r) ≤ λ(r), (3.2)

where r = 0 is the limit value of r → 0.

Proof We first prove the case r = 1. Let

t =

√

1 –
(

M(a, b)
N(a, b)

)2

∈ (
0, k′

0
)
,

then we get

M(a, b) = N(a, b)
√

1 – t2, TD
[
M(a, b), N(a, b)

]
=

2
π

N(a, b)ε(t),

pM(a, b) + (1 – p)N(a, b) – TD
[
M(a, b), N(a, b)

]
=

2
π

N(a, b)f (t),

where f (t) is defined as in Lemma 3.
Therefore, by Lemma 3, we get the result for the case r = 1. So we have

M(a, b) + N(a, b)
2

< TD
[
M(a, b), N(a, b)

]
< λ(1)M(a, b) +

(
1 – λ(1)

)
N(a, b), (3.3)

where λ(1) = 1– 2
π ε(k′

0)
1–k0

:= λ.
By Lemma 4 and for the function r 
→ [(ar + br)/2]1/r being strictly increasing, we get

λ(1)M(a, b) +
(
1 – λ(1)

)
N(a, b) <

[
λ(r)Mr(a, b) +

(
1 – λ(r)

)
Nr(a, b)

]1/r (3.4)
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and

[
Mr(a, b) + Nr(a, b)

2

]1/r

<
M(a, b) + N(a, b)

2
, (3.5)

hold for all r < 1 and a, b > 0 with a �= b.
If α(r) ≥ 1

2 and β(r) ≤ λ(r), since M(a, b) < N(a, b),

[
α(r)Mr(a, b) +

(
1 – α(r)Nr(a, b)

)]1/r ≤
[

Mr(a, b) + Nr(a, b)
2

]1/r

and

[
λ(r)Mr(a, b) +

(
1 – λ(r)

)
Nr(a, b)

]1/r ≤ [
β(r)Mr(a, b) +

(
1 – β(r)Nr(a, b)

)]1/r .

Then we find that the double inequalities (3.1) hold from (3.3)–(3.5). Thus we prove the
“if” part of our theorem.

To prove the converse implication, note that

TD[M(a, b), N(a, b)]
[ Mr(a,b)+Nr(a,b)

2 ] 1
r

=
21+1/r

π

ε(t)
[1 + (1 – t2)r/2]1/r ,

TD[M(a, b), N(a, b)]
[λ(r)Mr(a, b) + (1 – λ(r))Nr(a, b)] 1

r
=

2
π

ε(t)
[λ(r)(1 – t2)r/2 + 1 – λ(r)]1/r

and

lim
t→0+

21+1/r

π

ε(t)
[1 + (1 – t2)r/2]1/r = lim

t→k′
0

2
π

ε(t)
[λ(r)(1 – t2)r/2 + 1 – λ(r)]1/r = 1,

which imply that the bonds for α(r) and β(r) given by (3.2) are optimal. This completes
the proof. �

Remark 1 Using the symmetry of the Toader mean, we get the result for the case M(a, b) >
N(a, b).

4 Some examples
Example 1 Let c0 = 2ε(

√
3/2)/π = 0.770 · · · , c1 = 1/2 and λ(r) be defined by (2.14). Then

the double inequality

[α(r)Ar(a, b) + (1 – α(r)Cr(a, b))]1/r < TD
[
A(a, b), C(a, b)

]

<
[
β(r)Ar(a, b) +

(
1 – β(r)Cr(a, b)

)]1/r

holds for all r ≤ 1 and a, b > 0 with a �= b if and only if α(r) ≥ 1/2 and β(r) ≤ λ(r), where
r = 0 is the limit value of r → 0.

Proof Since

1
2

<
A(a, b)
C(a, b)

< 1,



Zhang et al. Journal of Inequalities and Applications        (2020) 2020:118 Page 12 of 14

letting k0 = 1/2, we have k′
0 =

√
3/2 and c0 = 2ε(

√
3/2)/π = 0.770 · · · , c1 = 1/2. By Theo-

rem 1, we get the result. �

Remark 2 (i) Let r = 1, Theorem 1 leads that the double inequality

α(1)A(x, y) +
(
1 – α(1)

)
C(x, y) < TD

(
A(x, y), C(x, y)

)
< β(1)A(x, y) +

(
1 – β(1)

)
C(x, y)

holds if and only if

α(1) ≥ 1/2,β(1) ≤ λ(1) = 2 –
4
π

ε(
√

3/2).

It follows from Lemma 1 (iii) that

ε(
√

3/2) =
3
2
ε(1/3) –

2
3
κ(1/3),

then

λ(1) = 2 –
4
π

ε(
√

3/2) = 2
[

1 –
3
π

ε(1/3) +
4

3π
κ(1/3)

]
.

Therefore, the result agrees well with Theorem 3.1 in [11].
(ii) Letting r = –1, Theorem 1 shows that the double inequality

α(–1)
A(x, y)

+
1 – α(–1)

C(x, y)
<

1
TD(A(x, y), C(x, y))

<
β(–1)
A(x, y)

+
1 – β(–1)

C(x, y)

holds if and only if

α(–1) ≥ 1/2,β(–1) ≤ λ(–1) =
π – 2ε(

√
3/2)

2ε(
√

3/2)
.

Since

ε(
√

3/2) =
3
2
ε(1/3) –

2
3
κ(1/3),

we have

λ(–1) =
π – 2ε(

√
3/2)

2ε(
√

3/2)
=

3π – 9ε(1/3) + 4κ(1/3)
9ε(1/3) – 4κ(1/3)

.

Therefore, the result agrees well with Theorem 3.3 in [11].

Example 2 Let c0 = 2ε(
√

7/4)/π = 0.879 · · · , c1 = 3/4, λ(r) is defined by (2.14). Then the
double inequality

[α(r)Ar(a, b) + (1 – α(r)Cr(a, b))]1/r < TD
[
A(a, b), C(a, b)

]

<
[
β(r)Ar(a, b) +

(
1 – β(r)Cr(a, b)

)]1/r

holds for all r ≤ 1 and a, b > 0, a �= b if and only if α2(r) ≥ 1/2 and β2(r) ≤ λ(r), where r = 0
is the limit value of r → 0.
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Proof Since

3
4

<
A(a, b)
C(a, b)

< 1,

letting k0 = 3/4, we have k′
0 =

√
7/4 and c0 = 2ε(

√
7/4)/π = 0.879 · · · , c1 = 3/4. Using The-

orem 1, we prove the result. �

Example 3 Let c0 = 2ε(
√

2/2)/π = 0.859 · · · , c1 =
√

2/2, λ(r) is defined by (2.14). Then the
double inequality

[α(r)Ar(a, b) + (1 – α(r)Qr(a, b))]1/r < TD
[
A(a, b), Q(a, b)

]

<
[
β2(r)Ar(a, b) +

(
1 – β2(r)Qr(a, b)

)]1/r

holds for all r ≤ 1 and a, b > 0, a �= b if and only if α(r) ≥ 1/2 and β(r) ≤ λ(r), where r = 0
is the limit value of r → 0.

Proof Since

√
2

2
<

A(a, b)
Q(a, b)

< 1,

letting k0 =
√

2/2, we have k′
0 =

√
2/2 and c0 = 2ε(

√
2/2)/π = 0.859 · · · , c1 =

√
2/2. Using

Theorem 1, we prove the result. �

Remark 3 The same result can be found in [24].

From the case r = 1 of Examples 1–3, we get the following results.

Corollary 1
(1) Let λ1 = 2 – 4ε(

√
3/2)/π = 0.458 · · · . Then, for all t ∈ (0,

√
3/2), the double inequality

π

4
√

1 – t2 +
π

4
< ε(t) <

π

2
λ1

√
1 – t2 +

π

2
(1 – λ1) (4.1)

holds.
(2) Let λ2 = 4 – 8ε(

√
7/4)/π = 0.482 · · · . Then, for all t ∈ (0,

√
7/4), the double inequality

π

4
√

1 – t2 +
π

4
< ε(t) <

π

2
λ2

√
1 – t2 +

π

2
(1 – λ2) (4.2)

holds.
(3) Let λ3 = (2 +

√
2)[1 – 2ε(

√
2/2)/π ] = 0.478 · · · . Then, for all t ∈ (0,

√
2/2), the double

inequality

π

4
√

1 – t2 +
π

4
< ε(t) <

π

2
λ3

√
1 – t2 +

π

2
(1 – λ3) (4.3)

holds.
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