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1 Introduction and preliminaries
Definition 1.1 The Shannon entropy of a positive probability distribution p = (p1, . . . , pn)

is defined by S (p) :=
∑n

k=1 pk log
(

1
pk

)
.

Definition 1.2 The Zipf–Mandelbrot law is a discrete probability distribution depending
on three parameters n ∈ N, r ≥ 0 and t > 0, and is defined as

f
(
i; n, r, t

)
=

1
(i + r)t Hn,r,t

, i ∈ {1, . . . , n} ,

where f is known as the probability mass function and

Hn,r,t :=
n∑

k=1

1
(
k + r

)t

is the generalized harmonic number.

If we take pk = 1
(k+r)tHn,r,t

(1 ≤ k ≤ n, r ≥ 0, t > 0 and Hn,r,t is the same as defined in
Definition 1.2) in S (p), then simple calculations reveal that

n∑

k=1

1
(
k + r

)tHn,r,t
log

((
k + r

)tHn,r,t

)
=

t
Hn,r,t

n∑

k=1

log
(
k + r

)

(
k + r

)t + log
(
Hn,r,t

)

:= Z
(
r, t, Hn,r,t

)
,

where Z
(
r, t, Hn,r,t

)
is known as the Zipf–Mandelbrot entropy.
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A sequence {ak}k∈N of real numbers which is non-increasing in weighted mean (see [5])
can be defined as follows:

Definition 1.3 A sequence {ak}k∈N ⊂R is non-increasing in weighted mean if

1
Pn

n∑

k=1

pkak ≥ 1
Pn+1

n+1∑

k=1

pkak , n ∈N, (1.1)

where ak and pk (k ∈N) are real numbers such that pi > 0
(
1 ≤ i ≤ k

)
with Pk :=

∑k
i=1 pi

(k ∈N).

If the reversed inequality holds in (1.1), then the sequence {ak}k∈N ⊂ R is called non-
decreasing in weighted mean.

In a similar way, we can define when a finite sequence {ak}n
k=1 ⊂ R is non-increasing or

non-decreasing in weighted mean.

In [1] G. Bennett proved a weighted version of an inequality presented by Hardy–
Littlewood–Pólya (see [2, Theorem 134]) for power functions f (x) = xs: if ak

(
1 ≤ k ≤ n

)

are non-negative and non-increasing and pk ≥ 0 for all k ∈ {1, . . . , n} such that Pk =
∑k

i=1 pi(
1 ≤ k ≤ n

)
, then for any real number s > 1, the inequality

( n∑

k=1

pkak

)s

≥
n∑

k=1

Ps
k
(
as

k – as
k+1
)

=
(
p1a1

)s +
n∑

k=2

as
k
(
Ps

k – Ps
k–1
)

(1.2)

holds. If 0 < s < 1, then the reversed inequality holds in (1.2) (see [1]).

S. Khalid, J. Pečarić and M. Praljak presented the following generalization of inequality
(1.2) in [5, Theorem 3].

Theorem 1.4 Let ak and pk
(
1 ≤ k ≤ n

)
be real numbers such that ak ≥ 0 and pk > 0.

Let p1a1,
∑n

k=1 pkak , Pkak , Pk–1ak ∈ [
a, b

]
for all k ∈ {2, . . . , n} and let f :

[
a, b

] → R be a
Wright-convex function.

(i) If the sequence {ak}n
k=1 is non-increasing in weighted mean, then

f

( n∑

k=1

pkak

)

≥ f
(
p1a1

)
+

n∑

k=2

[
f
(
Pkak

)
– f

(
Pk–1ak

)]
. (1.3)

(ii) If the sequence {ak}n
k=1 is non-decreasing in weighted mean, then

f

( n∑

k=1

pkak

)

≤ f
(
p1a1

)
+

n∑

k=2

[
f
(
Pkak

)
– f

(
Pk–1ak

)]
. (1.4)

If f is Wright-concave, then the reversed inequalities hold in (1.3) and (1.4).

The results related to the Shannon entropy and the Zipf–Mandelbrot law are topic of
great interest; see, for example, [3] and [7–10]. We present some interesting results related
to the bounds of the Shannon entropy by using non-increasing (non-decreasing) sequence
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of real numbers and by applying Theorem 1.4. Further, we also present some results related
to the bounds of the Zipf–Mandelbrot entropy. The Zipf–Mandelbrot law is revisited in
the context of linguistics in [12] (see also [11]).

The paper is organized as follows: in Sects. 2 and 3, we present some interesting results
related to the Shannon and the Zipf–Mandelbrot entropies, respectively. In Sect. 4, we
define linear functionals as the non-negative differences of the obtained inequalities and
present mean value theorems for the linear functionals. In Sect. 5, we present the prop-
erties of the functionals, such as n-exponential and logarithmic convexity. Finally, we give
an example of the family of functions for which the results can be applied.

Remark 1.5 “log” denotes the logarithmic function and throughout this paper we consider
the base b of the logarithm to be greater than 1.

2 Inequalities related to the Shannon entropy
In our first main result, we will use the following lemma:

Lemma 2.1
(i) If pi ∈R are such that pi > 0

(
1 ≤ i ≤ n

)
and if the sequence {ai}n

i=1 ⊂R is
non-increasing, then it is non-increasing in weighted mean.

(ii) If pi ∈R are such that pi > 0
(
1 ≤ i ≤ n

)
and if the sequence {ai}n

i=1 ⊂R is
non-decreasing, then it is non-decreasing in weighted mean.

Proof
(i) Simple calculations reveal that

1
Pk

k∑

i=1

piai –
1

Pk+1

k+1∑

i=1

piai =
pk+1

PkPk+1

( k∑

i=1

piai – Pkak+1

)

.

As a1 ≥ · · · ≥ an and pi > 0, i ∈ {1, . . . , n}, we have

p1a1 ≥ p1ak+1,

...

pkak ≥ pkak+1.

Adding the above inequalities, we have
∑k

i=1 piai – Pkak+1 ≥ 0, which, together with
pk+1

Pk Pk+1
> 0, yields that 1

Pk

∑k
i=1 piai ≥ 1

Pk+1

∑k+1
i=1 piai.

(ii) The proof is analogous to the proof of (i). �

Our first main result is the following:

Theorem 2.2 Let pk ∈ R such that pk > 0
(
1 ≤ k ≤ n

)
and let f :

[
a, b

]→ R be a Wright-
convex function.

(a) Let 0 < pk < 1
(
1 ≤ k ≤ n

)
and let S (p), p1 log

(
1

p1

)
, Pk log

(
1

pk

)
, Pk–1 log

(
1

pk

)

∈ [a, b
]

for all k ∈ {2, . . . , n}.



Khalid et al. Journal of Inequalities and Applications         (2019) 2019:99 Page 4 of 14

(i) If the sequence {pk}n
k=1 is non-increasing, then

f
(
S (p)

)≤ f
(

p1 log

(
1
p1

))

+
n∑

k=2

[

f
(

Pk log

(
1
pk

))

– f
(

Pk–1 log

(
1
pk

))]

. (2.1)

(ii) If the sequence {pk}n
k=1 is non-decreasing, then

f
(
S (p)

)≥ f
(

p1 log

(
1
p1

))

+
n∑

k=2

[

f
(

Pk log

(
1
pk

))

– f
(

Pk–1 log

(
1
pk

))]

. (2.2)

(b) Let pk ≥ 1
(
1 ≤ k ≤ n

)
and let –S (p), p1 log p1, Pk log pk , Pk–1 log pk ∈ [a, b

]
for all

k ∈ {2, . . . , n}.
(i) If the sequence {pk}n

k=1 is non-increasing, then

f
(
–S (p)

)≥ f
(
p1 log p1

)
+

n∑

k=2

[
f
(
Pk log pk

)
– f

(
Pk–1 log pk

)]
. (2.3)

(ii) If the sequence {pk}n
k=1 is non-decreasing, then

f
(
–S (p)

)≤ f
(
p1 log p1

)
+

n∑

k=2

[
f
(
Pk log pk

)
– f

(
Pk–1 log pk

)]
. (2.4)

If f is Wright-concave, then the reversed inequalities hold in (2.1)–(2.4).

Proof
(a) (i) As p1 ≥ p2 ≥ · · · ≥ pn and b > 1, the sequence

{
log

(
1

pk

)}n

k=1
is non-decreasing.

By Lemma 2.1(ii), the sequence
{

log
(

1
pk

)}n

k=1
is non-decreasing in weighted

mean and hence by using Theorem 1.4(ii) for ak = log
(

1
pk

)
such that 0 < pk < 1

(
1 ≤ k ≤ n

)
, the result is immediate.

(ii) The idea of the proof is the same as discussed in (i).
(b) (i) As p1 ≥ p2 ≥ · · · ≥ pn and b > 1, the sequence {log pk}n

k=1 is non-increasing. By
Lemma 2.1(i), the sequence {log pk}n

k=1 is non-increasing in weighted mean and
hence by taking ak = log pk with pk ≥ 1

(
1 ≤ k ≤ n

)
in Theorem 1.4(i), the result

is immediate.
(ii) The idea of the proof is the same as discussed in (i). �

Since the class of convex (concave) functions is properly contained in the class of Wright-
convex (Wright-concave) functions, the following corollary is immediate.

Corollary 2.3 Let pk ∈ R such that pk > 0
(
1 ≤ k ≤ n

)
and let f :

[
a, b

]→ R be a convex
function.
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(a) Let all the conditions of Theorem 2.2(a) hold.
(i) If the sequence {pk}n

k=1 is non-increasing, then (2.1) holds.
(ii) If the sequence {pk}n

k=1 is non-decreasing, then (2.2) holds.
(b) Let all the conditions of Theorem 2.2(b) hold.

(i) If the sequence {pk}n
k=1 is non-increasing, then (2.3) holds.

(ii) If the sequence {pk}n
k=1 is non-decreasing, then (2.4) holds.

If f is concave, then the reversed inequalities hold in (2.1)–(2.4).

An application of Corollary 2.3 is given as follows:

Corollary 2.4 Let f (x) = xs, where x ∈ (0,∞)
and s ∈ R. Let pk ∈ R such that pk > 0

(
1 ≤

k ≤ n
)
.

(a) Let 0 < pk < 1
(
1 ≤ k ≤ n

)
and let s < 0 or s > 1.

(i) If the sequence {pk}n
k=1 is non-increasing, then

(
S (p)

)s ≤
(

p1 log

(
1
p1

))s

+
n∑

k=2

(

log

(
1
pk

))s(
Ps

k – Ps
k–1
)
. (2.5)

(ii) If the sequence {pk}n
k=1 is non-decreasing, then

(
S (p)

)s ≥
(

p1 log

(
1
p1

))s

+
n∑

k=2

(

log

(
1
pk

))s(
Ps

k – Ps
k–1
)
. (2.6)

(b) Let pk ≥ 1
(
1 ≤ k ≤ n

)
and let s < 0 or s > 1.

(i) If the sequence {pk}n
k=1 is non-increasing, then

(
–S (p)

)s ≥ (
p1 log p1

)s +
n∑

k=2

(
log pk

)s (Ps
k – Ps

k–1
)

. (2.7)

(ii) If the sequence {pk}n
k=1 is non-decreasing, then

(
–S (p)

)s ≤ (
p1 log p1

)s +
n∑

k=2

(
log pk

)s (Ps
k – Ps

k–1
)

. (2.8)

If 0 < s < 1, then the reversed inequalities hold in (2.5)–(2.8).

3 Inequalities related to the Zipf–Mandelbrot entropy
The aim of this section is to present some interesting results by using the Zipf–Mandelbrot
entropy.

Now, first we define the cumulative distribution function as follows:

Ck,n,r,t :=
Hk,r,t

Hn,r,t
,

where k ∈ {1, . . . , n}, n ∈N, r ≥ 0, t > 0 and Hn,r,t is the same as defined in Definition 1.2.

The next result is the first main result of this section.
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Theorem 3.1 Let Z
(
r, t, Hn,r,t

)
be the Zipf–Mandelbrot entropy, Ck,n,r,t be the cumulative

distribution function and f :
[
a, b

]→R be a Wright-convex function.

(i) Let 0 < 1
(k+r)tHn,r,t

< 1. If Z
(
r, t, Hn,r,t

)
, log

((
1 + r

)tHn,r,t

) 1
(1+r)t Hn,r,t ,

log
((

k + r
)tHn,r,t

)Ck,n,r,t
, log

((
k + r

)tHn,r,t

)Ck–1,n,r,t ∈ [a, b
]

for all k ∈ {2, . . . , n}, then

f
(
Z
(
r, t, Hn,r,t

))≤ f
(

log
((

1 + r
)tHn,r,t

) 1
(1+r)t Hn,r,t

)

+
n∑

k=2

f
(

log
((

k + r
)tHn,r,t

)Ck,n,r,t
)

–
n∑

k=2

f
(

log
((

k + r
)tHn,r,t

)Ck–1,n,r,t
)

. (3.1)

(ii) Let
(
k + r

)tHn,r,t ≤ 1. If –Z
(
r, t, Hn,r,t

)
, log

((
1 + r

)tHn,r,t

) –1
(1+r)t Hn,r,t ,

log
((

k + r
)tHn,r,t

)–Ck,n,r,t
, log

((
k + r

)tHn,r,t

)–Ck–1,n,r,t ∈ [a, b
]

for all k ∈ {2, . . . , n},
then

f
(
–Z

(
r, t, Hn,r,t

))≥ f
(

log
((

1 + r
)tHn,r,t

) –1
(1+r)t Hn,r,t

)

+
n∑

k=2

f
(

log
((

k + r
)tHn,r,t

)–Ck,n,r,t
)

–
n∑

k=2

f
(

log
((

k + r
)tHn,r,t

)–Ck–1,n,r,t
)

. (3.2)

If f is Wright-concave, then the reversed inequalities hold in (3.1) and (3.2).

Proof It is easy to see that the sequence
{

pk = 1
(k+r)tHn,r,t

}n

k=1
is non-increasing in k ∈

{1, . . . , n}.
(i) Taking pk = 1

(k+r)tHn,r,t
in Theorem 2.2(a)(i), the result is immediate.

(ii) The idea of the proof is the same as discussed in (i) but here we apply
Theorem 2.2(b)(i) instead of Theorem 2.2(a)(i). �

Corollary 3.2 Let Z
(
r, t, Hn,r,t

)
be the Zipf–Mandelbrot entropy, Ck,n,r,t be the cumulative

distribution function and f :
[
a, b

]→R be a convex function.
(i) If all the conditions of Theorem 3.1(i) hold, then we have (3.1).

(ii) If all the conditions of Theorem 3.1(ii) hold, then we have (3.2).
If f is concave, then the reversed inequalities hold in (3.1) and (3.2).

4 Linear functionals and mean value theorems
Consider inequalities (2.1), (2.3) and (3.1) and define linear functionals as follows:

�1(f ) = –f
(
S (p)

)
+ f

(

p1 log

(
1
p1

))

+
n∑

k=2

[

f
(

Pk log

(
1
pk

))

– f
(

Pk–1 log

(
1
pk

))]

, (4.1)
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�2
(
f
)

= f
(
–S (p)

)
– f

(
p1 log p1

)

–
n∑

k=2

[
f
(
Pk log pk

)
– f

(
Pk–1 log pk

)]
(4.2)

and

�3
(
f
)

= –f
(
Z
(
r, t, Hn,r,t

))
+ f

(

log
((

1 + r
)tHn,r,t

) 1
(1+r)t Hn,r,t

)

+
n∑

k=2

f
(

log
((

k + r
)tHn,r,t

)Ck,n,r,t
)

–
n∑

k=2

f
(

log
((

k + r
)tHn,r,t

)Ck–1,n,r,t
)

. (4.3)

If f is a convex function defined on
[
a, b

]
and if the sequence {pk}n

k=1 ⊂ R is non-
increasing, then Corollaries 2.3(a)(i) and 2.3(b)(i) imply that �1

(
f
) ≥ 0 and �2

(
f
) ≥ 0,

respectively. Moreover, if Z
(
r, t, Hn,r,t

)
is the Zipf–Mandelbrot entropy, Ck,n,r,t is the cumu-

lative distribution function and if f :
[
a, b

]→R is a convex function, then Corollary 3.2(i)
implies that �3

(
f
)≥ 0.

Now we present mean value theorems for the functional �i
(
i = 1, . . . , 3

)
. Lagrange-type

mean value theorem related to �i
(
i = 1, . . . , 3

)
is the following:

Theorem 4.1 Let f :
[
a, b

] → R be such that f ∈ C2 ([a, b
])

and let �1, �2 and �3 be
the linear functionals as defined in (4.1), (4.2) and (4.3), respectively. Then there exists
ξ1, ξ2, ξ3 ∈ [a, b

]
such that

�i
(
f
)

=
f ′′(ξi

)

2
�i
(
f0
)

, i ∈ {1, 2, 3},

where f0 (x) = x2.

Proof The proof is analogous to the proof of Theorem 2.7 given in [4] (see also Theo-
rem 2.2 in [13]). �

The following theorem is a new analogue of the classical Cauchy mean value theorem,
related to �i

(
i = 1, . . . , 3

)
.

Theorem 4.2 Let f , g :
[
a, b

] → R be such that f , g ∈ C2 ([a, b
])

and let �1, �2 and �3

be the linear functionals as defined in (4.1), (4.2) and (4.3), respectively. Then there exist
ξ1, ξ2, ξ3 ∈ [a, b

]
such that

�i
(
f
)

�i
(
g
) =

f ′′(ξi
)

g ′′(ξi
) , i ∈ {1, 2, 3}, (4.4)

provided that the denominators are non-zero.

Proof The proof is analogous to the proof of Theorem 2.8 given in [4] (see also Theo-
rem 2.4 in [13]). �
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Remark 4.3
(i) By taking f (x) = xs and g (x) = xq in (4.4), where s, q ∈R \ {0, 1} are such that s 	= q,

we have

ξ
s–q
i =

q(q – 1)�i(xs)
s(s – 1)�i(xq)

, i ∈ {1, 2, 3}.

(ii) If the inverse of the function f ′′/g ′′ exists, then (4.4) implies that

ξi =
(

f ′′

g ′′

)–1
(

�i
(
f
)

�i
(
g
)

)

, i ∈ {1, 2, 3}.

5 n-exponential convexity and log-convexity
In this section, first we will present a few important definitions, which will be useful fur-
ther. In the sequel, let I be an open interval in R.

The next four definitions are given in [13].

Definition 5.1 A function f : I →R is n-exponentially convex in the Jensen sense if

n∑

i,j=1

ςiςjf
(

xi + xj

2

)

≥ 0

holds for every ςi ∈R and xi ∈ I
(
1 ≤ i ≤ n

)
.

Definition 5.2 A function f : I → R is n-exponentially convex if it is n-exponentially con-
vex in the Jensen sense and continuous on I .

Definition 5.3 A function f : I → R is exponentially convex in the Jensen sense if it is
n-exponentially convex in the Jensen sense for all n ∈N.

Definition 5.4 A function f : I → R is exponentially convex if it is exponentially convex
in the Jensen sense and continuous.

A log-convex function is defined as follows (see [14, p. 7]):

Definition 5.5 A function f : I → (
0,∞)

is said to be log-convex or multiplicatively con-
vex if log f is convex. Equivalently, f is log-convex if for all x, y ∈ I and for all λ ∈ [0, 1], the
inequality

f
(
λx + (1 – λ) y

)≤ f λ (x) f (1–λ)(y)

holds. If the inequality reverses, then f is said to be log-concave.

Divided difference of a function is defined as follows (see [14, p. 14]):

Definition 5.6 The nth-order divided difference of a function f :
[
a, b

]→ R at mutually
distinct points x0, . . . , xn ∈ [a, b

]
is defined recursively by

[
xi; f

]
= f (xi) , i ∈ {0, . . . , n} ,
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[
x0, . . . , xn; f

]
=
[
x1, . . . , xn; f

]
–
[
x0, . . . , xn–1; f

]

xn – x0
·

The value
[
x0, . . . , xn; f

]
is independent of the order of the points x0, . . . , xn.

The n-convex functions can be characterized by the nth-order divided difference (see
[14, p. 15]).

Definition 5.7 A function f :
[
a, b

]→ R is said to be n-convex (n ≥ 0) if and only if for
all choices of (n + 1) distinct points x0, . . . , xn ∈ [a, b

]
, the nth-order divided difference of

f satisfies
[
x0, . . . , xn; f

]≥ 0.

Remark 5.8 Note that 0-convex functions are non-negative functions, 1-convex functions
are increasing functions, and 2-convex functions are simply the convex functions.

Next we study the n-exponential convexity and log-convexity of the functions associated
with the linear functionals �i

(
i = 1, . . . , 3

)
as defined in (4.1)–(4.3).

Theorem 5.9 Let � =
{

fs : s ∈ I ⊆R
}

be a family of functions defined on
[
a, b

]
such that

the function s �→ [
z0, z1, z2; fs

]
is n-exponentially convex in the Jensen sense on I for every

three mutually distinct points z0, z1, z2 ∈ [a, b
]
. Let �i

(
i = 1, . . . , 3

)
be the linear functionals

as defined in (4.1)–(4.3). Then the following statements hold:
(i) The function s �→ �i

(
fs
)

is n-exponentially convex in the Jensen sense on I and the
matrix

[
�i

(
f sj+sk

2

)]m

j,k=1
is positive semi-definite for all m ∈N, m ≤ n and

s1, . . . , sm ∈ I . In particular,

det
[
�i

(
f sj+sk

2

)]m

j,k=1
≥ 0, ∀m ∈N, m ≤ n.

(ii) If the function s �→ �i(fs) is continuous on I , then it is n-exponentially convex on I .

Proof The idea of the proof is the same as that of the proof of Theorem 9 in [5]. �

The following corollary is an immediate consequence of Theorem 5.9.

Corollary 5.10 Let � =
{

fs : s ∈ I ⊆R
}

be a family of functions defined on
[
a, b

]
such that

the function s �→ [
z0, z1, z2; fs

]
is exponentially convex in the Jensen sense on I for every three

mutually distinct points z0, z1, z2 ∈ [
a, b

]
. Let �i

(
i = 1, . . . , 3

)
be the linear functionals as

defined in (4.1)–(4.3). Then the following statements hold:
(i) The function s �→ �i

(
fs
)

is exponentially convex in the Jensen sense on I and the
matrix

[
�i

(
f sj+sk

2

)]m

j,k=1
is positive semi-definite for all m ∈N, m ≤ n and

s1, . . . , sm ∈ I . In particular,

det
[
�i

(
f sj+sk

2

)]m

j,k=1
≥ 0, ∀m ∈N, m ≤ n.

(ii) If the function s �→ �i
(
fs
)

is continuous on I , then it is exponentially convex on I .
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Corollary 5.11 Let � =
{

fs : s ∈ I ⊆R
}

be a family of functions defined on
[
a, b

]
such that

the function s �→ [
z0, z1, z2; fs

]
is 2-exponentially convex in the Jensen sense on I for every

three mutually distinct points z0, z1, z2 ∈ [a, b
]
. Let �i

(
i = 1, . . . , 3

)
be the linear functionals

as defined in (4.1)–(4.3). Further, assume that �i
(
fs
) (

i = 1, . . . , 3
)

is strictly positive for
fs ∈ �. Then the following statements hold:

(i) If the function s �→ �i
(
fs
)

is continuous on I , then it is 2-exponentially convex on I
and so it is log-convex on I and for r̃, s, t̃ ∈ I such that r̃ < s < t̃, we have

[
�i
(
fs
)]t̃–r̃ ≤ [

�i
(
fr̃
)]t̃–s [

�i
(
ft̃
)]s–r̃ , i ∈ {1, 2, 3} , (5.1)

which is known as Lyapunov’s inequality. If r̃ < t̃ < s or s < r̃ < t̃, then the reversed
inequality holds in (5.1).

(ii) If the function s �→ �i(fs) is differentiable on I , then for every s, q, u, v ∈ I such that
s ≤ u and q ≤ v, we have

μs,q (�i,�) ≤ μu,v (�i,�) , i ∈ {1, 2, 3}, (5.2)

where

μs,q (�i,�) =

⎧
⎪⎨

⎪⎩

(
�i(fs)
�i(fq)

) 1
s–q , s 	= q,

exp

(
d
ds �i(fs)
�i(fs)

)

, s = q,
(5.3)

for fs, fq ∈ �.

Proof The idea of the proof is the same as that of the proof of Corollary 5 given in [5]. �

Remark 5.12 Note that the results from Theorem 5.9, as well as Corollaries 5.10 and 5.11
still hold when two of the points z0, z1, z2 ∈ [a, b

]
coincide, say z1 = z0, for a family of dif-

ferentiable functions fs such that the function s �→ [
z0, z1, z2; fs

]
is n-exponentially convex

in the Jensen sense (exponentially convex in the Jensen sense, log-convex in the Jensen
sense on I); and furthermore, they still hold when all three points coincide for a family of
twice differentiable functions with the same property.

There are several families of functions which fulfil the conditions of Theorem 5.9, Corol-
laries 5.10 and 5.11, and Remark 5.12 and so the results of these theorem and corollaries
can be applied to them. Here we present an example for such a family of functions; for
more examples see [6].

Example 5.13 Consider the family of functions

�̃ =
{

fs :
(
0,∞)→R : s ∈R

}

defined by

fs(x) =

⎧
⎪⎪⎨

⎪⎪⎩

xs

s(s–1) , s /∈ {0, 1},
– log x, s = 0,

x log x, s = 1.
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Here d2

dx2 fs(x) = xs–2 = e(s–2) log x > 0, which shows that fs is convex for x > 0 and s �→
d2

dx2 fs(x) is exponentially convex by definition.

In order to prove that the function s �→ [
z0, z1, z2; fs

]
is exponentially convex, it is enough

to show that

n∑

j,k=1

ςjςk

[
z0, z1, z2; f sj+sk

2

]
=

⎡

⎣z0, z1, z2;
n∑

j,k=1

ςjςkf sj+sk
2

⎤

⎦≥ 0, (5.4)

for all n ∈ N, ςj, sj ∈ R, j ∈ {1, . . . , n}. By Definition 5.7, inequality (5.4) will hold if �(x) :=
∑n

j,k=1 ςjςkf sj+sk
2

(x) is convex. Since s �→ d2

dx2 fs(x) is exponentially convex, that is,

n∑

j,k=1

ςjςkf ′′
sj+sk

2
≥ 0, ∀n ∈N, ςj, sj ∈R, j ∈ {1, . . . , n},

which shows the convexity of �, inequality (5.4) is immediate. Now as the function
s �→ [

z0, z1, z2; fs
]

is exponentially convex, s �→ [
z0, z1, z2; fs

]
is exponentially convex in the

Jensen sense and, by using Corollary 5.10, we have s �→ �i
(
fs
) (

i = 1, . . . , 3
)

is exponentially
convex in the Jensen sense. Since these mappings are continuous, s �→ �i

(
fs
) (

i = 1, . . . , 3
)

is exponentially convex.

If r̃, s, t̃ ∈R are such that r̃ < s < t̃, then from (5.1) we have

�i
(
fs
)≤ [

�i
(
fr̃
)] t̃–s

t̃–r̃
[
�i
(
ft̃
)] s–r̃

t̃–r̃ , i ∈ {1, 2, 3} . (5.5)

If r̃ < t̃ < s or s < r̃ < t̃, then the reversed inequality holds in (5.5).

Particularly for i ∈ {1, 2, 3} and r̃, s, t̃ ∈R \ {0, 1} such that r̃ < s < t̃, we have

–Ss (p) +
(

p1 log
(

1
p1

))s
+
∑n

k=2

(
log

(
1

pk

))s (
Ps

k – Ps
k–1
)

s (s – 1)

≤
⎡

⎢
⎣

–Sr̃ (p) +
(

p1 log
(

1
p1

))r̃
+
∑n

k=2

(
log

(
1

pk

))r̃ (
Pr̃

k – Pr̃
k–1
)

r̃ (r̃ – 1)

⎤

⎥
⎦

t̃–s
t̃–r̃

×
⎡

⎢
⎣

–St̃ (p) +
(

p1 log
(

1
p1

))t̃
+
∑n

k=2

(
log

(
1

pk

))t̃ (
Pt̃

k – Pt̃
k–1

)

t̃
(
t̃ – 1

)

⎤

⎥
⎦

s–r̃
t̃–r̃

,

(
–S (p)

)s –
(
p1 log p1

)s –
∑n

k=2
(
log pk

)s (Ps
k – Ps

k–1
)

s (s – 1)

≤
[(

–S (p)
)r̃ –

(
p1 log p1

)r̃ –
∑n

k=2
(
log pk

)r̃ (Pr̃
k – Pr̃

k–1
)

r̃ (r̃ – 1)

] t̃–s
t̃–r̃

×
⎡

⎣

(
–S (p)

)t̃ –
(
p1 log p1

)t̃ –
∑n

k=2
(
log pk

)t̃
(

Pt̃
k – Pt̃

k–1

)

t̃
(
t̃ – 1

)

⎤

⎦

s–r̃
t̃–r̃
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and

1
s (s – 1)

[

–Zs (r, t, Hn,r,t
)

+
(

log
((

1 + r
)tHn,r,t

) 1
(1+r)t Hn,r,t

)s

+
n∑

k=2

[(

log
((

k + r
)tHn,r,t

)Ck,n,r,t
)s

–
(

log
((

k + r
)tHn,r,t

)Ck–1,n,r,t
)s
]]

≤
(

1
r̃ (r̃ – 1)

) t̃–s
t̃–r̃
[

–Zr̃ (r, t, Hn,r,t
)

+
(

log
((

1 + r
)tHn,r,t

) 1
(1+r)t Hn,r,t

)r̃

+
n∑

k=2

[(

log
((

k + r
)tHn,r,t

)Ck,n,r,t
)r̃

–
(

log
((

k + r
)tHn,r,t

)Ck–1,n,r,t
)r̃
]] t̃–s

t̃–r̃

×
(

1
t̃
(
t̃ – 1

)

) s–r̃
t̃–r̃
[

–Zt̃ (r, t, Hn,r,t
)

+
(

log
((

1 + r
)tHn,r,t

) 1
(1+r)t Hn,r,t

)t̃

+
n∑

k=2

[(

log
((

k + r
)tHn,r,t

)Ck,n,r,t
)t̃

–
(

log
((

k + r
)tHn,r,t

)Ck–1,n,r,t
)t̃
]] s–r̃

t̃–r̃

.

In this case, μs,q (�i,�)
(
i = 1, . . . , 3

)
defined in (5.3) becomes

μs,q

(
�i, �̃

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
�i(fs)
�i(fq)

) 1
s–q , s 	= q,

exp
(

1–2s
s(s–1)

– �i(f0fs)
�i(fs)

)
, s = q /∈ {0, 1},

exp
(

1 – �i(f 2
0 )

2�i(f0)

)
, s = q = 0,

exp
(

–1 – �i(f0f1)
2�i(f1)

)
, s = q = 1.

In particular for i = 1, we have

�1
(
fs
)

=
1

s (s – 1)

[

–Ss (p) + ps
1 logs

(
1
p1

)

+
n∑

k=2

logs
(

1
pk

)
(
Ps

k – Ps
k–1
)
]

,

s /∈ {0, 1},

�1
(
f0
)

= log

⎛

⎝ S (p)

p1 log
(

1
p1

)

⎞

⎠ +
n∑

k=2

log

(
Pk–1

Pk

)

,

�1
(
f1
)

= log

⎛

⎜
⎜
⎝

(
p1 log

(
1

p1

))p1 log
(

1
p1

)

(
S (p)

)S(p)

⎞

⎟
⎟
⎠

+
n∑

k=2

log

⎛

⎜
⎜
⎝

(
Pk log

(
1

pk

))Pk log
(

1
pk

)

(
Pk–1 log

(
1

pk

))Pk–1 log
(

1
pk

)

⎞

⎟
⎟
⎠ ,

�1
(
f 2
0
)

=
n∑

k=2

[

log2
(

Pk log

(
1
pk

))

– log2
(

Pk–1 log

(
1
pk

))]
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+ log2
(

p1 log

(
1
p1

))

– log2(S (p)
)
,

�1
(
f0f1

)
= S (p) log2(S (p)

)
– p1 log

(
1
p1

)

log2
(

p1 log

(
1
p1

))

–
n∑

k=2

log

(
1
pk

)

Pk log2
(

Pk log

(
1
pk

))

+
n∑

k=2

log

(
1
pk

)

Pk–1 log2
(

Pk–1 log

(
1
pk

))

and

�1
(
f0fs
)

=
1

s (s – 1)
log

⎛

⎜
⎜
⎝

(
S (p)

)
(

S(p)

)s

(
p1 log

(
1

p1

))ps
1 logs

(
1

p1

)

⎞

⎟
⎟
⎠

+
1

s (s – 1)

n∑

k=2

log

⎛

⎜
⎜
⎝

(
Pk–1 log

(
1

pk

))Ps
k–1 logs

(
1

pk

)

(
Pk log

(
1

pk

))
(

Ps
k logs

(
1

pk

))s

⎞

⎟
⎟
⎠ , s /∈ {0, 1}.

If �i
(
i = 1, . . . , 3

)
is positive, then Theorem 4.2 applied for f = fs ∈ �̃ and g = fq ∈ �̃

yields that there exists ξi ∈ [a, b
]

such that

ξ
s–q
i =

�i
(
fs
)

�i
(
fq
) , i ∈ {1, 2, 3} .

Since the function ξi �→ ξ
s–q
i is invertible for s 	= q, we have

a ≤
(

�i
(
fs
)

�i
(
fq
)

) 1
s–q

≤ b, i ∈ {1, 2, 3} ,

which, together with the fact that μs,q

(
�i, �̃

) (
i = 1, . . . , 3

)
is continuous, symmetric and

monotonous (by (5.2)), shows that μs,q

(
�i, �̃

)
is a mean.
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