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1 Introduction
It is well known that convex function and convexity are very important in mathemati-
cal economy, probability theory, optimal control theory, and other fields of mathematics.
Over the years, classical convexity has been extended and generalized to harmonically
convex, h-convex, p-convex, among others. In fact, the concepts of convex function and
convexity are founded on inequality, and the important role of inequalities cannot be un-
dermined. Recently, the following Hermite–Hadamard inequality, one of the most impor-
tant classical inequalities, has gained plenty of attention. Let interval J� ⊆R, and a, b ∈ J�

with a < b. If f : J� →R is a convex function, then

f
(

a + b
2

)
≤ 1

b – a

∫ b

a
f (x) dx ≤ f (a) + f (b)

2
. (1.1)

The following inequality as the weighted generalization of (1.1) was established by Fejér
in [1].

Theorem 1.1 Let f be a convex function and ψ(a + b – x) = ψ(x) ≥ 0 holds for all x ∈ J�,
then

f
(

a + b
2

)∫ b

a
ψ(x) dx ≤

∫ b

a
f (x)ψ(x) dx ≤ f (a) + f (b)

2

∫ b

a
ψ(x) dx. (1.2)

Due to the difference among the concepts of convexity, integral inequality (1.1) and
(1.2) in various forms have also been extensively studied in [2–8]. With the increasing
importance of fractional integrals, several authors extend their research by combining
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Hermite–Hadamard type inequalities with fractional integrals. In this way, some frac-
tional Hermite–Hadamard type inequalities have been established, see [9–15] and the
references therein.

On the other hand, interval analysis was firstly introduced as a significant tool to handle
interval uncertainty by Moore in [16]. It has been widely used in various fields [17–20].
Especially, several classical inequalities have been studied with interval-valued functions
by Chalco-Cano et al. [21, 22], Costa and Román-Flores. [23], Zhao et al. [24, 25], An et al.
[26], and so on. As a further extension, Budak et al. [27] proved the fractional Hermite–
Hadamard inequality for interval convex function. Motivated by [9–12, 24, 25, 27], we es-
tablish some further refinements for interval fractional Hermite–Hadamard type inequali-
ties. Our results generalize some previous inequalities. In addition, perhaps the results can
be recognized as the significant methods to investigate the research of interval-valued dif-
ferential equations, interval optimization, interval vector spaces, among others.

We give some preliminaries in Sect. 2. In Sect. 3, we introduce the concept of interval
harmonically convex functions and prove some interval fractional Hermite–Hadamard
type inequalities. Finally, in Sect. 4, some examples are presented.

2 Preliminaries
We begin by using K denote the space of all intervals of R. Let D ∈K,

D = [d, d] = {x ∈R|d ≤ x ≤ d}, d, d ∈R.

When d = d, the interval D is said to be degenerate. We call D positive if d > 0 or negative
if d < 0. We use K+ and K– to represent the sets of all positive intervals and negative
intervals. Let λ ∈R, then

λD =

⎧⎨
⎩

[λd,λd], λ ≥ 0,

[λd,λd], λ < 0.

For D1, D2 ∈K, the addition and Minkowski difference are defined by

D1 + D2 = [d1, d1] + [d2, d2] = [d1 + d2, d1 + d2]

and

D1 – D2 = [d1, d1] – [d2, d2] = [d1 – d2, d1 – d2],

respectively.
The inclusion “⊆” is defined by

D1 ⊆ D2 ⇔ [d1, d1] ⊆ [d2, d2] ⇔ d2 ≤ d1, d1 ≤ d2.

For more basic notations with interval analysis, see [24, 25]. Furthermore, we recall the
following results in [20].
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Let F (x) = [f (x), f (x)], x ∈ J�. We call F (x) is Lebesgue integrable if f (x) and f (x) are
measurable and Lebesgue integrable in J�. Moreover, we define

∫ b
a F (x) dx as follows:

∫ b

a
F (x) dx =

[∫ b

a
f (x) dx,

∫ b

a
f (x) dx

]
.

Let I L ([a,b]) be the collections of all Lebesgue integrable interval-valued functions on
[a, b]. If F ∈ I L ([a,b]), the interval left-sided Riemann–Liouville fractional integral of
F (x) is defined by

J
α
a+F (x) =

1
Γ (α)

∫ x

a
(x – μ)α–1F (μ) dμ, x > a,

where Γ (α) is the Gamma function defined by Γ (α) =
∫ ∞

0 e–xxα–1 dx with α > 0.
In [27], the interval right-sided Riemann–Liouville fractional integral of F (x) is defined

by

J
α
b–F (x) =

1
Γ (α)

∫ b

x
(μ – x)α–1F (μ) dμ, x < b,

where Γ (α) is an Euler Gamma function.
It is obvious that Jα

a+F (x) = [Jα
a+ f (x), Jα

a+ f (x)],Jα
b–F (x) = [Jα

b– f (x), Jα
b– f (x)], for all x ∈ J�.

Definition 2.1 ([6]) f : J� ⊆R\{0} →R is called a harmonically convex function if

tf (y) + (1 – t)f (x) ≥ f
(

xy
tx + (1 – t)y

)

holds for any x, y ∈ J� and t ∈ [0, 1].

Definition 2.2 ([28]) F : J� →K+ is called an interval convex function if

F
(
tx + (1 – t)y

) ⊇ tF (x) + (1 – t)F (y)

holds for any x, y ∈ J� and t ∈ [0, 1].

3 Main result
First, we give definition of interval harmonically convex functions as follows.

Definition 3.1 F : J� ⊆R\{0} →K+ is called an interval harmonically convex function if

F
(

xy
tx + (1 – t)y

)
⊇ tF (y) + (1 – t)F (x)

holds for all x, y ∈ J� and t ∈ [0, 1].

Let FC(J�,K+) and FHC(J�,K+) denote the family of interval convex and harmonically
convex functions in J�, respectively.

In [27], Budak et al. give the following Hermite–Hadamard inequality for the interval
convex function.
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Theorem 3.2 Let F ∈ I L ([a,b]) and a, b ∈ J� with 0 ≤ a < b. If F ∈FC(J�,K+), then

F
(

a + b
2

)
⊇ Γ (α + 1)

2(b – a)α
[
J

α
a+F (b) + J

α
b–F (a)

] ⊇ F (a) + F (b)
2

. (3.1)

Remark 3.3 In Theorem 3.2, if f = f , then we get ([12], Theorem 2).

Next, we give some further refinements for interval fractional Hermite–Hadamard type
inequalities.

Theorem 3.4 Let F ∈ I L ([a,b]), and a, b ∈ J� with 0 ≤ a < b. If F ∈FC(J�,K+) and ψ(a +
b – x) = ψ(x) ≥ 0 holds for all x ∈ J�, then

F
(

a + b
2

)[
Jα
a+ψ(b) + Jα

b–ψ(a)
] ⊇ [

J
α
a+ (Fψ)(b) + J

α
b– (Fψ)(a)

]

⊇ F (a) + F (b)
2

[
Jα
a+ψ(b) + Jα

b–ψ(a)
]
. (3.2)

Proof Since F ∈FC(J�,K+), we have

F
(

a + b
2

)
= F

(
μa + νb + μb + νa

2

)
⊇ F (μa + νb) + F (νa + μb)

2
(3.3)

with ν = 1 – μ, μ ∈ [0, 1].
Multiplying both sides of (3.3) by 2μα–1ψ(μb + νa), then

2μα–1ψ(μb + νa)F
(

a + b
2

)
⊇ μα–1ψ(μb + νa)

[
F (μa + νb) + F (νa + μb)

]
.

Consequently,

2F
(

a + b
2

)∫ 1

0
μα–1ψ(μb + νa) dμ

⊇
∫ 1

0
μα–1F (μa + νb)ψ(μb + νa) dμ +

∫ 1

0
μα–1F (νa + μb)ψ(μb + νa) dμ

=
[∫ 1

0
μα–1(f (μa + νb) + f (νa + μb)

)
ψ(μb + νa) dμ,

∫ 1

0
μα–1(f (μa + νb) + f (νa + μb)

)
ψ(μb + νa) dμ

]
.

Setting ω = μb + νa, then

2
(b – a)α

F
(

a + b
2

)∫ b

a
(ω – a)α–1ψ(ω) dω

⊇ 1
(b – a)α

[∫ b

a
(ω – a)α–1f (a + b – ω)ψ(ω) dω +

∫ b

a
(ω – a)α–1f (ω)ψ(ω) dω,

∫ b

a
(ω – a)α–1f (a + b – ω)ψ(ω) dω +

∫ b

a
(ω – a)α–1f (ω)ψ(ω) dω

]
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=
1

(b – a)α

[∫ b

a
(b – ω)α–1f (ω)ψ(a + b – ω) dω +

∫ b

a
(ω – a)α–1f (ω)ψ(ω) dω,

∫ b

a
(b – ω)α–1f (ω)ψ(a + b – ω) dω +

∫ b

a
(ω – a)α–1f (ω)ψ(ω) dω

]

=
1

(b – a)α

[∫ b

a
(b – ω)α–1f (ω)ψ(ω) dω +

∫ b

a
(ω – a)α–1f (ω)ψ(ω) dω,

∫ b

a
(b – ω)α–1f (ω)ψ(ω) dω +

∫ b

a
(ω – a)α–1f (ω)ψ(ω) dω

]

=
1

(b – a)α

{∫ b

a
(b – ω)α–1F (ω)ψ(ω) dω +

∫ b

a
(ω – a)α–1F (ω)ψ(ω) dω

}
.

Therefore

Γ (α)
(b – a)α

F
(

a + b
2

)[
Jα
a+ψ(b) + Jα

b–ψ(a)
] ⊇ Γ (α)

(b – a)α
[
J

α
a+ (Fψ)(b) + J

α
b– (Fψ)(a)

]
. (3.4)

Since F ∈FC([a, b],K+), we have

F (μa + νb) ⊇ μF (a) + νF (b)

and

F (νa + μb) ⊇ νF (a) + μF (b)

with ν = 1 – μ, μ ∈ [0, 1]. Then

F (μa + νb) + F (νa + μb) ⊇F (a) + F (b). (3.5)

By multiplying both sides (3.5) with μα–1ψ(μb+νa), and integrating the resulting inequal-
ity, we get

∫ 1

0
μα–1F (μa + νb)ψ(μb + νa) dμ +

∫ 1

0
μα–1F (νa + μb)ψ(μb + νa) dμ

⊇ [
F (a) + F (b)

]∫ 1

0
μα–1ψ(μb + νa) dμ, (3.6)

and the result follows. �

Remark 3.5 In Theorem 3.4, if ψ(x) = 1, inequality (3.2) becomes inequality (3.1) in The-
orem 3.2.

If f = f , then we get ([9], Theorem 4).

Theorem 3.6 Let F ∈ I L ([a,b]), and a, b ∈ J� with 0 ≤ a < b. If F ∈ FHC(J�,K+), and
g(x) = 1

x , x ∈ [ 1
b , 1

a ] then

F
(

2ab
a + b

)
⊇ Γ (α + 1)

2

(
ab

b – a

)α[
J

α
1/a–(F ◦ g)(1/b) + J

α
1/b+(F ◦ g)(1/a)

]
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⊇ F (a) + F (b)
2

. (3.7)

Proof Since F ∈FHC(J�,K+), we have

F
(

2xy
x + y

)
⊇ F (x) + F (y)

2
.

Let ν = 1 – μ, μ ∈ [0, 1], setting

x =
ab

μb + νa
, y =

ab
μa + νb

.

By multiplying both sides with μα–1, and integrating the resulting inequality, we get

F
(

2ab
a + b

)∫ 1

0
μα–1 dμ

=
1
α
F

(
2ab

a + b

)

⊇ 1
2

∫ 1

0
μα–1F

(
ab

μb + νa

)
dμ +

∫ 1

0
μα–1F

(
ab

μa + νb

)
dμ

=
1
2

[∫ 1

0
μα–1f

(
ab

μb + νa

)
dμ +

∫ 1

0
μα–1f

(
ab

μa + νb

)
dμ,

∫ 1

0
μα–1f

(
ab

μb + νa

)
dμ +

∫ 1

0
μα–1f

(
ab

μa + νb

)
dμ

]

=
1
2

(
ab

b – a

)α[∫ 1/a

1/b

(
μ –

1
b

)α–1

f
(

1
μ

)
dμ +

∫ 1/a

1/b

(
1
a

– μ

)α–1

f
(

1
μ

)
dμ,

∫ 1/a

1/b

(
μ –

1
b

)α–1

f
(

1
μ

)
dμ +

∫ 1/a

1/b

(
1
a

– μ

)α–1

f
(

1
μ

)
dμ

]

=
Γ (α)

2

(
ab

b – a

)α[
Jα
1/a–(f ◦ g)(1/b) + Jα

1/b+(f ◦ g)(1/a),

Jα
1/a–(f ◦ g)(1/b) + Jα

1/b+(f ◦ g)(1/a)
]
. (3.8)

Let ν = 1 – μ, μ ∈ [0, 1], then thanks to F ∈FHC(J�,K+)

F
(

ab
μb + νa

)
⊇ μF (a) + νF (b)

and

F
(

ab
νb + μa

)
⊇ νF (a) + μF (b).

This implies

μα–1
{
F

(
ab

μb + νa

)
+ F

(
ab

νb + μa

)}
⊇ μα–1[F (a) + F (b)

]
.
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Then

∫ 1

0
μα–1F

(
ab

μb + νa

)
dμ +

∫ 1

0
μα–1F

(
ab

νb + μa

)
dμ ⊇ [

F (a) + F (b)
]∫ 1

0
μα–1 dμ.

Therefore

Γ (α + 1)
2

(
ab

b – a

)α[
J

α
1/a–(F ◦ g)(1/b) + J

α
1/b+(F ◦ g)(1/a)

] ⊇ F (a) + F (b)
2

with g(x) = 1
x .

This gives the result. �

Remark 3.7 The function F (x) ∈ FHC(J�,K+) if and only if H(x) = F ( ab
x ) ∈ FC(J�,K+).

By using inequality (3.1) for H(x), we obtain inequality (3.7).

Remark 3.8 In Theorem 3.6, if f = f , then we get ([10], Theorem 4).

Theorem 3.9 Let F ∈ I L ([a,b]), and a, b ∈ J� with 0 ≤ a < b. If F ∈ FHC(J�,K+) and
ψ( 1

1
a + 1

b – 1
x

) = ψ(x) ≥ 0 holds for all x ∈ J�, then

F
(

2ab
a + b

)[
Jα
1/b+(ψ ◦ g)(1/a) + Jα

1/a–ψ ◦ g(1/b)
]

⊇ [
J

α
1/b+(Fψ ◦ g)(1/a) + J

α
1/a–(Fψ ◦ g)(1/b)

]

⊇ F (a) + F (b)
2

[
Jα
1/b+(ψ ◦ g)(1/a) + Jα

1/a–ψ ◦ g(1/b)
]

(3.9)

with g(x) = 1
x , x ∈ [ 1

b , 1
a ].

Proof Since F ∈FHC(J�,K+), we have

F
(

2ab
a + b

)
⊇ F ( ab

μb+νa ) + F ( ab
μa+νb )

2
(3.10)

with ν = 1 – μ,μ ∈ [0, 1].
Multiplying both sides of (3.10) by 2μα–1ψ( ab

μb+νa ), we get

2F
(

2ab
a + b

)∫ 1

0
μα–1ψ

(
ab

μb + νa

)
dμ

⊇
∫ 1

0
μα–1

[
F

(
ab

μa + νb

)
+ F

(
ab

μb + νa

)]
ψ

(
ab

μb + νa

)
dμ

=
[∫ 1

0
μα–1

{
f
(

ab
μa + νb

)
+ f

(
ab

μb + νa

)}
ψ

(
ab

μb + νa

)
dμ,

∫ 1

0
μα–1

{
f
(

ab
μa + νb

)
+ f

(
ab

μb + νa

)}
ψ

(
ab

μb + νa

)
dμ

]
.



Liu et al. Journal of Inequalities and Applications        (2019) 2019:266 Page 8 of 11

Let ω = μb+νa
ab , then dμ = ab

b–a dω. One has

2
(

ab
b – a

)α

F
(

2ab
a + b

)∫ 1
a

1
b

(
ω –

1
b

)α–1

ψ

(
1
ω

)
dω

⊇
(

ab
b – a

)α[∫ 1
a

1
b

(
ω –

1
b

)α–1

f
(

1
1
a + 1

b – ω

)
ψ

(
1
ω

)
dω

+
∫ 1

a

1
b

(
ω –

1
b

)α–1

f
(

1
ω

)
ψ

(
1
ω

)
dω,

∫ 1
a

1
b

(
ω –

1
b

)α–1

f
(

1
1
a + 1

b – ω

)
ψ

(
1
ω

)
dω +

∫ 1
a

1
b

(
ω –

1
b

)α–1

f
(

1
ω

)
ψ

(
1
ω

)
dω

]

=
(

ab
b – a

)α[∫ 1
a

1
b

(
1
a

– ω

)α–1

f
(

1
ω

)
ψ

(
1

1
a + 1

b – ω

)
dω

+
∫ 1

a

1
b

(
ω –

1
b

)α–1

f
(

1
ω

)
ψ

(
1
ω

)
dω,

∫ 1
a

1
b

(
ω –

1
b

)α–1

f
(

1
ω

)
ψ

(
1

1
a + 1

b – ω

)
dω +

∫ 1
a

1
b

(
ω –

1
b

)α–1

f
(

1
ω

)
ψ

(
1
ω

)
dω

]

=
(

ab
b – a

)α[∫ 1
a

1
b

(
1
a

– ω

)α–1

f
(

1
ω

)
ψ

(
1
ω

)
dω

+
∫ 1

a

1
b

(
ω –

1
b

)α–1

f
(

1
ω

)
ψ

(
1
ω

)
dω,

∫ 1
a

1
b

(
ω –

1
b

)α–1

f
(

1
ω

)
ψ

(
1
ω

)
dω +

∫ 1
a

1
b

(
ω –

1
b

)α–1

f
(

1
ω

)
ψ

(
1
ω

)
dω

]
.

This implies that

(
ab

b – a

)α

Γ (α)F
(

2ab
a + b

)[
Jα
1/b+(ψ ◦ g)(1/a) + Jα

1/a–ψ ◦ g(1/b)
]

⊇
(

ab
b – a

)α

Γ (α)
[
J

α
1/b+(Fψ ◦ g)(1/a) + J

α
1/a–(Fψ ◦ g)(1/b)

]
. (3.11)

Similarly, F ∈FHC(J�,K+), then

F
(

ab
μb + νa

)
+ F

(
ab

νb + μa

)
⊇F (a) + F (b). (3.12)

Multiplying both sides of (3.12) by μα–1ψ( ab
μb+νa ), one has

∫ 1

0
μα–1

[
F

(
ab

μa + νb

)
+ F

(
ab

μb + νa

)]
ψ

(
ab

μb + νa

)
dμ

⊇ [
F (a) + F (b)

]∫ 1

0
μα–1ψ

(
ab

μb + νa

)
dμ.
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Hence,

(
ab

b – a

)α

Γ (α)
[
J

α
1/b+(Fψ ◦ g)(1/a) + J

α
1/a–Fψ ◦ g(1/b)

]

⊇
(

ab
b – a

)α

Γ (α)
F (a) + F (b)

2
[
Jα
1/b+(ψ ◦ g)(1/a) + Jα

1/a–ψ ◦ g(1/b)
]
, (3.13)

and the result follows. �

Remark 3.10 If f = f , then we get ([11], Theorem 5).
If ψ(x) = 1, inequality (3.9) reduces to inequality (3.7) in Theorem 3.6.

4 Examples
Example 4.1 Let F (x) = [–

√
x + 2,

√
x + 2], x ∈ [0, 2], and α = 1

2 . Then F ∈ FC([0, 2],K+),
and we have

Γ (α + 1)
2(b – a)α

[
J

α
a+F (b) + J

α
b–F (a)

]

=
Γ (3/2)

2
√

2

{
1√
π

∫ 2

0
(2 – s)– 1

2 [–
√

s + 2,
√

s + 2] ds

+
1√
π

∫ 2

0
s– 1

2 [–
√

s + 2,
√

s + 2] ds
}

=
1

4
√

2
{

[–π + 4
√

2,π + 4
√

2] + [–2 + 4
√

2, 2 + 4
√

2]
}

=
[

8
√

2 – π – 2
4
√

2
,

8
√

2 + π + 2
4
√

2

]
.

On the other hand,

F
(

a + b
2

)
= F

(
0 + 2

2

)
= F (1) = [1, 3]

and

F (a) + F (b)
2

=
[

2 –
√

2
2

, 2 +
√

2
2

]
.

Thus,

[1, 3] ⊇
[

8
√

2 – π – 2
4
√

2
,

8
√

2 + π + 2
4
√

2

]
⊇

[
2 –

√
2

2
, 2 +

√
2

2

]
.

Consequently, Theorem 3.2 is verified.

Example 4.2 Let F : [0, 2] →K is defined as the above example, and

ψ(x) =

⎧⎨
⎩

√
x, x ∈ [0, 1],√
2 – x, x ∈ (1, 2],
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then ψ(2 – x) = ψ(x) ≥ 0 for all x ∈ [0, 2]. Let α = 1
2 , we obtain

[
J

α
a+ (Fψ)(b) + J

α
b– (Fψ)(a)

]

=
1√
π

{∫ 2

0
(2 – s)– 1

2 ψ(s)[–
√

s + 2,
√

s + 2] ds +
∫ 2

0
s– 1

2 ψ(s)[–
√

s + 2,
√

s + 2] ds
}

=
1√
π

{[
8 – 8

√
2

3
+ π ,

8
√

2 – 8
3

+ π

]
+

[
–

4
3

+ π ,
4
3

+ π

]}

=
1√
π

[
4 – 8

√
2

3
+ 2π ,

8
√

2 – 4
3

+ 2π

]
.

Furthermore, by Example 4.1, we have

[
√

π , 3
√

π ] ⊇ 1√
π

[
4 – 8

√
2

3
+ 2π ,

8
√

2 – 4
3

+ 2π

]
⊇ √

π

[
2 –

√
2

2
, 2 +

√
2

2

]
.

Consequently, Theorem 3.4 is verified.

5 Conclusions
In this research, we get a new extension of interval harmonically convex functions and
some further refinements for interval fractional Hermite–Hadamard type inequalities.
The results obtained in this work are the promotions of those given in previous research.
Moreover, our results can be recognized as significant methods in the fields of mathemat-
ics. At a further research direction, we will investigate the integral inequalities with a new
class of fractional integral.
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