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1 Introduction
Let H be a complex Hilbert space and let L(H) be the algebra of all bounded linear op-
erators on H. In the 1990s, Agler and Stankus [1] studied the following operator. For an
operator T ∈L(H) and a positive integer m, define

Bm(T) =
m∑

j=0

(–1)m–j

(
m
j

)
T∗jT j.

We say that T is m-contractive (respectively, m-expansive and m-isometric) if Bm(T) ≥ 0
(respectively, Bm(T) ≤ 0 and Bm(T) = 0) for some positive integer m.

The m-isometric operators have been widely investigated in recent years. The theory of
m-isometric operators was investigated especially by Agler and Stankus [1–3]. Agler and
Stankus [1–3] developed a rich theory of m-isometric operators and highlighted its con-
nections to Toeplitz operators and function theory. Agler [4] illustrated the connection be-
tween m-isometric operators and the classical disconjugacy theory. In recent years, there
have been studies on products of m-isometric operators [5], and m-isometric composition
operators [6]. In [7], the authors characterized m-isometric Toeplitz operators by prop-
erties of the rational symbols and gave some results for m-expansive and m-contractive
Toeplitz operators with trigonometric polynomial symbols.

Let L2 ≡ L2(T) be the set of square integrable measurable functions on T and H2 ≡
H2(T) be the corresponding Hardy space. Let L∞ ≡ L∞(T) be the set of bounded mea-
surable functions on T and let H∞ ≡ H∞(T) := L∞ ∩ H2. We introduce the notion of
block Toeplitz operators. Let Mn×r denote the set of all n × r complex matrices and write
Mn = Mn×n. We observe that L∞

Mn = L∞ ⊗ Mn and H2
Cn = H2 ⊗ C

n. For the matrix-valued
function Φ ∈ L∞

Mn , the block Toeplitz operator with symbol Φ is the operator TΦ on the
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vector-valued Hardy space H2
Cn of the unit disc defined by

TΦ f := Pn(Φf )
(
f ∈ H2

Cn
)
,

where Pn denotes the orthogonal projection of L2
Cn (= L2 ⊗C

n) onto H2
Cn . If we set H2

Cn =
H2(T) ⊕ · · · ⊕ H2(T), then we see that if

Φ =

⎡

⎢⎢⎣

ϕ11 · · · ϕ1n
...

ϕn1 · · · ϕnn

⎤

⎥⎥⎦ , then TΦ =

⎡

⎢⎢⎣

Tϕ11 · · · Tϕ1n
...

Tϕn1 · · · Tϕnn

⎤

⎥⎥⎦ .

Gu, Hendricks, and Rutherford [8] studied the hyponormality of block Toeplitz oper-
ators and characterized the hyponormality of block Toeplitz operators in terms of their
symbols. In particular, they showed that the hyponormality of the block Toeplitz operator
TΦ will force Φ to be normal, that is, Φ∗Φ = ΦΦ∗.

This paper is organized as follows. In Sect. 2, we present some preliminary knowledge
of block Toeplitz operators and m-isometric operators. In Sect. 3, we give several results
for the m-isometric (respectively, m-expansive and m-contractive) block Toeplitz opera-
tors with rational symbols. We give a concrete description of m-isometric block Toeplitz
operators in terms of the coefficients of the matrix-valued rational symbols.

2 Preliminary
We first review the results of m-isometric Toeplitz operators with rational symbols.
The properties of Toeplitz operators enable us to establish several consequences of m-
isometric operators. Given a positive integer m, it follows from the definition that an op-
erator T ∈L(H) is an m-isometry if and only if

m∑

j=0

(–1)m–j

(
m
j

)
∥∥Tjx

∥∥2 = 0 for all x ∈H. (2.1)

Using the identity (2.1) and the block Toeplitz operator with matrix-valued trigonometric
polynomial symbol Φ , we consider the following equation:

m∑

j=0

(–1)m–j

(
m
j

)
∥∥Tj

ΦK
∥∥2 = 0 (2.2)

for all K ∈ H2
Cn . A matrix function Θ ∈ H∞

Mm×n is called inner if Θ∗Θ = In a.e. on T. From
the well-known results for Toeplitz operators and isometric operators, we can extend the
results to block versions. As the idea of the proof is completely the same as in that of [9],
we omit the proof of the following lemma.

Lemma 2.1 A necessary and sufficient condition that a Toeplitz operator TΦ be an iso-
metric operator is that Φ is inner.

For a matrix-valued function Φ ∈ H2
Mn×r , write Φ̃(z) := Φ∗(z). We say that � ∈ H2

Mn×m

is a left inner divisor of Φ if � is an inner matrix function such that Φ = �A for some
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A ∈ H2
Mm×r (m ≤ n). We also say that Φ ∈ H2

Mn×r and Ψ ∈ H2
Mn×m are left coprime if the

only common left inner divisor of Φ and Ψ is a unitary constant, and that Φ ∈ H2
Mn×r and

Ψ ∈ H2
Mm×r are right coprime if Φ̃ and Ψ̃ are left coprime. Two matrix functions Φ and Ψ

in H2
Mn are coprime if they are both left and right coprime.

For Φ ∈ L∞
Mn , we write

Φ+ := PnΦ ∈ H2
Mn and Φ– :=

(
P⊥

n Φ
)∗ ∈ H2

Mn .

Thus we can write Φ = Φ+ + Φ∗
–. Recall that a function ϕ ∈ L∞ is said to be of bounded

type (or in the Nevanlinna class) if there are analytic functions ψ1,ψ2 ∈ H∞ such that

ϕ(z) =
ψ1(z)
ψ2(z)

for almost all z ∈ T.

For a matrix-valued function Φ = [ϕij] ∈ L∞
Mn , we say that Φ is of bounded type if each

entry ϕij is of bounded type and that Φ is rational if each entry ϕij is a rational function.
Suppose Φ = [ϕij] ∈ L∞

Mn is such that Φ∗ is of bounded type. Then we can write ϕij = θijbij,
where θij is inner and θij and bij are coprime. Thus if θ is the least common multiple of the
θij, then we write

Φ = [ϕij] = [θijbij] = [θaij] = ΘA∗ (2.3)

where Θ = θ In and A ∈ H2
Mn . We note that Eq. (2.3) is minimal, in the sense that if ωIn (ω is

inner) is a common inner divisor of Θ and A, then ω is constant. Let Φ ≡ Φ+ + Φ∗
– ∈ L∞

Mn

be such that Φ and Φ∗ are of bounded type. Then we can write

Φ+ = Θ0A∗ and Φ– = Θ1B∗,

where Θi = θiIn with an inner function θi for i = 0, 1 and A, B ∈ H2
Mn . In particular, if Φ ∈

L∞
Mn is rational then the θi can be chosen as finite Blaschke products. Let Ω be the greatest

common left inner divisor of A and Θ0. Then A = ΩA� and Θ0 = ΩΩ0 for some A� ∈ H2
Mn

and some inner matrix Ω0. Therefore we can write

Φ+ = A∗
�Ω0

where Ω0 and A� are left coprime. In this case Ω0A∗
� is called a left coprime factorization

of Φ+. Similarly,

Φ+ = �0A∗
r

where �0 and Ar are right coprime. In this case �0A∗
r is called a right coprime factorization

of Φ+.
We write Z(θ ) is the set of zeros of an inner function θ . The following lemma will be

useful in the sequel.

Lemma 2.2 ([10]) Let B ∈ H2
Mn and Θ := θ In with a finite Blaschke product θ . Then the

following statements are equivalent:
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(i) B(α) is invertible for each α ∈Z(θ );
(ii) B and Θ are right coprime;

(iii) B and Θ are left coprime.

3 Main results
In this section, we give several results for m-isometric block Toeplitz operators with
trigonometric polynomial symbols.

Theorem 3.1 Let Φ := Φ+ + Φ∗
– is a rational function of the form

Φ+ = Θ0A∗ and Φ– = Θ1B∗ (coprime factorization),

where Θi = θiIn with a finite Blaschke product θi for i = 0, 1 and A, B ∈ H2
Mn and Z(θ0) ∩

Z(θ1) �= ∅. If TΦ is an m-isometry, then Φ is analytic.

Proof Since TΦ is an m-isometry,

m∑

j=0

(–1)m–j

(
m
j

)
T∗j

Φ Tj
ΦK = 0

holds for all K ∈ H2
Cn . Put K = Θm

0 Θm
1 . Then

0 =
m∑

j=0

(–1)m–j

(
m
j

)
T∗j

Φ Tj
ΦK =

m∑

j=0

(–1)m–j

(
m
j

)
Φ∗jΦ jΘm

0 Θm
1

=
m∑

j=0

(–1)m–j

(
m
j

)
(
Φ∗

+ + Φ–
)j(

Φ+ + Φ∗
–
)j
Θm

0 Θm
1

= AmBm + H ,

for some H ∈ θH∞
Mn where θ ∈ Z(θ0) ∩Z(θ1). Therefore Am(α)Bm(α) = 0 for α ∈ Z(θ ). By

Lemma 2.2, A(α) and B(α) are invertible, a contradiction. So either Φ+ or Φ– is zero. If
Φ+ = 0, i.e., Φ = Φ∗

–, then, for Θm
1 ∈ H2

Cn ,

0 =
m∑

j=0

(–1)m–j

(
m
j

)
T∗j

Φ Tj
ΦΘm

1 =
m∑

j=0

(–1)m–j

(
m
j

)
Tj

Φ– Tj
Φ∗–Θm

1

=
m∑

j=0

(–1)m–j

(
m
j

)
Φ j

–Pn
(
Φ∗j

– Θm
1

)
= (–1)mΘm

1 + KB

for some nonzero K ∈ H∞
Mn . Since B and Θ1 are coprime, we have a contradiction. There-

fore Φ– = 0 and hence Φ is analytic. This completes the proof. �

Example 3.2 Suppose that

Φ(z) =

⎡

⎣
2z–1
1– 1

2 z
0

0 z– 1
3

1– 1
3 z

⎤

⎦ .
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Then Φ is analytic, but

T2
Φ∗T2

Φ – 2TΦ∗TΦ + I =

[
9I 0
0 I

]
�= 0.

Hence TΦ is not 2-isometric.

Next, we show that every m-isometric block Toeplitz operators with trigonometric poly-
nomial symbol is an isometry.

Theorem 3.3 Let Φ := Φ+ + Φ∗
– be normal and rational of the form

Φ+ = Θ0A∗ and Φ– = Θ1B∗ (coprime factorization),

where Θi = θiIn with a finite Blaschke product θi for i = 0, 1 and A, B ∈ H2
Mn and Z(θ0) ∩

Z(θ1) �= ∅. Then the Toeplitz operator TΦ is an m-isometry if and only if Φ is inner.

Proof Sufficiency is obvious. To prove necessity, if TΦ is an m-isometry, then

m∑

j=0

(–1)m–j

(
m
j

)
T∗j

Φ Tj
ΦK = 0

holds for all K ∈ H2
Cn . Put K = Θm

0 Θm
1 . Since Φ is normal

m∑

j=0

(–1)m–j

(
m
j

)
T∗j

Φ Tj
ΦΘm

0 Θm
1 =

m∑

j=0

(–1)m–j

(
m
j

)
Φ∗jΦ jΘm

0 Θm
1

=
(
Φ∗Φ – I

)m
Θm

0 Θm
1 .

Thus (Φ∗Φ – I)m = 0 and so, Φ∗Φ – I is nilpotent of order m. Hence the spectrum
σ (Φ∗Φ) = {1}. Thus Φ∗Φ = I . From Lemma 2.1 and Theorem 3.1, Φ is inner. This com-
pletes the proof. �

Corollary 3.4 Suppose that Φ , Ψ are normal and rational of the form

Φ+ = Θ0A∗ and Φ– = Θ1B∗ (coprime factorization)

and

Ψ+ = Θ2C∗ and Ψ– = Θ3D∗ (coprime factorization),

where Θi = θiIn with a finite Blaschke product θi for i = 0, 1, 2, 3 and A, B, C, D ∈ H2
Mn and

Z(θ0) ∩Z(θ1) �= ∅ and Z(θ2) ∩Z(θ3) �= ∅. Then the following hold.
(i) If TΦ and TΨ are m-isometric operators, then TΦTΨ and TΨ TΦ are m-isometric

operators.
(ii) If TΦ and TΨ are m-isometric operators, then TΦ – TΨ is an m-isometric operator if

and only if Φ∗Ψ + Ψ ∗Φ = I .
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Proof By Theorem 3.3, TΦ and TΨ are isometric operators. Therefore T∗
Ψ T∗

ΦTΦTΨ = I ,
i.e., TΦTΨ is isometric and so ΦΨ is normal. Hence TΦTΨ is an m-isometric operator.
Similarly, TΨ TΦ is also an m-isometric operator. For (ii), suppose that TΦ – TΨ is an m-
isometric operator. By Theorem 3.3, TΦ – TΨ is an isometry. Hence

0 =
(
T∗

Φ – T∗
Ψ

)
(TΦ – TΨ ) – I = T∗

ΦTΦ – T∗
ΦTΨ – T∗

Ψ TΦ + T∗
Ψ TΨ – I

= I – TΦ∗Ψ +Ψ ∗Φ .

Thus, we have TΦ∗Ψ +Ψ ∗Φ = I or equivalently, Φ∗Ψ +Ψ ∗Φ = I . Conversely, if Φ∗Ψ +Ψ ∗Φ =
I , then TΦ – TΨ is isometry. Hence TΦ – TΨ is an m-isometric operator. �

Next, we study contractive and expansive Toeplitz operators. We consider m-contractive
Toeplitz operators with trigonometric polynomial symbols when m = 1 and 2.

The next lemma plays a key role in finding necessary and sufficient conditions for m-
expansive and m-contractive Toeplitz operators.

Lemma 3.5 ([11]) Let A, B, C be complex matrices where A and C are square matrices.
Then

[
A B
B∗ C

]
≥ 0 ⇔

⎧
⎪⎪⎨

⎪⎪⎩

A ≥ 0,

B = AW (for some W ),

C ≥ W ∗AW .

Moreover, rank
[ A B

B∗ C

]
= rank A ⇔ C = W ∗AW .

First, we consider the 1-contractive Toeplitz operators.

Theorem 3.6 Suppose that Φ is a matrix-valued function in L∞
C2 of the form

Φ(z) =

[
a(z) b(z)
c(z) d(z)

]
. (3.1)

(i) If ‖a‖∞ + ‖c‖∞ > 1, then TΦ is contractive if and only if

T∗
b,dTb,d – I ≥ T∗

b,dTa,c
(
T∗

a,cTa,c – I
)–1T∗

a,cTb,d,

where Tx,y =
[ Tx

Ty

]
.

(ii) If ‖a‖∞ + ‖c‖∞ = 1, then TΦ is contractive if and only if ‖b‖∞ + ‖d‖∞ ≥ 1.
(iii) If ‖a‖∞ + ‖c‖∞ < 1, then TΦ is never contractive.

Proof From the definition, TΦ is contractive if and only if TΦ∗TΦ – I ≥ 0 or equivalently,

[
TaTa + TcTc – I TaTb + TcTd

TbTa + TdTc TbTb + TdTd – I

]
≥ 0.

By Lemma 3.5, TΦ is contractive if and only if

TaTa + TcTc ≥ I, TaTb + TcTd = (TaTa + TcTc – I)W (3.2)
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and

TbTb + TdTd – I ≥ W ∗(TaTb + TcTd) (3.3)

for some W . If ‖a‖∞ + ‖c‖∞ > 1 then TaTa + TcTc – I is invertible. From Eq. (3.2), we
deduce that

W = (TaTa + TcTc – I)–1(TaTb + TcTd).

Therefore, by the inequality (3.3),

TbTb + TdTd – I ≥ (
T∗

b T∗
a + T∗

d T∗
c
)
(TaTa + TcTc – I)–1(TaTb + TcTd)

or equivalently,

T∗
b,dTb,d – I ≥ T∗

b,dTa,c
(
T∗

a,cTa,c – I
)–1T∗

a,cTb,d,

where Tx,y =
[ Tx

Ty

]
. If ‖a‖∞ + ‖c‖∞ = 1, then TaTa + TcTc = I and from Eqs. (3.2) and (3.3),

TbTb + TdTd – I ≥ 0.

If ‖a‖∞ + ‖c‖∞ < 1, then TaTa + TcTc < I . By Eq. (3.2), TΦ is never contractive. This com-
pletes the proof. �

Using the same arguments of Theorem 3.6 that we can check the following consequence.

Corollary 3.7 Suppose that Φ is a matrix-valued function in L∞
C2 of the form (3.1).

(i) If TaTa + TcTc < I , then TΦ is expansive if and only if

TbTb + TdTd – I ≤ (
T∗

b T∗
a + T∗

d T∗
c
)
(TaTa + TcTc – I)–1(TaTb + TcTd).

(ii) If TaTa + TcTc = I , then TΦ is expansive if and only if TbTb + TdTd – I ≤ 0.
(iii) If TaTa + TcTc > I , then TΦ is never expansive.

Corollary 3.8 Suppose that Φ is a matrix-valued function in L∞
C2 of the form (3.1). Then

the following statements hold.
(i) If b = 0 and c = 0, then TΦ is contractive if and only if Ta and Td are contractive.

(ii) If a = 0 and d = 0, then TΦ is contractive if and only if Tb and Tc are contractive.

Proof If b = c = 0, then from Eqs. (3.2) and (3.3), TΦ is contractive if and only if TaTa ≥ I
and TdTd ≥ I . �

Corollary 3.9 Suppose that Φ is a matrix-valued function in L∞
C2 of the form (3.1) where

Ta, Tb, Tc, and Td are isometric. Then TΦ is contractive if and only if Tab+cd is expansive.

Proof From Lemma 2.1 and Theorem 3.6, we have Tab+cdTab+cd ≤ I or equivalently, Tab+cd

is expansive. �
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Next, we study 2-contractive Toeplitz operators. Suppose that Φ is a matrix-valued func-
tion in L∞

Cn of the form

Φ(z) =

[
A(z) B(z)
C(z) D(z)

]
.

Then by a direct calculation we deduce that

B2(TΦ ) = T2
Φ∗T2

Φ – 2TΦ∗TΦ + I =

[
M1 M2

M∗
2 M3

]
, (3.4)

where

M1 = T2
A∗T2

A + TA∗TC∗TCTA + TC∗TB∗T2
A + TC∗TD∗TCTA + T2

A∗TBTC

+ TA∗TC∗TDTC + TC∗TB∗TBTC + TC∗TD∗TDTC – 2TA∗TA – 2TC∗TC + I,

M2 = T2
A∗TATB + TA∗TC∗TCTB + TC∗TB∗TATB + TC∗TD∗TCTB + T2

A∗TBTD

+ TA∗TC∗T2
D + TC∗TB∗TBTD + TC∗TD∗T2

D – 2TA∗TB – 2TC∗TD,

and

M3 = TB∗TA∗TATB + TB∗TC∗TCTB + TD∗TB∗TATB + T2
D∗TCTB + TB∗TA∗TBTD

+ TB∗TC∗T2
D + TD∗TB∗TBTD + T2

D∗T2
D – 2TB∗TB – 2TD∗TD + I.

Since the induced relations are very complicated, in order to consider the 2-contractive
or 2-expansive Toeplitz operators, we consider the case with a simple symbol. Recently,
m-isometric Toeplitz operators with single-valued symbols were studied in [7].

Lemma 3.10 ([7]) Let ϕ be a rational function. A Toeplitz operator Tϕ is an m-isometry if
and only if Tϕ is an isometry.

Theorem 3.11 Suppose that Φ is a matrix-valued rational function in L∞
Cn of the form

Φ(z) =

[
A(z) B(z)
C(z) D(z)

]
,

where TA, TB, TC , and TD are m-isometric operators. Then TΦ is 2-contractive if and only
if

M1 ≥ 0, M2 = M1W , and M3 ≥ W ∗M2 (3.5)

for some W where

M1 = TC∗B∗A2 + TC∗D∗CA + TA∗2BC + TA∗C∗DC + I,

M2 = TC∗B∗AB + TC∗D∗CB + TA∗2BD + TA∗C∗D2 ,
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M3 = TD∗B∗AB + TD∗2CB + TB∗A∗BD + TB∗C∗D2 + I.

In particular, suppose that A, B, C, and D are single-valued trigonometric polynomials.
If TΦ is 2-contractive then

deg A = deg D, 2 deg A = deg B + deg C. (3.6)

Proof From Lemmas 2.1, 3.10, and Eq. (3.4), if follows that TΦ is 2-contractive if and only
if the relations (3.5) hold for some W . In particular, if A, B, C, and D are single-valued
trigonometric polynomials, then from Lemma 3.10, we can set A(z) = λ1zka , B(z) = λ2zkb ,
C(z) = λ3zkc , and D(z) = λ4zkd with |λ1| = |λ2| = |λ3| = |λ4| = 1. Hence

M1 = T
λ2

1λ2λ3z2ka–kb–kc + T
λ1λ4zka–kd + T

λ1
2
λ2λ3zkb+kc–2ka + T

λ1λ4zkd–ka + I.

From Eq. (3.5),

M1 ≥ 0 ⇐⇒ T
λ2

1λ2λ3z2ka–kb–kc +λ1λ4zka–kd +λ1
2
λ2λ3zkb+kc–2ka +λ1λ4zkd–ka + I ≥ 0

⇐⇒ T2 Re{λ2
1λ2λ3z2ka–kb–kc +λ1λ4zka–kd }+1 ≥ 0,

and hence ka = kd and 2ka = kb + kc. This completes the proof. �

The next result is a necessary and sufficient condition for TΦ to be 2-contractive, under
the same hypotheses as Theorem 3.11 but with the additional condition that each entry
in the matrix is a single-valued function.

Corollary 3.12 Suppose that Φ is a matrix-valued function in L∞
C2 of the form

Φ(z) =

[
azm bzl

cz2m–l dzm

]

where |a| = |b| = |c| = |d| = 1. Then TΦ is 2-contractive if and only if

⎧
⎪⎪⎨

⎪⎪⎩

(2 Re{a2bc + ad} + 1)(2 Re{bcd2 + ad} + 1) ≥ |ac + bd + a2bd + acd2|2
if 2 Re{a2bc + ad} + 1 > 0,

2 Re{bcd2 + ad} + 1 ≥ 0 if 2 Re{a2bc + ad} + 1 = 0.

Furthermore, if 2 Re{a2bc + ad} + 1 < 0, then TΦ is not 2-contractive.

Proof From the proof of Theorem 3.11, we deduced that TΦ is 2-contractive if and only if

M1 ≥ 0, M2 = M1W , and M3 ≥ W ∗M2 (3.7)

for some W where

M1 = Ta2bc + Tad + Ta2bc + Tad + I,
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M2 = Taczl–m + Tbdzl–m + Ta2bdzl–m + Tacd2zl–m ,

M3 = Tad + Tbcd2 + Tad + Tbcd2 + I.

From Eq. (3.7), M1 ≥ 0 if and only if 2 Re{a2bc + ad} + 1 ≥ 0. There are two cases to con-
sider. If 2 Re{a2bc + ad} + 1 > 0, then

W =
(
2 Re

{
a2bc + ad

}
+ 1

)–1T(ac+bd+a2bd+acd2)zl–m .

Hence M3 ≥ W ∗M2 if and only if

(
2 Re

{
a2bc + ad

}
+ 1

)(
2 Re

{
bcd2 + ad

}
+ 1

) ≥ ∣∣ac + bd + a2bd + acd2∣∣2.

If 2 Re{a2bc + ad}+ 1 = 0, then M1 = M2 = 0 and hence M3 ≥ 0 or equivalently, 2 Re{bcd2 +
ad} + 1 ≥ 0. This completes the proof. �

Example 3.13 Suppose that Φ(z) =
[ –z –z

z z
]
. Then Eq. (3.6) holds, but M1 = –3I < 0. There-

fore TΦ is not 2-contractive. Hence the converse of Theorem 3.11 does not hold.

4 Conclusion
In [7], m-isometric Toeplitz operators were studied for the case of single trigonometric
polynomial symbols. In this paper, we study the properties of Toeplitz operators with
matrix-valued trigonometric polynomial symbols and we obtain a necessary and suffi-
cient condition for block Toeplitz operators with trigonometric polynomial symbols to be
m-isometric or m-contractive.
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