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Abstract
The three-dimensional nematic liquid crystal flows with damping are considered in
this paper. The existence and uniqueness of strong solutions for the 3D nematic liquid
crystal flows with damping are proved for β ≥ 4 with any α > 0.
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1 Introduction
In this paper, we consider the following three-dimensional nematic liquid crystal flows
with damping:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tu – ν�u + (u · ∇)u + α|u|β–1u + ∇p = –λ∇ · (∇d � ∇d),
∂td + (u · ∇)d = γ (�d – f (d)),
∇ · u = 0,
u|∂D = d|∂D = 0,
u(x, 0) = u0(x), d(x, 0) = d0(x).

(1)

Here, x ∈ D ⊆ R
3 is a bounded domain with the boundary ∂D and t > 0. u = u(x, t) is

the velocity field of the flow, d = d(x, t) represents the (averaged) macroscopic/continuum
molecule orientation and p is the pressure. ν , λ, γ , α are positive constants, β ≥ 1 and
f (d) = 1

η2 (|d|2 – 1)d (η > 0). The 3 × 3 matrix is given by (∇d � ∇d)ij = ∂id · ∂jd for (1 ≤
i, j ≤ 3). For simplicity, we set ν = γ = λ = η = 1.

Recently, the 3D nematic liquid crystal flows were proposed by Lin ([1, 2]) and have
been extensively investigated. The damping term describes many physical situations such
as drag or friction effects, porous media flow, some dissipative mechanisms. When d = 0,
the problem (1) reduces to the three-dimensional Navier–Stokes equations with damp-
ing. In [3–6], the well-posedness of the three-dimensional Navier–Stokes equations with
damping is proved for β > 3 with any α > 0 and α ≥ 1

4 as β = 3. The global existence of
weak solutions of the 3D nematic liquid crystal flow was proved in [7]. In [8], the exis-
tence and uniqueness of strong solutions for the 3D magneto-micropolar equations were
proved for β ≥ 4 with any α > 0.
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This paper is organized as follows. In Sect. 2, we will prove the existence and uniqueness
of strong solutions for the 3D nematic liquid crystal flows with damping for β ≥ 4 with
any α > 0. Moreover, we get the following main result.

Theorem 1.1 Let (u0, d0) ∈ H1(D) × H2(D) such that ∇ · u0 = 0, for β ≥ 4 with any α > 0.
Then the problem (1) has a unique strong solution (u, d) satisfying for any given T > 0

u ∈ L∞(
0, T ; H1) ∩ L2(0, T ; H2) ∩ Lβ+1(0, T ; Lβ+1(D)

)
,

d ∈ L∞(
0, T ; H1) ∩ L∞(

0, T ; H2) ∩ L2(0, T ; H3),

|u| β–1
2 ∇u ∈ L2(0, T ; L2(D)

)
, ∇|u| β+1

2 ∈ L2(0, T ; L2(D)
)
.

2 Proof of Theorem 1.1
In this section, C represents a nonnegative constant whose value may be different from
line to line. Multiplying the first equation of Eq. (1) by u and the second equation of (1) by
–�d + f (d), integrating the result over D, and summing their results, then we have

1
2

d
dt

∫

D

(|u|2 + |∇d|2 + 2F(d)
)

dx +
∫

D

(|∇u|2 + α|u|β+1 +
∣
∣�d – f (d)

∣
∣2)dx = 0, (2)

here f (d) = ∇F(d), ((u · ∇)u, u) = (u,∇p) = ((u · ∇)d, f (d)) = (u,∇ |∇d|2
2 ) = 0 and ∇ · (∇d �

∇d) = ∇( |∇d|2
2 ) + �d · ∇d, i.e., F(d) = |d|4

4 – |d|2
2 . Then it is easy to get

‖u‖L∞(0,T ;L2) + ‖u‖Lβ+1(0,T ;Lβ+1) + ‖u‖L2(0,T ;H1) ≤ C. (3)

Multiplying the second equation of (1) by |d|2d, it is easy to get

1
4

d
dt

∫

D
|d|4 dx +

1
2
∥
∥∇|d|2∥∥2

L2 +
∫

D

(|d|2|∇d|2 + |d|6)dx =
∫

D
|d|4 dx. (4)

Applying the Gronwall inequality, then we have

∥
∥d(t)

∥
∥4

L4 +
∫ t

0

∥
∥∇|d|2∥∥2

L2 ds +
∫ t

0

∫

D

(|d|2|∇d|2 + |d|6)dx ds ≤ C(t, d0). (5)

Multiplying the second equation of (1) by f (d), we deduce

d
dt

∫

D
F(d) dx =

∫

D

(
�df (d) –

∣
∣f (d)

∣
∣2)dx. (6)

Adding (2)–(6) and using the Gronwall inequality and f (d) = (|d|2 – 1)d, we have

‖d‖L∞(0,T ;H1) + ‖d‖L2(0,T ;H2) ≤ C. (7)

Multiplying the first equation of (1) by –�u, it is easy to get

1
2

d
dt

‖∇u‖2
L2 + ‖�u‖2

L2 + α
∥
∥|u| β–1

2 ∇u
∥
∥2

L2 +
4α(β – 1)
(β + 1)2

∥
∥∇|u| β+1

2
∥
∥2

L2

=
∫

D
(u · ∇)u · �u dx +

∫

D
∇d�d�u dx. (8)
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Taking � on the second equation of (1) and dotting with �d, we get

1
2

d
dt

‖�d‖2
L2 + ‖∇�d‖2

L2 = –
∫

D
�f (d)�d dx –

∫

D
�u∇d�d dx

– 2
3∑

i,k=1

∫

D
∇ui∂i∇dk�dk dx. (9)

Adding (8) and (9), we have

1
2

d
dt

(‖∇u‖2
L2 + ‖�d‖2

L2
)

+ ‖�u‖2
L2 + ‖∇�d‖2

L2 + α
∥
∥|u| β–1

2 ∇u
∥
∥2

L2

+
4α(β – 1)
(β + 1)2

∥
∥∇|u| β+1

2
∥
∥2

L2

=
∫

D
(u · ∇)u · �u dx –

∫

D
�f (d)�d dx – 2

3∑

i,k=1

∫

D
∇ui∂i∇dk�dk dx

=
3∑

i=1

Ii(t). (10)

For I1(t), using the Young inequality and the Hölder inequality, it is easy to get, for any
β > 3,

∣
∣I1(t)

∣
∣ ≤ 1

4
‖�u‖2

L2 + C
∫

D
|u|2|∇u| 4

β–1 |∇u|2– 4
β–1 dx

≤ 1
4
‖�u‖2

L2 +
α

2

∫

D
|u|β–1|∇u|2 dx + C‖∇u‖2

L2 . (11)

Inspired by [3–5] and exists θ > 0, we get 1 – 1
2θ

≥ 0 and α – θ
2 ≥ 0. Then we get the above

estimate easily for α ≥ 1
4 as β = 3.

For I2(t), integrating by parts, applying the Hölder inequality and the Young inequality,
we get

I2(t) =
3∑

i=1

∫

D
∂i

(|d|2d
)
∂i�d dx –

3∑

i=1

∫

D
∂id∂i�d dx

≤ C
(‖∇d‖L6‖∇�d‖L2‖d‖2

L6 + ‖∇d‖L2‖∇�d‖L2
)

≤ 1
4
‖∇�d‖2

L2 + C
(‖∇d‖2

L2 + ‖∇d‖4
L2‖�d‖2

L2
)

≤ 1
4
‖∇�d‖2

L2 + C‖�d‖2
L2 + C. (12)

For I3(t), since 2
β–2 ≤ 1 for β ≥ 4, by using the Hölder, Gagliardo-Nirenberg and Young

inequalities, we get

I3(t) = 2
3∑

i=1

(∫

D
ui∂i∇d∇�d dx +

∫

D
ui∂i∇2d�d dx

)

≤ C‖u‖Lβ+1‖�d‖
L

2(β+1)
β–1

‖∇�d‖L2
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≤ C‖u‖Lβ+1‖�d‖
β–2
β+1
L2 ‖∇�d‖

β+4
β+1
L2

≤ 1
4
‖∇�d‖2

L2 + C‖u‖
2(β+1)
β–2

Lβ+1 ‖�d‖2
L2

≤ 1
4
‖∇�d‖2

L2 + C
(
1 + ‖u‖β+1

Lβ+1

)‖�d‖2
L2 . (13)

Adding (10)–(13), it is easy to get

d
dt

(‖∇u‖2
L2 + ‖�d‖2

L2
)

+ ‖�u‖2
L2 + ‖∇�d‖2

L2 +
∥
∥|u| β–1

2 ∇u
∥
∥2

L2 +
∥
∥∇|u| β+1

2
∥
∥2

L2

≤ C
(
1 + ‖u‖β+1

Lβ+1

)(‖�d‖2
L2 + ‖∇u‖2

L2
)

+ C. (14)

Applying the Gronwall inequality and (3), we have

∥
∥∇u(t)

∥
∥2

L2 +
∥
∥�d(t)

∥
∥2

L2

+
∫ t

0

(‖�u‖2
L2 + ‖∇�d‖2

L2 +
∥
∥|u| β–1

2 ∇u
∥
∥2

L2 +
∥
∥∇|u| β+1

2
∥
∥2

L2
)

ds

≤ C(t, u0, d0). (15)

Next, we will prove the uniqueness of the strong solutions of the problem (1). Let (u, d)
and (ū, d̄) be the two solutions for the problem (1) with the same u0, d0. Assume that
(û, d̂) = (ū – u, d̄ – d). Then we have

1
2

d
dt

(‖û‖2
L2 + ‖∇d̂‖2

L2
)

+ ‖∇û‖2
L2 + ‖�d̂‖2

L2 + α

∫

D

(|ū|β–1ū – |u|β–1u
)
(ū – u) dx

≤
∫

D
|û|2|∇ū|dx +

∫

D
|û||∇d̂||�d̄|dx

+
∫

D
|ū||∇d̂||�d̂|dx +

∫

D

∣
∣f (d̄) – f (d)

∣
∣|�d̂|dx

=
4∑

i=1

Ji(t). (16)

Since g(u) = α|u|β–1u is a monotonic function in D, it is easy to get

α

∫

D

(|ū|β–1ū – |u|β–1u
)
(ū – u) dx ≥ 0. (17)

For J1(t), using the Gagliardo–Nirenberg and Young inequalities, we have

J1(t) ≤ C‖û‖ 1
2
L2‖∇û‖ 3

2
L2‖∇ū‖L2

≤ 1
4
‖∇û‖2

L2 + C‖∇ū‖4
L2‖û‖2

L2 . (18)
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For J2(t) and J3(t), similarly, we also get

J2(t) ≤ C‖û‖L4‖∇d̂‖L4‖�d̄‖L2

≤ C‖û‖ 1
4
L2‖∇û‖ 3

4
L2‖∇d̂‖ 1

4
L2‖�d̂‖ 3

4
L2‖�d̄‖L2

≤ 1
8
‖∇û‖2

L2 +
1
8
‖�d̂‖2

L2 + C‖�d̄‖4
L2

(‖û‖2
L2 + ‖∇d̂‖2

L2
)

(19)

and

J3(t) ≤ C‖ū‖L6‖∇d̂‖ 1
2
L2‖�d̂‖ 3

2
L2

≤ 1
8
‖�d̂‖2

L2 + C‖∇ū‖4
L2‖∇d̂‖2

L2 . (20)

For J4(t), applying the Hölder inequality, we get

J4(t) ≤ ∥
∥f (d̄) – f (d)

∥
∥

L2‖�d̂‖L2

≤ 1
4
‖�d̂‖2

L2 + C
(
1 + ‖∇d̄‖4

L2 + ‖∇d‖4
L2

)‖∇d̂‖2
L2 . (21)

Summing (16)–(21), we have

d
dt

(‖û‖2
L2 + ‖∇d̂‖2

L2
)

+ ‖∇û‖2
L2 + ‖�d̂‖2

L2

≤ C
(
1 + ‖∇ū‖4

L2 + ‖∇d̄‖4
L2 + ‖∇d‖4

L2 + ‖�d̄‖4
L2

)(‖û‖2
L2 + ‖∇d̂‖2

L2
)
. (22)

Applying the Gronwall inequality and (7) and (15), then we have

∥
∥û(t)

∥
∥2

L2 +
∥
∥∇d̂(t)

∥
∥2

L2 ≤ (∥
∥û(0)

∥
∥2

L2 +
∥
∥∇d̂(0)

∥
∥2

L2
)
eC

∫ t
0 H(s) ds, (23)

where, H(s) = 1 + ‖∇ū(s)‖4
L2 + ‖∇d̄(s)‖4

L2 + ‖∇d(s)‖4
L2 + ‖�d̄(s)‖4

L2 . The uniqueness of the
strong solutions of the problem (1) is proved. This completes the proof of Theorem 1.1.
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