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Abstract
In this paper we will establish a result by Connor, Khan and Orhan (Analysis 8:47–63,
1988; Publ. Math. (Debr.) 76:77–88, 2010) in the framework of the statistical
convergence and the strong Cesàro convergence defined by a modulus function f .
Namely, for every modulus function f , we will prove that a f -strongly Cesàro
convergent sequence is always f -statistically convergent and uniformly integrable.
The converse of this result is not true even for bounded sequences. We will
characterize analytically the modulus functions f for which the converse is true. We
will prove that these modulus functions are those for which the statistically
convergent sequences are f -statistically convergent, that is, we show that
Connor–Khan–Orhan’s result is sharp in this sense.
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1 Introduction
A sequence (xk) on a normed space (X,‖ · ‖) is said to be strongly Cesàro convergent to L
if

lim
n→∞

1
n

n∑

k=1

‖xk – L‖ = 0.

The strong Cesàro convergence for real numbers was introduced by Hardy–Littlewood
[14] and Fekete [12] in connection with the convergence of Fourier series (see [35], for
historical notes, and the most recent monograph [5]).

A sequence (xn) is statistically convergent to L if for any ε > 0 the subset {k : |xk – L| < ε}
has density 1 on the natural numbers. The term statistical convergence was first presented
by Fast [11] and Steinhaus [34] independently in the same year 1951. Actually, a root of the
notion of statistical convergence can be detected in [36], where he used the term almost
convergence which turned out to be equivalent to the concept of statistical convergence.

Both concepts were developed independently and surprisingly enough, both are related
thanks to a result by Connor ([6]) which was sharpened by Khan and Orhan ([15]). Among
other results, Khan and Orhan show that a sequence is strongly Cesàro convergent if and
only if it is statistically convergent and uniformly integrable. In this circle of ideas, a sig-
nificant number of deep and beautiful results have been obtained by Connor, Fridy, Khan,
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Mursaleen, Orhan... and many others (see [2, 9, 13, 26, 27, 31–33]). Moreover, the con-
vergence methods are an active research area with important applications (see the recent
monograph by Mursaleen [24]). For instance, there are applications in many fields, such
as approximation theory [3, 10, 22, 23, 25, 28]. On the other hand, from the point of view
of infinite dimensional spaces, there are interesting results that characterize properties of
normed spaces by means of some convergence types (see for instance [8, 16–18]).

Let us recall that f : R+ →R
+ is said to be a modulus function if it satisfies:

(1) f (x) = 0 if and only if x = 0.
(2) f (x + y) ≤ f (x) + f (y) for every x, y ∈R

+.
(3) f is increasing.
(4) f is continuous from the right at 0.

In [19, 29, 30] the authors extended the notion of strong Cesàro convergence with respect
to a modulus function, and in [1] it was introduced the concept of f -statistical convergence
in which underlies a new concept of f -density of subsets of natural numbers (where f is a
modulus function). A modulus function f was used by Maddox ([20]) to obtain a repre-
sentation of statistical convergence in terms of strong summability. Later, it was used by
Connor ([7]) to study the concepts of strong matrix summability with respect to a modu-
lus. In this paper we will consider only unbounded modulus functions, since the bounded
case is reduced only to trivial examples.

In [4] the authors studied the relationship between the f -statistical convergence and
other Cesàro convergence types defined with respect to a modulus f . It has been observed
that there is not enough structure to establish Connor–Khan–Orhan’s result in any direc-
tion. The aim of this paper is to establish, for the f -statistical convergence and a suitable
f -strong Cesàro convergence that will be introduced in Sect. 2, equivalences analogous to
those obtained in Connor–Khan–Orhan’s result.

The notion of f -strong Cesàro convergence that we introduce is very handy to use, and
it fits as a glove to the f -statistical convergence. In fact, we will prove that if a sequence
(xn) is f -strongly Cesàro convergent to L then (xn) is f -statistically convergent to L and it
is uniformly integrable.

However, the converse of the above result, is not always true, even for bounded se-
quences. Thus, the following questions arises:

For which modulus functions f it is possible to obtain the converse of Connor–Khan–
Orhan’s result. That is, for which modulus functions do we find that all uniformly
integrable and f -statistically convergent sequences are f -strongly Cesàro convergent?

We answer the above question by characterizing analytically such modulus functions,
which will be called compatible modulus functions. And surprisingly, we can show that
such compatible modulus functions are those for which all statistically convergent se-
quences are f -statistically convergent, that is, in some sense Connor–Khan–Orhan’s result
is quite sharp. The paper concludes with a brief section devoted to related issues, refer-
ences and open questions.
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2 Preliminary results
Let X be a normed space. A sequence (xn) ⊂ X is said to be uniformly integrable if

lim
c→∞ sup

n

1
n

n∑

k=1
‖xk‖≥c

‖xk‖ = 0.

If a sequence (xn) is uniformly integrable then (xn – L) is also uniformly integrable for
every L ∈ X. If we consider L1

μ[0, 1] where μ is the Lebesgue measure, a sequence (xn) is
uniformly integrable if and only if the set of simple functions

gn(s) =
n∑

k=0

‖xk+1‖χ[ k
n , k+1

n )(s)

is uniformly integrable in L1
μ[0, 1] (here χA(·) denotes the characteristic function of A).

This measure theoretic approach was used by Khan and Orhan in [15], providing an an-
swer to a problem posed by Connor [7] in the A-statistical-convergence setting and to
another open question posed by Miller ([21]).

Next we define f -strong Cesàro convergence:

Definition 2.1 Let f be a modulus function. A sequence (xn) is said to be f -strongly
Cesàro convergent to L if

lim
n→∞

f (
∑n

k=1 ‖xk – L‖)
f (n)

= 0.

Let us observe that if f is bounded, then the constant sequence xn = L is the only se-
quence which is f -strongly Cesàro convergent to L. Indeed, if for some k, ‖xk – L‖ = c > 0
then

f (c)
‖f ‖∞

≤ f (
∑n

k=1 ‖xk – L‖)
f (n)

,

which gives the desired result.
In [1], by means of a new concept of density of a subset of N, it is defined the following

non-matrix concept of convergence.

Definition 2.2 A sequence (xn) is said to be f -statistically convergent to L if for every
ε > 0.

lim
n→∞

f (#{k ≤ n : ‖xk – L‖ > ε})
f (n)

= 0.

Analogously, if f is bounded, the only sequences (xn) that converge f -statistically are
the constant sequences. Thus, in what follows we will suppose that f is an unbounded
modulus function.

Let us observe that if f is a modulus function, for all x ∈ R
+ and m ∈ N we have f ( x

m ) ≥
1
m f (x). Indeed, f (x) = f ( 1

m mx) ≤ mf ( x
m ). As a consequence, it was pointed out in [1] that

if xn is f -statistically convergent to L, then (xn) is statistically convergent to L. A similar
result remains true for the f -strong Cesàro convergence.
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Proposition 2.3 Let f be a modulus function. If (xn) is f -strongly Cesàro convergent to L,
then (xn) is strongly Cesàro convergent to L.

Proof Indeed, for all p ≥ 1, there exists n0, such that

f (
∑n

k=1 ‖xk – L‖)
f (n)

≤ 1
p

for all n ≥ n0. That is,

f

( n∑

k=1

‖xk – L‖
)

≤ 1
p

f (n) ≤ f
(

n
p

)

and since f is increasing, we have

n∑

k=1

‖xk – L‖ ≤ n
p

for all n ≥ n0, that is, (xn) is strongly Cesàro convergent to L. �

However, the converse of the above statement is not true, as it is shown in the following
example.

Example 2.4 Let us consider the modulus function f (x) = log(x + 1) and the sequence (xk)
defined as:

xk =

⎧
⎨

⎩
1, k = n2,

0, k 	= n2.

Then (xk) is strongly Cesàro convergent to 0, indeed

lim
n→∞

∑n
k=1 ‖xk‖

n
≤ lim

n→∞

√
n

n
= 0.

However, (xn) is not f -strongly Cesàro convergent to 0:

lim
n→∞

log(
∑n2

k=1 ‖xk‖)
log(n2)

=
1
2

.

Definition 2.5 A modulus function f is said to be compatible if for any ε > 0 there exist
ε′ > 0 and n0(ε) ∈ N such that f (nε′)

f (n) < ε for all n ≥ n0.

Example 2.6 The functions f (x) = xp + xq, 0 < p, q ≤ 1, f (x) = xp + log(x + 1), f (x) = x + x
x+1

are modulus functions which are compatible. And f (x) = log(x+1), f (x) = W (x) where W is
the W -Lambert function restricted toR

+ (that is, the inverse of xex) are modulus functions
which are not compatible. Indeed, let us show that f (x) = x + log(x + 1) is compatible.

lim
n→∞

f (nε′)
f (n)

= lim
n→∞

nε′ + log(1 + nε′)
n + log(n + 1)

= ε′.
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On the other hand if f (x) = log(x + 1), since

lim
n→∞

log(1 + nε′)
log(1 + n)

= 1

we find that f (x) = log(x + 1) is not compatible.

Proposition 2.7 Let f be a compatible modulus function. If (xn) is statistically convergent
to L then (xn) is f -statistically convergent to L.

Proof Let us fix ε > 0 arbitrarily small. Since f is compatible, there exist ε′ > 0 and n0(ε)
such that if n ≥ n0 then

f (nε′)
f (n)

< ε.

Let c > 0 and let us fix ε′ > 0. Since (xn) is statistically convergent to L then there exists
m0(ε) (since ε′ depends on ε we find that m0 depends actually on ε) such that if n ≥ m0

#
{

k ≤ n : ‖xk – L‖ > c
} ≤ nε′.

Since f is increasing we have

f (#{k ≤ n : ‖xk – L‖ > c})
f (n)

≤ f (nε′)
f (n)

< ε,

for all n ≥ max{m0, n0}, which gives the desired result. �

For f -strong Cesàro convergence, we obtain a similar result.

Proposition 2.8 Let f be a compatible modulus function. Then, if (xn) is strongly Cesàro
convergent to L then (xn) is f -strongly Cesàro convergent to L.

Proof Let us suppose that (xn) is strongly Cesàro convergent to L. Then for any ε′ > 0 there
exists n ≥ n0 such that

n∑

k=1

‖xk – L‖ ≤ nε′

and since f is increasing, then

f

( n∑

k=1

‖xk – L‖
)

≤ f
(
nε′);

thus

f (
∑n

k=1 ‖xk – L‖)
f (n)

≤ f (nε′)
f (n)

then by applying the same argument as above we get the desired result. �
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Proposition 2.9 Let f be a modulus function.
(1) If all statistically convergent sequences are f -statistically convergent, then f must be

compatible.
(2) If all strongly Cesàro convergent sequences are f -strongly Cesàro convergent, then f

must be compatible.

Proof Let εn be a decreasing sequence converging to 0. Since f is not compatible, there
exists c > 0 such that, for each k, there exists mk such that f (mkεk) > cf (mk). Moreover, we
can select mk inductively satisfying

1 – εk+1 –
1

mk+1
>

(1 – εk)mk

mk+1
. (1)

Now we use an standard argument used to construct subsets with prescribed densities. Let
us denote �x the integer part of x ∈R. Set nk = �mkεk + 1. And extracting a subsequence
if it is necessary, we can assume that n1 < n2 < · · · , m1 < m2 < · · · . Thus, set Ak = [mk+1 –
(nk+1 – nk)] ∩N. Condition (1) guarantee that Ak ⊂ [mk , mk+1].

Let us denote A =
⋃

k Ak , and xn = χA(n). Let us prove that xn is statistical convergent
to 0, but not f -statistical convergent, a contradiction. Indeed, for any m, there exists k
such that mk < m ≤ mk+1. Moreover, we can suppose without loss that m ∈ A, that is,
mk+1 – nk+1 + nk ≤ m. Thus for any ε > 0:

#{l ≤ m : |xl| > ε}
m

≤ #{l ≤ mk : |xk| > ε}
mk

+
nk+1 – nk

mk+1 – nk+1 + nk

≤ nk

mk
+

1
mk+1

nk+1–nk
– 1

→ 0

as k → ∞. On the other hand, since εk+1 < nk+1
mk+1

f (#{n < mk+1 : |xn| > 1/2})
f (mk+1)

=
f (nk+1)
f (mk+1)

≥ f (mk+1εk+1)
f (mk+1)

> c,

which yields (a) as promised. The part (b) is same proof. Indeed, for the sequence (xn)
defined in part (a), we have that f (

∑n
k=1 |xn|)
f (n) = f ({k≤n|xk |>ε})

f (n) . �

3 Main results
Let us recall Connor–Khan–Orhan’s result.

Theorem 3.1 (Connor–Khan–Orhan [6, 15]) A sequence is strongly Cesàro convergent to
L if and only if it is statistically convergent to L and uniformly integrable.

This result connects two concepts that were introduced historically in different times
and by different authors. Sometimes, it is easier to verify that a sequence is strongly con-
vergent than to verify that it is statistically convergent. Conversely, if our sequence is uni-
formly integrable, we do not know if it has limit and we want to check that the sequence
is strongly Cesàro convergent, it is usually simpler to check that the sequence is statis-
tically Cauchy. This great advantage so useful pushes us to know what happens in the
f -statistical-convergence setting.
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Theorem 3.2 Let (xn) be a sequence, then if (xn) is f -strongly Cesàro convergent to L then
(xn) is f -statistically convergent to L and (xn) is uniformly integrable.

Proof In order to prove that (xn) is f -statistically convergent to L, it is sufficient to show
that, for all m ∈ N,

lim
n→∞

f (#{k ≤ n : ‖xk – L‖ > 1
m })

f (n)
= 0. (2)

Indeed, let ε > 0 and let us consider m such that 1
m+1 ≤ ε ≤ 1

m . Then we get

#
{

k ≤ n : ‖xk – L‖ > ε
} ≤ #

{
k ≤ n : ‖xk – L‖ >

1
m + 1

}
,

therefore, since f is increasing

lim
n→∞

f (#{k ≤ n : ‖xk – L‖ > ε})
f (n)

≤ lim
n→∞

f (#{k ≤ n : ‖xk – L‖ > 1
m+1 })

f (n)

thus taking limits on n we obtain what we desired.
Therefore, let m ∈N, and let us show Eq. (2). We have

f

( n∑

k=1

‖xk – L‖
)

≥ f
( n∑

k=1
‖xk –L‖≥ 1

m

‖xk – L‖
)

(3)

≥ f
( n∑

k=1
‖xk –L‖≥ 1

m

1
m

)
≥ 1

m
f
( n∑

k=1
‖xk –L‖≥ 1

m

1
)

(4)

=
1
m

f
(

#

{
k ≤ n : ‖x – L‖ >

1
m

})
. (5)

Since (xn) is f -strongly Cesàro convergent to L, we have

lim
n→∞

f (
∑n

k=1 ‖xk – L‖)
f (n)

= 0,

therefore dividing Eq. (3) by f (n), and taking the limit as n → ∞ we obtain for each m ∈N

lim
n→∞

f (#{k ≤ n : ‖xk – L‖ > 1
m })

f (n)
= 0,

which implies that (xn) is f -statistically convergent to L.
On the other hand, since (xn) is f -strongly Cesàro convergent to L then by applying

Proposition 2.3 and Connor–Khan–Orhan’s result, we find that (xn) is uniformly inte-
grable as we desired. �

Let us denote by c0(X) the sequences on X which are convergent to 0, and �1(X) the
sequences (xn) ⊆ X such that

∑
n ‖xn‖ < ∞. From the theorem above we deduce that if

(xn) ⊆ X, and
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(1) for every f modulus (xn) is f -strongly Cesáro convergent to L
then
(2) for every f modulus (xn) is f -statistically convergent to L.

Moreover in [1] it was proved that the statement (2) is equivalent to (xn – L) ∈ c0(X), i.e.,
the sequence converges to zero. Analogously we have the following.

Theorem 3.3 A sequence (xn) ⊆ X satisfies (1) if and only if the sequence (xn – L) belongs
to �1(X).

Proof It is trivial to see that if
∑

n∈N ‖xn – L‖ < +∞ then for every f modulus (xn) is f -
strongly Cesáro convergent to L.

Conversely, let us suppose that for every f modulus the sequence (xn) is f -strongly
Cesáro convergent to L but (xn – L) /∈ �1(X).

We consider the set of natural numbers A defined by

#{i ∈ A : i ≤ n} = min

{
n,

⌊ n∑

k=1

‖xn – L‖
⌋}

,

(where �x means the greatest integer smaller than x) it is clear that A is infinite, so using
Lemma 3.4 in [1] there exists g an unbounded modulus such that

lim
n→∞

g(#{i ∈ A : i ≤ n})
g(n)

= 1,

but this is a contradiction. �

Theorem 3.4 Let us suppose that f is a compatible modulus function and (xn) is a uni-
formly integrable sequence. Then if (xn) is f -statistically convergent to L then (xn) is f -
strongly Cesàro convergent to L. Moreover, if f is a modulus such that all uniformly inte-
grable and f -statistically convergent sequences (xn) are f -strongly Cesàro convergent, then
the modulus f must be compatible.

Proof Let (xn) be a bounded sequence such that (xn) is f -statistically convergent to L and
uniformly integrable.

Let us consider ε > 0. Since f is compatible there exists ε′ > 0 such that

f (nε′)
f (n)

<
ε

3
(6)

for all n ≥ n0(ε).
Now, since (xn) is uniformly integrable, there exists a natural number M > 0 large enough

satisfying 1
M < ε′ and for all n ∈ N

1
n

n∑

k=1
‖xk –L‖≥M

‖xk – L‖ < ε′. (7)
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And since (xn) is f -statistically convergent to L, there exists a natural number, which we
abusively denote by n0(ε), such that for all n ≥ n0(ε)

1
f (n)

f
(
#
{

k : ‖xk – L‖ > ε′}) <
ε

3M
. (8)

Therefore

f (
∑n

k=1 ‖xk – L‖)
f (n)

≤ 1
f (n)

f
( n∑

k=1
M>‖xk –L‖≥ε′

‖xk – L‖
)

+
1

f (n)
f
( n∑

k=1
‖xk –L‖≥M

‖xk – L‖
)

+
1

f (n)
f
( n∑

k=1
‖xk –L‖<ε′

‖xk – L‖
)

. (9)

Since f is increasing, according to (8) we find that for all n ≥ n0(ε) the first term of (9) is

1
f (n)

f
( n∑

k=1
M>‖xk –L‖≥ε′

‖xk – L‖
)

<
f (#{k ≤ n : ‖xk – L‖ > ε′} · M)

f (n)

≤ M
1

f (n)
f
(
#
{

k ≤ n : ‖xk – L‖ > ε′})

< M
ε

3M
=

ε

3
. (10)

On the other hand, let us estimate the second summand of the inequality (9). Using that
f is increasing and by applying firstly the inequality (7) and later inequality (6) we have for
n ≥ n0(ε)

1
f (n)

f
( n∑

k=1
‖xk –L‖≥M

‖xk – L‖
)

=
1

f (n)
f
(

n
1
n

n∑

k=1
‖xk –L‖≥M

‖xk – L‖
)

≤ 1
f (n)

f
(
nε′) ≤ ε

3
. (11)

Finally, for the third summand in (9) by applying inequality (6) we obtain if n ≥ n0(ε)

1
f (n)

f
( n∑

k=1
‖xk –L‖≤ε′

‖xk – L‖
)

≤ 1
f (n)

f
(

n
1
M

)
<

ε

3
. (12)

Thus, by using inequalities (10), (11), and (12) into inequality (9) we obtain if n ≥ n0(ε)

f (
∑n

k=1 ‖xk – L‖)
f (n)

≤ ε,
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that is, (xn) is f -strongly Cesàro convergent to L as we desired. Assume that f is not com-
patible. Thus, as in the proof in Proposition 2.9 we can construct sequences (εk), (mk) such
that f (mkεk) ≥ cf (mk) for some c > 0. Moreover, we can construct (mk) inductively, such
that the sequence

rk =
mk+1εk+1 – mkεk

mk+1 – mk

is decreasing and converging to 0. Let us consider xn =
∑∞

k=0 rk+1χ(mk ,mk+1](n). Since (xn)
is decreasing, (xn) if f -statistically convergent to 0. On the other hand f (

∑mk
l=1 |xl|) =

f (mkεk) ≥ cf (mk), which gives that (xn) is not f -strong Cesàro convergent, as we desired.�

Remark 3.5 Let us observe that uniform integrability in Theorem 3.4 is necessary. Set
nj = j2 and let us define

xk =

⎧
⎨

⎩
0, k 	= j2 for all j,

j2, k = j2 for some j.

The sequence (xk) is not uniformly integrable, it is statistically convergent to 0, and it is
not strongly Cesàro summable.

Remark 3.6 Let us observe that the first part of Theorem 3.4 can be obtained directly
by using several results. Namely, the converse of Proposition 2.7, Connor–Khan–Orhan’s
result and Proposition 2.8. Indeed, if (xn) is f -statistically convergent, then (xn) is statis-
tically convergent. By Connor–Khan–Orhan’s result, since (xn) is uniformly bounded, we
find that (xn) is strongly Cesàro convergent. And finally, since f is a compatible modulus,
we find that (xn) is f -strongly Cesàro convergent.

4 Concluding remarks and open questions
Given a modulus function f , if A ⊂N, the f -density of A; df (A) is defined by

df (A) = lim
n→∞

f (#{k ≤ n : k ∈ A})
f (n)

whenever this limit exists. When f (x) = x then we have the usual density of natural num-
bers. It is well known that if df (A) = 0 then d(A) = 0; the converse in general is not true.
Using Proposition 2.7 we can get the following result.

Corollary 4.1 If f is an unbounded modulus, the following conditions are equivalent:
(1) For every (xn) ⊂ X and x ∈ X , if (xn) is statistically convergent to x then it is also

f -statistically convergent to the same x.
(2) For every A ⊂N, if d(A) = 0 then df (A) = 0.
(3) f is compatible.

While the usual density works well with complements, that is, d(N \ A) = 1 – d(A), how-
ever, this property fails for f -density. The importance of this property is that it allows us
to define statistically convergence by looking at the complement. For this reason, it will
be interesting to characterize the modulus function f for which the following property
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is satisfied: For any A ⊂ N if df (N \ A) = 1 then df (A) = 0. As was pointed out in [1] if
f (x) = log(1 + x) then the last property is not satisfied. Is it possible to find a counterexam-
ple for a compatible module function?

Acknowledgements
The authors are supported by Ministerio de Ciencia, Innovación y Universidades under PGC2018-101514-B-100, by Junta
de Andalucía FQM-257 and Plan Propio de la Universidad de Cádiz.

Funding
All authors are supported by Junta de Andalucía FQM-257 and Plan Propio de la Universidad de Cádiz. F. León-Saavedra,
M.C. Listán-García and F.J. Pérez Fernández are supported by FEDER/Ministerio de Ciencia, Innovación y Universidades -
Agencia Estatal de Investigación PGC2018-101514-B-100.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors contributed equally and significantly in writing this paper. All the authors read and approved the final
manuscript.

Author details
1Department of Mathematics, University of Cádiz, Jerez de la Frontera, Spain. 2Department of Mathematics, University of
Cádiz, Puerto Real, Spain.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 6 June 2019 Accepted: 6 November 2019 Published: 14 November 2019

References
1. Aizpuru, A., Listán-García, M.C., Rambla-Barreno, F.: Density by moduli and statistical convergence. Quaest. Math. 37,

525–530 (2014)
2. Alotaibi, A., Mursaleen, M.: Korovkin type approximation theorems via lacunary equistatistical convergence. Filomat

13, 3641–3647 (2016)
3. Belen, C., Mohiuddine, S.A.: Generalized weighted statistical convergence and application. Appl. Math. Comput.

219(8), 9821–9826 (2013)
4. Bhardwaj, V.K., Dhawan, S.: Application of f -lacunary statistical convergence to approximation theorems. J. Inequal.

Appl. 25, 281 (2018)
5. Boos, J.: Classical and Modern Methods in Summability. Oxford University Press, Oxford (2000)
6. Connor, J.: The statistical and strong p-Cesàro convergence of sequences. Analysis 8, 47–63 (1988)
7. Connor, J.: On strong matrix summability with respect to a modulus and statistical convergence. Can. Math. Bull. 32,

194–198 (1989)
8. Connor, J., Ganichev, M., Kadets, V.: A characterization of Banach spaces with separable duals via weak statistical

convergence. J. Math. Anal. Appl. 244, 251–261 (2000)
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