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Abstract
In this paper, we present some new extensions of Hölder’s inequality and give a
condition under which the equality holds. We also show that many existing
inequalities related to the Hölder inequality are particular cases of the inequalities
presented. At the same time, we further promote new inequalities based on the
already introduced Hölder inequality.
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1 Introduction
Let aij > 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, pj > 1, and

∑n
j=1 p–1

j = 1. The following Hölder inequality
is well known:

m∑

i=1

n∏

j=1

aij ≤
n∏

j=1

( m∑

i=1

apj
ij

) 1
pj

. (1)

The integral form of the Hölder inequality is

∫ b

a

( n∏

j=1

fj(x)

)

dx ≤
n∏

j=1

(∫ b

a
f pj
j (x) dx

)1/pj

.

ln addition, from (1) the famous Cauchy inequality follows:

( n∑

i=1

xiyi

)2

≤
( n∑

i=1

x2
i

)( n∑

i=1

y2
i

)

.

Analytic inequalities [1–12], especially Hölder’s inequalities play an important role
in mathematical analysis, harmonic analysis, functional analysis, and partial differential
equations. It is precisely because of the importance of the Hölder inequality that more
and more authors have invested in its research and have made a lot of optimization and
advancement. In this paper, we describe the discrete and continuous forms of the Hölder
inequality and its associated inferences.
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Yang’s [13, 14] insights into inequalities have further led to several inferences. Qi’s [15,
16] several integral inequalities explain the integral form of the inequality and further
elaboration of the integral form of the Hölder inequality. Tian [17–20], Tian and Ha [21,
22], Tian, Ha, and Wang [23], Tian and Pedrycz [24], Kwon and Bae [25], Tian, Zhu and
Cheung [26], and Zhao and Cheung [27] give a series of meaningful improvements, gener-
alization, properties, and applications of Hölder’s inequality. The papers in the references
are of great guiding significance to the conception and promotion of this paper.

From the paper by Yang [14] we can get the following conclusions.
Let the function h : (–∞, +∞) → (0, +∞) be defined as

h(t) =
n∏

k=1

[ m∑

i=1

( n∏

j=1

aij

)1–t
(
apk

ik
)t

]1/pk

. (2)

It is easy to see that h ∈ C∞ and (1) becomes

h(0) =
m∑

i=1

n∏

j=1

aij ≤
n∏

j=1

( m∑

i=1

apj
ij

) 1
pj

= h(1); (3)

it is not difficult to see h(0) =
∑m

i=1
∏n

j=1 aij, h(1) =
∏n

j=1(
∑m

i=1 apj
ij )1/pj under the conditions

pk > 1, k = 1, 2, . . . , n, and
∑n

k=1 1/pk = 1. From (2) it follows that

h′(t)

⎧
⎨

⎩

≥ 0, t ≥ 0,

≤ 0, t ≤ 0,

and the equation holds if and only if t = 0 or apk
ik /

∏n
j=1 aij = apk

jk /
∏n

j=1 aij for 1 ≤ i, j ≤ m,
k = 1, 2, . . . , n.

From (2) and (3), it is natural to consider the function h(t) more deeply. Similarly, we
can define the function g(t) related to the integral form of Hölder’s inequality:

g(t) =
n∏

k=1

[∫ b

a

( n∏

j=1

fj(x)

)1–t

f pk t
k (x) dx

]1/pk

, t ∈R, (4)

where fk(x) > 0, x ∈ [a, b], k = 1, 2, . . . , n, and fk ∈ Lpk [a, b].
The integral expression of Hölder’s inequality now becomes

g(0) =
∫ b

a

( n∏

k=1

fk(x)

)

dx ≤
n∏

k=1

(∫ b

a
f pk
k (x) dx

)1/pk

= g(1). (5)

As can be seen from the paper of Yang [14], (2) and (4) are generalized to the case pj >
1,

∑n
k=1 1/pk = r. We will show that hr(t) and gr(t) are concave functions on R and that

mint∈R hr(t) = hr(0) and mint∈R gr(t) = gr(0); moreover, h′
r(t)t ≥ 0 and g ′

r(t)t ≥ 0 for t ∈ R.
Therefore, we obtain refinements of (3) and (5):

hr(0) = hr(1) – h′
r(τ ), τ ∈ (0, 1),

gr(0) = gr(1) – g ′
r(s), s ∈ (0, 1),
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where 0 ≤ h′
r(τ ) ≤ h′

r(1) and 0 ≤ g ′
r(s) ≤ g ′

r(1). We also obtain conditions at which the
equalities hold.

2 Main results
We begin this section with three lemmas, which will be used in the sequel.

From Yang [13] we get the following lemma.

Lemma 2.1 ([13]) If A and B are positive numbers, then

(ln A – ln B)
(
At – Bt)

⎧
⎨

⎩

≥ 0, t ≥ 0,

≤ 0, t ≤ 0,

and the equality holds if and only if (A – B)t = 0.

Lemma 2.2 ([14]) Let rpk > 1,
∑n

k=1
1

pk
= r, aij > 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, bi = (

∏n
j=1 aij)

1
r ,

dik = arpk
ik /

∏n
j=1 aij, 1 ≤ i ≤ m, 1 ≤ k ≤ n. Then

n∑

k=1

1
pk

( m∑

i=1

bi ln dik

)

= 0.

Proof By the definition of bi and dik we have for i = 1, 2, . . . , m:

n∑

k=1

1
pk

ln dik =
n∑

k=1

1
pk

ln

(
arpk

ik
br

i

)

=
n∑

k=1

r ln aik –
n∑

k=1

r
pk

ln bi

= r

(

ln

( n∏

k=1

aik

br
i

))

= 0.

Therefore

n∑

k=1

1
pk

( m∑

i=1

br
i ln dik

)

=
m∑

i=1

br
i

( n∑

k=1

1
pk

ln dik

)

= 0.

Thus the proof of the lemma is completed. �

Lemma 2.3 ([14]) Let rpk > 1,
∑n

k=1
1

pk
= r, fk(x) > 0, F(x) = (

∏n
j=1 fj(x)) 1

r , gk(x) = f rpk
k /Fr(x),

x ∈ [a, b], k = 1, 2, . . . , n. Then

n∑

k=1

p–1
k ln gk(x) = 0, x ∈ [a, b].



Yan and Gao Journal of Inequalities and Applications         (2019) 2019:97 Page 4 of 12

Proof After a simple operation, we have

n∑

k=1

p–1
k ln gk(x) =

n∑

k=1

1
pk

ln
f rpk
k (x)
Fr(x)

=
n∑

k=1

1
pk

[
rpk ln fk(x) – r ln F(x)

]

=
n∑

k=1

ln fk(x) –
n∑

k=1

r
pk

ln F(x)

= r ln
n∏

k=1

fk(x) – r2 ln F(x)

= r ln

∏n
k=1 fk(x)
Fr(x)

= 0.

Thus the proof of the lemma is completed. �

The main result of this paper is the following theorem.
As can be seen from Kwon and Bae [25], we can get the continuous function hr(t) pro-

posed by Theorem 2.4. In this paper, we consider continuous variables f (x, y) instead of
discrete variables aij. At the same time, we will introduce the discrete form of hr(t) used
in this paper by the continuous function.

Theorem 2.4 Let X = (X,μ) and (Y ,ν) be positive measure spaces with μ(X) = 1 and 0 <
ν(Y ) < ∞. Let f (x, y) be a real-valued bounded measurable function on X × Y . Define the
function hr(t) : R →R

+ by

hr(t) = exp

[∫

X
ln

(∫

Y
G(y)etH(x,y) dν(y)

)

dμ(x)
]

, (6)

where G(y) = e
∫

X f (x,y) dμ(x) and H(x, y) = rf (x, y) –
∫

X f (x, y) dμ(x).
Then the discrete form of hr(t) can be further pushed out:

hr(t) =
n∏

k=1

[ n∑

i=1

( m∏

j=1

Xij

)1–t
(
Xrpk

ik
)t

] 1
pk

, (7)

where rpk > 1,
∑n

k=1
1

pk
= r, Xij > 0 (1 ≤ i ≤ m, 1 ≤ j ≤ n), and Xij are measurable.

Proof Take X, Y as two discrete spaces X = 1, 2, 3, . . . , n, Y = 1, 2, 3, . . . , m, and take a posi-
tive sequence pj satisfying

∑n
j=1

1
pj

= r. Set μ, ν as

μ =
n∑

j=1

1
pj

δj,

ν =
m∑

i=1

δi,
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where δj and δi denote the unit mass concentrated at j and i, respectively. Then (X, 2X ,μ)
and (Y , 2Y ,ν) are positive measure spaces with μ(X) = 1 and 0 < ν(Y ) = m < ∞. Here 2{·}

means the set of all subsets of {·}. Let

ef (j,i) = Xpj
ij .

Then

exp

(∫

X
f (x, y) dμ(x)

)

= exp

( n∑

j=1

1
pj

ln Xpj
ij

)

= exp

( n∑

j=1

ln Xij

)

= exp

(

ln
n∏

j=1

Xij

)

=
n∏

j=1

Xij.

Therefore hr(t) has the expression

hr(t) = exp

[∫

X
ln

(∫

Y
G(y)etH(x,y) dν(y)

)

dμ(x)
]

= exp

[∫

X
ln

(∫

Y
e
∫

X f (x,y) dμ(x)ertf (x,y)–t
∫

X f (x,y) dμ(x) dν(y)
)

dμ(x)
]

= exp

[∫

X
ln

(∫

Y

(
e
∫

X f (x,y) dμ(x))1–t(ef (x,y))rt dν(y)
)

dμ(x)
]

= exp

[∫

X
ln

(∫

Y

( n∏

j=1

Xij

)1–t
(
Xrpk

ik
)t dν(y)

)

dμ(x)

]

= exp

[∫

X
ln

( m∑

i=1

( n∏

j=1

Xij

)1–t
(
Xrpk

ik
)t

)

dμ(x)

]

= exp

[ n∑

k=1

1
pk

ln

( m∑

i=1

( n∏

j=1

Xij

)1–t
(
Xrpk

ik
)t

)]

=
n∏

k=1

[ m∑

i=1

( n∏

j=1

Xij

)1–t
(
Xrpk

ik
)t

] 1
pk

.

Thus the proof of the theorem is completed. �

Theorem 2.5 Let aij > 0 (1 ≤ i ≤ m, 1 ≤ j ≤ n), rpk > 1,
∑n

k=1 1/pk = r. Define the positive
function

hr(t) =
n∏

k=1

[ m∑

i=1

( n∏

j=1

aij

)1–t
(
arpk

ik
)t

]1/pk

, t ∈R. (8)
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Then the function hr(t) defined by (8) is concave, that is, h′′
r (t) ≥ 0 for t ∈ R, and the equality

holds if and only if

arpk
ik∏n

j=1 aij
=

arpk
jk

∏n
l=1 ajl

, 1 ≤ i, j ≤ m, k = 1, 2, . . . , n. (9)

In this case, hr(t) is a constant.

Proof It is easy to see from (2) that hr(t) can be expressed in the following equivalent form:
Let bi = (

∏n
j=1 aij)

1
r , dik = arpk

ik /br
i ,

hr(t) =
n∏

k=1

[ m∑

i=1

br
i

(
arpk

ik
br

i

)t
] 1

pk

.

Let Hr(t) = ln hr(t),

Hr(t) =
n∑

k=1

1
pk

ln

( m∑

i=1

br
i dt

ik

)

.

Then by Lemmas 2.1 and 2.2 we obtain

H ′
r(t) =

h′
r(t)

hr(t)
=

n∑

k=1

1
pk

∑m
i=1 br

i dt
ik ln dik

∑m
i=1 br

i dt
ik

=
n∑

k=1

1
pk

∑m
i=1 br

i dt
ik ln dik

∑m
i=1 br

i dt
ik

–
n∑

k=1

1
pk

∑m
i=1 br

i ln dik
∑m

i=1 br
i

=
n∑

k=1

1
pk

∑
1≤i<j≤m br

i br
j (ln dik – ln djk)(dt

ik – dt
jk)

(
∑m

i=1 br
i )(

∑m
i=1 br

i dt
ik)

⎧
⎨

⎩

≥ 0, t ≥ 0,

≤ 0, t ≤ 0.

Therefore H ′
r(t) = 0 if and only if t = 0 or

dik = djk , 1 ≤ i < j ≤ m, k = 1, 2, . . . , n.

Similarly, by Lemmas 2.1 and 2.2 we obtain

H ′′
r (t) =

n∑

k=1

1
pk

(
∑n

i=1 br
i dt

ik)(
∑m

i=1 br
i dt

ik(ln dik)2) – (
∑m

i=1 br
i dt

ik ln dik)2

(
∑m

i=1 br
i dt

ik)2 .

It is easy to see that H ′′
r ≥ 0 and the equality holds at some t0 if and only if

dik = djk , 1 ≤ i < j ≤ m, k = 1, . . . , n.

Since h′
r(t) = hr(t)H ′

r(t), we have h′′
r (t) = hr(t)[(H ′

r(t))2 + H ′′
r (t)] ≥ 0, and h′′

r (t) = 0 if and only
if H ′

r(t) = 0 and H ′′
r (t) = 0.

The proof of the theorem is completed. �



Yan and Gao Journal of Inequalities and Applications         (2019) 2019:97 Page 7 of 12

From our discussion we see that h′′
r (t) ≥ 0 and the equality holds at some t0 ∈ R if and

only if (9) holds. In this case, h′′
r (t) ≡ 0 and h′

r(t) = h′
r(0) = const. Since, by by the proof,

h′
r(t) = hr(0)H ′

r(0) = 0, which yields hr(t) = hr(0) = const, t ∈R.

Corollary 2.6 If (9) holds, then hr(t) = const. Otherwise, h′′
r (t) > 0, t ∈R, and h′

r(t)t > 0 for
t 	= 0; in particular, for 0 = t1 < t2 < · · · < tN = 1, we have

hr(0) = hr(t1) < hr(t2) < · · · < hr(tN ) = hr(1),

hr(0) = min
t∈R

hr(t) =
n∏

k=1

[ m∑

i=1

br
i

] 1
pk

=

( m∑

i=1

br
i

)r

=

( m∑

i=1

n∏

j=1

aij

)r

≤ hr(1) =
n∏

k=1

[ m∑

i=1

arpk
ik

] 1
pk

.

If r = 1, then we get a refinement of (1),

m∑

i=1

n∏

j=1

aij ≤
n∏

j=1

( m∑

i=1

apj
ij

) 1
pj

.

Corollary 2.7 If (9) holds, then hr(t) = const. Otherwise,

hr(0) = hr(1) – h′
r(τ ), τ ∈ (0, 1),

and 0 < h′
r(τ ) < h′

r(1), where

h′
r(1) = H ′

r(1)hr(1) =

( n∑

k=1

1
pk

∑
1≤i<j≤m br

i br
j (ln dik – ln djk)(dik – djk)

(
∑m

i=1 br
i )(

∑m
i=1 br

i dik)

) n∏

j=1

( n∑

j=1

apj
ij

) 1
pj

.

Theorem 2.8 Let fk(x) > 0, x ∈ [a, b], k = 1, 2, . . . , n, and fk ∈ Lpk [a, b]. Define the positive
function

gr(t) =
n∏

k=1

[∫ b

a

( n∏

j=1

fj(x)

)1–t

f rpk t
k (x) dx

] 1
pk

, t ∈R. (10)

The function gr(t) defined by (10) is concave, that is, g ′′
r (t) ≥ 0 for t ∈ R, and the equality

holds if and only if

f rpk
k (x)

∏n
j=1 fj(x)

= ck = const. (11)

Proof It is known from Lemma 2.3 that if F(x) = (
∏n

j=1 fj(x)) 1
r and gk(x) = f rpk

k (x)/Fr(x),
then

gr(t) =
n∏

k=1

[∫ b

a
Fr(x)gt

k(x) dx
] 1

pk
.



Yan and Gao Journal of Inequalities and Applications         (2019) 2019:97 Page 8 of 12

Let Gr(t) = ln gr(t). Then

Gr(t) =
n∑

k=1

1
pk

ln

(∫ b

a
Fr(x)gt

k(x) dx
)

.

Then by Lemmas 2.1 and 2.3 we obtain

G′
r(t)

=
n∑

k=1

1
pk

∫ b
a Fr(x)gt

k(x) ln gk(x) dx
∫ b

a Fr(x)gt
k(x) dx

=
n∑

k=1

1
pk

∫ b
a Fr(x)gt

k(x) ln gk(x) dx
∫ b

a Fr(x)gt
k(x) dx

–

∫ b
a Fr(x)(

∑n
k=1

1
pk

ln gk(x)) dx
∫ b

a Fr(x) dx

=
n∑

k=1

1
pk

[∫ b
a Fr(x)gt

k(x) ln gk(x) dx
∫ b

a Fr(x)gt
k(x) dx

–
∫ b

a Fr(x) ln gk(x) dx
∫ b

a Fr(x) dx

]

=
n∑

k=1

1
2pk

∫ b
a

∫ b
a Fr(x)Fr(y)(gt

k(x) – gt
k(y))(ln gk(x) – ln gk(y)) dx dy

∫ b
a Fr(x)gt

k(x) dx
∫ b

a Fr(x) dx

⎧
⎨

⎩

≥ 0, t ≥ 0,

≤ 0, t ≤ 0.

Therefore G′
r(t) = 0 if and only if

f rpk
k (x)

∏n
j=1 fj(x)

= ck = const.

Similarly, by Lemmas 2.1 and 2.3 we obtain

G′′
r (t) =

n∑

k=1

1
pk

∫ b
a

∫ b
a Fr(x)Fr(y)gt

k(x)gt
k(y)(ln gk(x) – ln gk(y))2 dx dy

2(
∫ b

a Fr(x)gt
k(x) dx)2

≥ 0.

It is easy to see G′′
r (t) ≥ 0 and the equality holds at some t0 if and only if

f rpk
k (x)

∏n
j=1 fj(x)

= ck = const.

Since g ′
r(t) = gr(t)G′

r(t), we have g ′′
r (t) = gr(t)[(G′

r(t))2 + G′′
r (t)] ≥ 0, and g ′′

r (t) = 0 if and
only if G′

r(t) = 0 and G′′
r (t) = 0.

Thus the proof of the theorem is completed. �

Corollary 2.9 If gk(x) = const, then gr(t) = const. Otherwise, g ′′
r (t) > 0, t ∈ R, and g ′

r(t)t > 0
for t 	= 0; in particular, for 0 = t1 < t2 < · · · < tN = 1, we have

gr(0) = gr(t1) < gr(t2) < · · · < gr(tN ) = gr(1),

gr(0) =
n∏

k=1

[∫ b

a
Fr(x) dx

] 1
pk ≤ gr(1) =

n∏

k=1

[∫ b

a
Fr(x)gk(x) dx

] 1
pk

.
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Corollary 2.10 If (11) holds, then gr(t) = const. Otherwise,

gr(0) = gr(1) – g ′
r(s), s ∈ (0, 1),

and 0 < g ′
r(s) < g ′

r(1), where

g ′
r(1) = G′

r(1)gr(1)

=
n∑

k=1

1
2pk

∫ b
a

∫ b
a Fr(x)Fr(y)(gk(x) – gk(y))(ln gk(x) – ln gk(y)) dx dy

∫ b
a Fr(x)gk(x) dx

∫ b
a Fr(x) dx

×
n∏

k=1

(∫ b

a
f rpk
k (x) dx

) 1
pk

.

Next, we use the existing inequalities to derive the inequalities obtained in Kwon and
Bae [25].

Theorem 2.11 Let aij > 0, pk > 1, αkj ∈ R, 1 ≤ i ≤ m, 1 ≤ j, k ≤ n,
∑n

k=1
1

pk
= 1, and

∑n
k=1 αkj = 0. Then

m∑

i=1

n∏

j=1

aij ≤
n∏

k=1

( m∑

i=1

( n∏

j=1

a
1+pkαkj
ij

)) 1
pk

. (12)

Moreover, for the integral form of this inequality, if fj(x) > 0 (j = 1, 2, . . . , n), x ∈ [a, b], –∞ <
a < b < +∞, and fj(x) ∈ C[a, b], then

∫ b

a

( n∏

j=1

fj(x)

)

dx ≤
n∏

k=1

(∫ b

a

n∏

j=1

f
1+pkαkj

j (x) dx

) 1
pk

. (13)

Proof From (2) we can see that h(0) is the minimum point of h(t).
Thus h(0) ≤ h(t), that is,

m∑

i=1

n∏

j=1

aij ≤
n∏

k=1

[ m∑

i=1

( n∏

j=1

aij

)1–t
(
apk

ik
)t

] 1
pk

.

Under the assumptions of (2), taking t = –pkαkj for j 	= k and t = αkk/(1 – 1
pk

) for j = k with
∑n

k=1 αkj = 0, we have

m∑

i=1

n∏

j=1

aij ≤
n∏

k=1

( m∑

i=1

( n∏

j=1

a
1+pkαkj
ij

)) 1
pk

.

Similarly, the integral expression of Hölder’s inequality now becomes g(0) ≤ g(t), that is,

∫ b

a

( n∏

k=1

fk(x)

)

dx ≤
n∏

k=1

(∫ b

a

( n∏

j=1

fj(x)

)1–t

f pk t
k (x) dx

) 1
pk

, t ∈ R.
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Next, we make some changes to g(t). Taking t = –pkαkj for j 	= k and t = αkk/(1 – 1
pk

) for
j = k with

∑n
k=1 αkj = 0, we have

∫ b

a

( n∏

j=1

fj(x)

)

dx ≤
n∏

k=1

(∫ b

a

n∏

j=1

f
1+pkαkj

j (x) dx

) 1
pk

.

Thus, the proof of the theorem is completed. �

Similarly, we also consider the case pj > 1,
∑n

k=1
1

pk
= r.

Theorem 2.12 Let aij > 0, rpk > 1, αkj ∈ R, 1 ≤ i ≤ m, 1 ≤ j, k ≤ n,
∑n

k=1
1

pk
= r, and

∑n
k=1 αkj = 0. Then

m∑

i=1

n∏

j=1

aij ≤
n∏

k=1

( m∑

i=1

( n∏

j=1

a
1+rpkαkj
ij

)) 1
pk

. (14)

Moreover, for the integral form of this inequality, if fj(x) > 0 (j = 1, 2, . . . , n), x ∈ [a, b], –∞ <
a < b < +∞, and fj(x) ∈ C[a, b], then

∫ b

a

( n∏

j=1

fj(x)

)

dx ≤
n∏

k=1

(∫ b

a

n∏

j=1

f
1+rpkαkj

j (x) dx

) 1
pk

. (15)

Proof From (8) we get that hr(0) is the minimum point of hr(t). Thus, hr(0) ≤ hr(t), that
is,

m∑

i=1

n∏

j=1

aij ≤
n∏

k=1

[ m∑

i=1

( n∏

j=1

aij

)1–t
(
arpk

ik
)t

] 1
pk

.

Under the assumptions of (8), taking t = –rpkαkj for j 	= k and t = αkk/(1 – 1
rpk

) for j = k with
∑n

k=1 αkj = 0, we have

m∑

i=1

n∏

j=1

aij ≤
n∏

k=1

( m∑

i=1

( n∏

j=1

a
1+rpkαkj
ij

)) 1
pk

.

Similarly, the integral expression of Hölder’s inequality now becomes gr(0) ≤ gr(t), that is,

∫ b

a

( n∏

k=1

fk(x)

)

dx ≤
n∏

k=1

(∫ b

a

( n∏

j=1

fj(x)

)1–t

f rpk t
k (x) dx

) 1
pk

, t ∈ R.

Similarly to discrete hr(t), we also make some changes to the continuous gr(t). Taking
t = –rpkαkj for j 	= k and t = αkk/(1 – 1

pk
) for j = k with

∑n
k=1 αkj = 0, we have

∫ b

a

( n∏

j=1

fj(x)

)

dx ≤
n∏

k=1

(∫ b

a

n∏

j=1

f
1+rpkαkj

j (x) dx

) 1
pk

.

Thus the proof of the theorem is completed. �
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3 Conclusion
As is well known, the Hölder inequality and its derivative theorems play an important
role in mathematical analysis. In this paper, we have presented a wider range of discrete
function hr(t) and continuous function gr(t) based on the existing discrete function h(t)
and continuous function g(t). In addition, we give a proof and application of hr(t) and
gr(t), and, finally, by using the results obtained we get an extension of Hölder’s inequality
to the new inequality. In the future research, we will continue to explore other derived
inequalities of Hölder’s inequality.
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