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1 Introduction and our main conclusions
In this paper, we would like to consider a family of closed planar curves F : S1 × [0, T) →
R

2, which satisfies the following initial value problem (IVP for short):

⎧
⎪⎪⎨

⎪⎪⎩

∂2

∂t2 F(u, t) = kα(u, t) �N(u, t) – ∇ρ(u, t), ∀u ∈ S
1, t ∈ [0, T),

∂F
∂t (·, 0) = f (u) �N0,

F(·, 0) = F0,

(1.1)

where F0 : S1 → R
2 is a smooth strictly convex closed curve in the plane R

2, �N0 is the
unit inner normal vector of the initial curve F0, α > 0 is a positive constant, k(·, t) is the
curvature function of the evolving curve F(·, t), �N(·, t) is the unit inner normal vector of
F(·, t), f (u) ∈ C∞(S1), and f (u) �N0 is the initial normal velocity. Besides, ∇ρ is defined by

∇ρ =
〈

∂2F
∂s∂t

,
∂F
∂t

〉

�T , (1.2)

where 〈·, ·〉 is the standard Euclidean inner product in R
2, and �T , s are the unit tangent

vector of F(·, t) and the arc-length parameter, respectively. For this flow, first, we can get
the following.

Theorem 1.1 (Local existence and uniqueness) Suppose that F0 is a smooth strictly convex
closed curve in R

2. Then there exist a positive constant T > 0 and a family of smooth strictly
convex closed planar curves F(u, t) satisfying (1.1).

If furthermore the normal velocity of the initial curve F(·, 0) is nonnegative, we can also
describe the asymptotical behavior for the hyperbolic flow (1.1).
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Theorem 1.2 Suppose that F0 is a smooth strictly convex closed curve in R
2. Then there

exist a finite time interval [0, Tmax) and a family of strictly convex closed planar curves
F(·, t) such that F(·, t) satisfies (1.1) only on [0, Tmax), provided that α ≥ 1 and f (u) is a
smooth nonnegative function on S

1. Moreover, as t → Tmax, one of the following should be
true:

(i) the solution F(·, t) converges to a point, that is to say, the curvature of the limit curve
becomes unbounded;

(ii) the curvature k of the evolving curve is discontinuous so that the solution F(·, t)
converges to a piecewise smooth curve, which implies that shocks and propagating
discontinuities may be generated within the hyperbolic flow (1.1).

Remark 1.3 If α = 1, then the hyperbolic flow (1.1) degenerates into the one considered
in [6], and correspondingly, our Theorem 1.1 would become [6, Theorem 1.2]. Therefore,
our paper here is an interesting extension of [6]. Besides, as in [7], one can also add a
term c(t)F(u, t) to the RHS of the evolution equation in (1.1), which is actually a forcing
term in the direction of the position vector, and then using the methods in [7] and the
paper here, the evolution and the asymptotical behavior of the new hyperbolic planar flow
can be expected without any big difficulty. The research of curve flows and related topics
is important and has many interesting applications in other scientific branches (see, e.g.,
[1–4, 8, 9, 11, 12]).

2 Proof of Theorem 1.1
In this section, we will reparameterize the evolving curves so that the hyperbolic partial
differential equation (PDE for short) can be derived for the support function defined by
(2.5) below, which leads to the short-time existence and the uniqueness of the solution to
the flow (1.1).

Definition 2.1 A curve F : S1 × [0, T) → R
2 evolves normally if and only if its tangential

velocity vanishes.

It is easy to know that the flow (1.1) is a normal flow.

Lemma 2.2 The curve flow (1.1) is a normal flow.

Proof Since

d
dt

〈
∂F
∂t

,
∂F
∂s

〉

=
〈
∂2F
∂t2 ,

∂F
∂s

〉

+
〈
∂F
∂t

,
∂2F
∂t∂s

〉

=
〈

–∇ρ,
∂F
∂s

〉

+
〈
∂F
∂t

,
∂2F
∂t∂s

〉

= –
〈

∂2F
∂s∂t

,
∂F
∂t

〉

+
〈
∂F
∂t

,
∂2F
∂t∂s

〉

= 0

and the initial velocity of the flow (1.1) is in the normal direction (i.e., the initial tangential
velocity vanishes), then the tangential velocity of the evolving curve F(·, t) vanishes for all
t ≥ 0. �
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By Lemma 2.2 and (1.1), it is easy to know that there exists a function σ (u, t) =:
〈 ∂F

∂t , �N〉(u, t) satisfying

⎧
⎨

⎩

∂F
∂t (u, t) = σ (u, t) �N = kα(u, t) �N ,

F(u, 0) = F0(u),
(2.1)

where σ (u, t) = f (u) +
∫ t

0 kα(u, ξ ) dξ .
Denote by s = s(·, t) the arc-length parameter of curve F(·, t) : S1 →R

2. By the arc-length
formula, we have

∂

∂s
=

1
√

( ∂x
∂u )2 + ( ∂y

∂u )2

∂

∂u
=

1
| ∂F
∂u |

∂

∂u
:=

1
υ

∂

∂u
,

where (x, y) is the Cartesian coordinates of R2. By the Frenet formula, for the orthogonal
frame field { �T , �N} of R2, we have

∂ �T
∂s

= k �N ,
∂ �N
∂s

= –k �T .

Let θ be the unit outward normal angle of a closed convex curve F : S1 → R
2 w.r.t. the

Cartesian coordinates of R2. Then we have

�N = (– cos θ , – sin θ ),

�T = (– sin θ , cos θ ).

Correspondingly, we have ∂θ
∂s = k and, by the chain rule, it follows that

∂ �N
∂t

=
∂ �N
∂θ

∂θ

∂t
= –

∂θ

∂t
�T ,

∂ �T
∂t

=
∂ �T
∂θ

∂θ

∂t
=

∂θ

∂t
�N . (2.2)

Clearly, by (2.1) and (2.2), we have

∂σ

∂t
=

∂

∂t

〈
∂F
∂t

, �N
〉

=
〈
∂2F
∂t2 , �N

〉

= kα ,

σ
∂σ

∂s
=

〈
∂F
∂t

, �N
〉

·
〈

∂2F
∂s∂t

, �N
〉

=
〈
∂F
∂t

,
∂2F
∂s∂t

〉

.
(2.3)

By the definition of υ , (2.1), (2.2), and (2.3), we can obtain the following.

Lemma 2.3 The derivative of υ with respect to t is ∂υ
∂t = –kσυ .

Proof By a direct computation, we have

∂

∂t
(
υ2) = 2

〈
∂F
∂u

,
∂2F
∂t∂u

〉

= 2
〈∣
∣
∣
∣
∂F
∂u

∣
∣
∣
∣
�T ,

∂

∂u
(σ �N)

〉

= 2
〈

υ �T ,σ
∂ �N
∂u

〉

= 2
〈

υ �T ,σ
∂ �N
∂s

∂s
∂u

〉



Zhou et al. Journal of Inequalities and Applications         (2019) 2019:52 Page 4 of 17

= 2
〈
υ �T ,σ (–k �T)υ

〉

= –2υ2kσ ,

which implies the lemma. �

By Lemma 2.3, we can obtain

∂2

∂t∂s
=

∂

∂t

(
1
υ

∂

∂u

)

= –
1
υ2

∂υ

∂t
∂

∂u
+

1
υ

∂

∂u
∂

∂t
= kσ

∂

∂s
+

∂2

∂s∂t
.

Noting that �T = ∂F
∂s , and together with the above equality, we can deduce

∂ �T
∂t

=
∂2F
∂t∂s

= kσ
∂F
∂s

+
∂2F
∂s∂t

= kσ �T +
∂

∂s
(σ �N)

= kσ �T +
∂σ

∂s
�N + σ (–k �T)

=
∂σ

∂s
�N ,

which, combining with (2.2), implies

∂σ

∂s
=

∂θ

∂t
,

∂ �N
∂t

= –
∂σ

∂s
�T .

Assume that F : S1 × [0, T) → R
2 is a family of curves satisfying the flow (1.1). As in

[7, 12], one can use the normal angle θ to reparameterize each evolving curve F(u, t) as
follows:

F̃(θ , τ ) = F
(
u(θ , τ ), t(θ , τ )

)
, (2.4)

where t(θ , τ ) = τ . By the chain rule, we have

0 =
∂θ

∂τ
=

∂θ

∂u
∂u
∂τ

+
∂θ

∂t
,

and

∂θ

∂t
= –

∂θ

∂u
∂u
∂τ

= –
∂θ

∂s
∂s
∂u

∂u
∂τ

= –kυ
∂u
∂τ

.

Hence, by a direct calculation, one can obtain

∂ �T
∂τ

=
∂ �T
∂s

∂s
∂u

∂u
∂τ

+
∂θ

∂t
�N =

(

kυ
∂u
∂τ

+
∂θ

∂t

)

�N = 0
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and

∂ �N
∂τ

=
∂ �N
∂s

∂s
∂u

∂u
∂τ

–
∂θ

∂t
�T = –

(

kυ
∂u
∂τ

+
∂θ

∂t

)

�T = 0,

which implies that �N and �T are independent of the parameter τ .
Define the support function of the evolving curve F̃(θ , τ ) = (x(θ , τ ), y(θ , τ )) as follows:

S(θ , τ ) =
〈
F̃(θ , τ ), – �N 〉

= x(θ , τ ) cos θ + y(θ , τ ) sin θ . (2.5)

Then we have

Sθ (θ , τ ) = –x(θ , τ ) sin θ + y(θ , τ ) cos θ =
〈
F̃(θ , τ ), �T 〉

.

Solving the above two equations yields

⎧
⎨

⎩

x(θ , τ ) = S cos θ – Sθ sin θ ,

y(θ , τ ) = S sin θ + Sθ cos θ .

Furthermore, we have

Sθθ + S =
〈
F̃θ (θ , τ ), �T 〉

+
〈
F̃(θ , τ ), �N 〉

+
〈
F̃(θ , τ ), – �N 〉

=
〈
F̃θ (θ , τ ), �T 〉

=
〈
∂F
∂u

∂u
∂s

∂s
∂θ

, �T
〉

=
1
k

,

which implies

k =
1

Sθθ + S
. (2.6)

The equation Sθθ + S = 1
k makes sense, since the evolving curve F̃(θ , τ ) = F(u(θ , τ ), t(θ , τ ))

is strictly convex under the flow (1.1), see Proposition 4.3 for details.
On the other hand, since �N and �T are independent of the parameter τ , together with

(2.1) and (2.4), we can get

Sτ =
〈
∂F̃
∂τ

, – �N
〉

=
〈
∂F
∂u

∂u
∂τ

+
∂F
∂t

, – �N
〉

=
〈
∂F
∂t

, – �N
〉

= –σ̃ (θ , τ ),

and moreover,

Sττ =
〈
∂F
∂u

∂2u
∂τ 2 +

∂2F
∂u2

(
∂u
∂τ

)2

+ 2
∂2F
∂u∂t

∂u
∂τ

+
∂2F
∂t2 , – �N

〉

=
〈
∂2F
∂u2

(
∂u
∂τ

)2

+
∂2F
∂u∂t

∂u
∂τ

, – �N
〉

+
〈

∂2F
∂u∂t

∂u
∂τ

+
∂2F
∂t2 , – �N

〉

=
∂u
∂τ

·
〈(

∂F
∂u

)

τ

, – �N
〉

+
〈

∂2F
∂u∂t

∂u
∂τ

+
∂2F
∂t2 , – �N

〉
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=
〈

∂2F
∂u∂t

∂u
∂τ

+
∂2F
∂t2 , – �N

〉

=
〈

∂2F
∂u∂t

∂u
∂τ

, – �N
〉

– kα .

Since, by Lemma 2.2, we know that F : S1 × [0, T) →R
2 is a normal flow,

〈
∂F
∂t

, �T
〉

≡ 0

holds for all t ∈ [0, T). Then by a straightforward computation, we can get

Sτθ =
∂

∂τ
〈̃F , �T〉 =

〈
∂F̃
∂τ

, �T
〉

=
〈
∂F
∂u

∂u
∂τ

+
∂F
∂t

, �T
〉

= υ
∂u
∂τ

and

Sθτ =
∂

∂θ

〈
∂F
∂t

, – �N
〉

=
〈

∂2F
∂u∂t

∂u
∂θ

, – �N
〉

=
〈

∂2F
∂u∂t

∂u
∂s

∂s
∂θ

, – �N
〉

=
1

kυ

〈
∂2F
∂u∂t

, – �N
〉

.

Hence, the support function S(θ , τ ) satisfies

Sττ =
〈

∂2F
∂u∂t

∂u
∂τ

, – �N
〉

– kα

= kυSθτ

∂u
∂τ

– kα

= kS2
θτ – kα ,

which is equivalent to

Sττ =
S2

θτ

Sθθ + S
–

(
1

Sθθ + S

)α

, ∀(θ , τ ) ∈ S
1 × [0, T). (2.7)

Therefore, we have

⎧
⎪⎪⎨

⎪⎪⎩

SSττ + Sττ Sθθ – S2
θτ + (Sθθ + S)1–α = 0,

S(θ , 0) = h(θ ) = (F0, �N),

Sτ (θ , 0) = –̃f (θ ) = –f (u(θ , 0)),

(2.8)

where h is the support function of F0(u(θ )), and f̃ is the initial velocity of the initial
curve F0.
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Here we would like to get the short-time existence of the flow (2.8) by the linearization
method. First, we have the following conclusion.

Lemma 2.4 Suppose that F0 is a smooth strictly convex closed curve and k0 > 0 is the cur-
vature of the curve F0. Then the wave equation

⎧
⎪⎪⎨

⎪⎪⎩

Sττ = Sθθ + kα
0 ,

S(θ , 0) = h(θ ),

Sτ (θ , 0) = –̃f (θ ),

(2.9)

has a unique solution S0 ∈ C∞(S1 × [0, T1)) with some T1 > 0, where α > 0, Sττ , Sθθ , h(θ ),
and f̃ (θ ) have the same meaning as those in (2.8).

Next, we want to consider the linearization of (2.8) around S0.

Lemma 2.5 Let S0 ∈ C∞(S1 × [0, T1)) be the solution of the wave equation (2.9) and ξ ∈
C∞(S1 × [0, T1)). Then there exists some T > 0 such that the linearization of (2.8) around
S0 given by

⎧
⎪⎪⎨

⎪⎪⎩

LS0 S := Sττ – [aSθθ + bSθτ + cSθ + dSτ + eS] = ξ ,

S(θ , 0) = h(θ ),

Sτ (θ , 0) = –̃f (θ ),

(2.10)

has a unique solution S ∈ C∞(S1 × [0, T)).

Proof For equation (2.7), set

S2
θτ

Sθθ + S
–

(
1

Sθθ + S

)α

= φ(x, Sθθ , Sθτ , Sθ , Sτ , S).

Let Sε := S0 + εS. We obtain the linearized operator LS0 of ∂2

∂t2 – φ around S0 as follows:

LS0 S :=
d

dε
|ε=0

(
∂2Sε

∂τ 2 – φ
(
x, (Sε)θθ , (Sε)θτ , (Sε)θ , (Sε)τ , Sε

)
)

= Sττ –
[

∂φ

∂(Sε)θθ

d(Sε)θθ

dε
+

∂φ

∂(Sε)θτ

d(Sε)θτ

dε

+
∂φ

∂(Sε)θ
d(Sε)θ

dε
+

∂φ

∂(Sε)τ
d(Sε)τ

dε
+

∂φ

∂(Sε)
d(Sε)

dε

]

|ε=0

= Sττ –
[

∂φ

∂(S0)θθ

Sθθ +
∂φ

∂(S0)θτ

Sθτ +
∂φ

∂(S0)θ
Sθ +

∂φ

∂(S0)τ
Sτ +

∂φ

∂(S0)
S
]

,

which implies in (2.10)

a =
–S2

θτ

(Sθθ + S)2 + α

(
1

Sθθ + S

)α+1

, b =
2Sθτ

Sθθ + S
.
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Consider the principal matrix

(
–1 Sθτ

Sθθ +S
Sθτ

Sθθ +S
–S2

θτ

(Sθθ +S)2 + α( 1
Sθθ +S )α+1

)

which, by a proper linear transformation, can be transformed into

(
–1 0
0 αkα+1

)

.

At t = 0, since k0 is strictly positive, thus LS0 is uniformly hyperbolic in some time interval
[0, T). Therefore, the theory of second-order linear hyperbolic PDEs yields the result. �

By Lemma 2.5, we have the following.

Lemma 2.6 Suppose that F0 is a smooth strictly convex closed curve and k0 > 0 is the cur-
vature of the curve F0. Then there exist some T > 0 and a family of strictly convex closed
curves F(·, t) such that (2.8) has a unique solution S ∈ C∞(S1 × [0, T)) with S the support
function of F(·, t).

Proof We want to translate the solvability of (2.8) to the invertibility of some operator A
defined as

S → AS := Sττ – φ(x, Sθθ , Sθτ , Sθ , Sτ , S).

The inverse function theorem states that if DA(S0) is a linear homeomorphism from S to
AS, then there exists a neighborhood US0 such that A : US0 −→ A(US0 ) is a homeomor-
phism.

Let S0 be the solution of (2.8), then DA(S0) is given by

DA(S0) : S → DA(S0)(S) = LS0 S.

By Lemma 2.5, we know that there exists a unique solution S to (2.9), which shows that
DA(S0) is invertible. Since DA(S0) is a linear homeomorphism, A is invertible in a neigh-
borhood US0 of S0, which implies the conclusion of Lemma 2.6. �

Then Theorem 1.1 follows by applying Lemma 2.6 directly.

3 An interesting example
Example 3.1 Let F(u, t) be a family of round circles, with the radius r(t) centered at the
origin, given by

F(u, t) = r(t)(cos θ , sin θ )

with F(u, 0) = r0(cos θ , sin θ ), which implies r(0) = r0 ≥ 0. Then the support function and
the curvature of circles are given by

S(θ , t) = r(t)
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and

k(θ , t) =
1

r(t)
.

In this setting the hyperbolic flow (1.1) becomes

⎧
⎨

⎩

rtt = – 1
rα ,

r(0) = r0 > 0, rt(0) = r1,
(3.1)

where α > 0. For IVP (3.1), we divide the discussion into two cases as follows:
Case (I). Assume that r1 ≤ 0. Since rtt = – 1

rα < 0, which implies the acceleration and
the initial velocity are in the same direction, it is easy to know that r(t) decreases and then
there must exist a finite time t0 > 0 such that r(t0) = 0. That is to say, the initial circle F(u, 0)
contracts to a single point as t → t0. Especially, by [5, Lemma 3.1], if α = 1 and r1 = 0, then
t0 =

√
π
2 r0.

Case (II). Assume that r1 > 0. By [5, Lemma 3.1], if α = 1, we know that the solution r to
IVP (3.1) increases first and then deceases and attains its zero point at some finite time t0.
Assume in addition that α 
= 1. Multiplying both sides of the first equation in (3.1) by rt ,
and then integrating from 0 to t > 0, we have

r2
t =

2
α – 1

[
r1–α(t) – r1–α

0
]

+ r2
1.

So, it follows that

r ≤
(

r1–α
0 +

1 – α

2
r2

1

)1/(1–α)

:= Υ (r0, r1).

Therefore, if r increases for all time, i.e., rt > 0 for t > 0, we have r0 ≤ r(t) ≤ Υ (r0, r1) and
– 1

rα0
≤ rtt ≤ – 1

Υ α (r0,r1) , which implies that the curve rt is bounded by two straight lines
rt = – 1

rα0
t + r1 and rt = – 1

Υ α (r0,r1) t + r1. On the other hand, since (rt)tt = αr–(α+1)rt > 0 for
t > 0, rt is a convex function. Hence rt would vanish at some finite time and change sign
after that time, which contradicts the assumption that rt > 0 for t > 0. Thus, for α > 0 and
r1 > 0, the solution r(t) to IVP (3.1) increases first and then deceases and attains its zero
point at some finite time.

4 Some propositions of the hyperbolic flow
Consider the general second-order operator L defined by

L[ω] := aωθθ + 2bωθ t + cωtt + dωθ + eωt , (4.1)

where a, b, c are twice continuously differentiable and d, e are continuously differentiable
w.r.t. θ and t. If at a point (θ , t) the inequality

b2 – ac > 0
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holds, then the operator L is said to be hyperbolic at point (θ , t). It is hyperbolic in a domain
D if it is hyperbolic at each point of D, and uniformly hyperbolic in a domain D if there
exists a constant μ such that b2 – ac ≥ μ > 0 in D.

Assume that ω and the conormal derivative

∂ω

∂�v := –b
∂ω

∂θ
– c

∂ω

∂t

are given at t = 0. The adjoint operator L∗ of L can be defined as follows:

L∗[ω] := (aω)θθ + 2(bω)θ t + (cω)tt – (dω)θ – (eω)t

= aωθθ + 2bωθ t + cωtt + (2aθ + 2bt – d)ωθ + (2bθ + 2ct – e)ωt

+ (aθθ + 2bθ t + ctt – dθ – et)ω.

As shown in [6, pp. 502–503], for any hyperbolic operator L, there exists a function l sat-
isfying the following condition:

⎧
⎪⎪⎨

⎪⎪⎩

2
√

b2 – ac[lt – 1
c (

√
b2 – ac – b)lθ ] + lK+ ≥ 0,

2
√

b2 – ac[lt + 1
c (

√
b2 – ac – b)lθ ] + lK– ≥ 0,

(L∗ + g)[ω] ≥ 0,

(4.2)

in a sufficiently small strip 0 ≤ t ≤ t0, where

K+ :=
(√

b2 – ac
)

θ
+

b
c
(√

b2 – ac
)

θ
+

1
c

(bθ + ct – e)
√

b2 – ac

+
[

–
1
2c

(
b2 – ac

)

θ
+ aθ + bt – d –

b
c

(bθ + ct – e)
]

and

K– :=
(√

b2 – ac
)

θ
+

b
c
(√

b2 – ac
)

θ
+

1
c

(bθ + ct – e)
√

b2 – ac

–
[

–
1
2c

(
b2 – ac

)

θ
+ aθ + bt – d –

b
c

(bθ + ct – e)
]

.

Choose the function l to be

l(θ , t) := 1 + ηt – βt2,

and then it is easy to check that the coefficients restriction (4.2) becomes

⎧
⎪⎪⎨

⎪⎪⎩

2
√

b2 – ac(η – 2βt) + (1 + ηt – βt2)K+ ≥ 0,

2
√

b2 – ac(η – 2βt) + (1 + ηt – βt2)K– ≥ 0,

(L∗ + g)[ω] ≥ 0,

(4.3)

for 0 ≤ t ≤ t0. However, (4.3) can be assured by suitably choosing values for η and β ; for
this fact, see [6, p. 503]. Once the function l is determined, the condition on the conormal
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derivative becomes

∂ω

∂�v + (bθ + ct – e + cη)ω ≤ 0

at t = 0, and if we choose a constant M large enough, the following inequality

M ≥ –(bθ + ct – e + cη) (4.4)

holds on Γ0, where Γ0 is the boundary of the initial domain.
Using the above facts, one can easily get the following maximum principle for the trip

adjacent to the θ -axis (see, e.g., [6, 10]).

Lemma 4.1 Suppose that the coefficients of the operator L given by (4.1) are bounded and
have bounded first and second derivatives. Let D be an admissible domain. If t0 and M are
selected in accordance with (4.3) and (4.4), then any function ω which satisfies

⎧
⎪⎪⎨

⎪⎪⎩

(L + g)[ω] ≥ 0 in D,
∂ω
∂�v – Mω ≤ 0 on Γ0,

ω ≤ 0 on Γ0,

also satisfies ω ≤ 0 in the part of D which lies in the strip 0 ≤ t ≤ t0. The constants t0 and
M depend only on lower bounds for –c and

√
b2 – ac and on bounds for the coefficients of

L and their derivatives.

Lemma 4.1 can be used to get the following principle.

Proposition 4.2 (Containment principle) Let F1 and F2 : S1 × [0, T) →R
2 be two convex

solutions of (2.8). Suppose that F2(u, 0) lies in the domain enclosed by F1(u, 0), and f2(u) ≥
f1(u) ≥ 0. Then F2(u, t) is contained in the domain enclosed by F1(u, t) for all t ∈ [0, T).

Proof Assume that S1(θ , t) and S2(θ , t) are the support functions of F1(u, t) and F2(u, t),
respectively. Then, under the above assumptions, it is easy to know that S1(θ , t) and S2(θ , t)
satisfy the first equation of (2.8) with S2(θ , 0) ≤ S1(θ , 0) and S2t(θ , 0) ≤ S1t(θ , 0). That is, we
have

⎧
⎨

⎩

S1S1tt + S1ttS1θθ – S2
1θ t + kα–1

1 = 0,

S2S2tt + S2ttS2θθ – S2
2θ t + kα–1

2 = 0,

where k1 and k2 are the curvatures of curves F1(u, t) and F2(u, t), respectively. Set

ω(θ , t) = S2(θ , t) – S1(θ , t).

By direct calculation, we have

ωtt = S2tt – S1tt =
S2

2θ t – kα–1
2

S2 + S2θθ

–
S2

1θ t – kα–1
1

S1 + S1θθ

= g(k1, k2) · ωθθ + (k1S1θ t + k2S2θ t)ωθ t + g(k1, k2) · ω,
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where

g(k1, k2) :=
k1k2

k1 – k2

[
k2

(
S1θ tS2θ t – kα–1

2
)

– k1
(
S1θ tS2θ t – kα–1

1
)]

.

Therefore, we have

⎧
⎪⎪⎨

⎪⎪⎩

ωtt = g(k1, k2) · ωθθ + (k1S1θ t + k2S2θ t)ωθ t + g(k1, k2) · ω,

ωt(θ , 0) = f1(θ ) – f2(θ ) := ω1(θ ),

ω(θ , 0) = h2(θ ) – h1(θ ) := ω0(θ ).

(4.5)

Define the operator L as

L[ω] := g(k1, k2)ωθθ + (k1S1θ t + k2S2θ t)ωθ t – ωtt .

So, it is easy to check that

a = g(k1, k2), b =
1
2

(k1S1θ t + k2S2θ t), c = –1

are twice continuously differentiable functions w.r.t. θ and t. Since

b2 – ac =
1
4

(k1S1θ t + k2S2θ t)2 –
k1k2

k1 – k2

[
k2

(
S1θ tS2θ t – kα–1

2
)

– k1
(
S1θ tS2θ t – kα–1

1
)] · (–1)

=
1
4

(k1S1θ t – k2S2θ t)2 +
k1k2

k1 – k2

(
kα

1 – kα
2
)

> 0,

which implies that L is uniformly hyperbolic in S
1 × [0, T). The last inequality holds since

for α > 0, (kα
1 – kα

2 )/(k1 – k2) is strictly positive. By Lemma 4.1, we have S2(θ , t) ≤ S1(θ , t)
for all t ∈ [0, T). �

Proposition 4.3 (Preserving convexity) Let k0 be the mean curvature of F0 and let

δ = min
θ∈[0,2π )

{
k0(θ )

}
> 0.

If α ≥ 1, then for a solution S of (2.8), we have

k(θ , t) ≥ δ

for all t ∈ [0, Tmax), where [0, Tmax) is the maximal time interval for solution F(u, t) of (1.1).

Proof By Theorem 1.1, it is easy to know that the evolving curve F(·, t) of the flow (1.1)
remains strictly convex on some short time interval [0, T) with T ≤ Tmax. Moreover, the
support function S of F(·, t) satisfies

Stt = kS2
θ t – kα
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for any (θ , t) ∈ S
1 × [0, T). By direct calculations, we have

kt =
(

1
S + Sθθ

)

t
= –k2(St + Sθθ t),

St + Sθθ t = –(S + Sθθ )2kt = –
1
k2 kt ,

Sθ t + Sθθθ t =
(

–
1
k2 kt

)

θ

=
2
k3 ktkθ –

1
k2 kθ t ,

and

ktt =
[

–
1

(S + Sθθ )2 (St + Sθθ t)
]

t

= k2[kα–1 – S2
θ t + (α – 1)kα–2]kθθ + 2kSθ tkθ t + 4k2Sθ tStkθ

– 4kStkt + k3[S2
θ t – 2S2

t + kα–1 + (α – 1)kα(α – 2 + 2k)(Sθ + Sθθθ )2].

Define the operator L as

L[k] := k2[kα–1 – S2
θ t + (α – 1)kα–2]kθθ + 2kSθ tkθ t – ktt + 4k2Sθ tStkθ – 4kStkt .

By the definition of (4.1), we have

a = k2[kα–1 – S2
θ t + (α – 1)kα–2], b = kSθ t , c = –1,

which are twice continuously differentiable functions w.r.t. θ and t, and

d = 4k2Sθ tSt , e = –4kSt ,

which are continuously differentiable functions w.r.t. θ and t. Moreover, since

b2 – ac = (kSθ t)2 – k2[kα–1 – S2
θ t + (α – 1)kα–2] · (–1) = kα+1 + (α – 1)kα > 0

provided α ≥ 1, the operator L is hyperbolic in S
1 × [0, T). Determine a function k(θ , t) by

the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(L + h̃)[k]

:= L[k] + k3[S2
θ t – 2S2

t + kα–1 + (α – 1)kα(α – 2 + 2k)(Sθ + Sθθθ )2] in S
1 × [0, T),

k(θ , 0) = k0(θ ) on Γ0,

0 ≤ ∂k
∂�v := –bkθ – ckt = β(θ ) on Γ0,

where Γ0 is the boundary of the domain enclosed by the initial curve F(·, 0). It is easy to
check that the function k̃(θ , t) := minθ∈[0,2π ){k0(θ )} = δ satisfies

⎧
⎪⎪⎨

⎪⎪⎩

(L + h̃)[̃k] = 0 in S
1 × [0, T),

k̃(θ , 0) ≤ k0(θ ) on Γ0,
∂ k̃
∂�v – Mk̃ ≤ β(θ ) – Mk0(θ ) on Γ0,
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where M is a constant given by (4.4). Applying Lemma 4.1 to the difference k̃ – k yields

k̃ ≤ k(θ , t) in S
1 × [0, t0)

with t0 ≤ T . Therefore, F(·, t) remains convex on [0, Tmax) and the curvature of F(·, t) has
a uniform lower bound δ on S

1 × [0, Tmax). This completes the proof. �

We also need the following properties of the evolving curves F(·, t) and the Blaschke
selection theorem.

Lemma 4.4 Under the hyperbolic flow (1.1), the arc-length �(t) of the closed curve F(·, t)
satisfies

d�(t)
dt

= –
∫ 2π

0
σ̃ (θ , t) dθ

and

d2�(t)
dt2 =

∫ 2π

0

[

k
(

∂σ̃

∂θ

)2

– kα

]

dθ .

Proof By Lemma 2.3, the first- and second-order derivatives of the arc-length �(t) are given
by

d�(t)
dt

=
d
dt

∫ 2π

0
υ dθ =

∫ 2π

0

∂υ

∂t
dθ = –

∫ 2π

0
kυσ̃ dθ = –

∫ 2π

0
σ̃ dθ

and

d2�(t)
dt2 = –

∫ 2π

0

∂

∂t
(
σ̃ (θ , t)

)
dθ =

∫ 2π

0

∂

∂t
(St) dθ =

∫ 2π

0
Stt dθ

=
∫ 2π

0

(
kS2

θ t – kα
)

dθ =
∫ 2π

0

[

k
(

∂

∂θ
St

)2

– kα

]

dθ

=
∫ 2π

0

[

k
(

∂σ̃

∂θ

)2

– kα

]

dθ ,

which finishes the proof. �

Lemma 4.5 Under the assumption of Proposition 4.3, the following inequality

(
∂σ̃

∂θ

)2

– kα–1 < 0

holds for all t ∈ [0, Tmax).

Proof Since

∂σ

∂t
= kα > 0
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for t ∈ [0, Tmax), we have

σ (u, t) > σ (u, 0)

for t ∈ [0, Tmax), which is equivalent to say

σ̃ (θ , t) = σ (u, t) > σ (u, 0) = σ̃ (θ , 0)

for t ∈ [0, Tmax). This leads to the fact that

∂σ̃

∂t
> 0

for t ∈ [0, Tmax). On the other hand, by the chain rule, we can obtain

∂σ

∂t
=

∂σ̃

∂θ

∂θ

∂t
+

∂σ̃

∂t
=

∂σ̃

∂θ

∂σ

∂s
+

∂σ̃

∂t
=

∂σ̃

∂θ

∂σ̃

∂θ

∂θ

∂s
+

∂σ̃

∂t
,

which implies

∂σ̃

∂t
=

∂σ

∂t
–

(
∂σ̃

∂θ

)2
∂θ

∂s
= kα – k

(
∂σ̃

∂θ

)2

.

Hence, together with the convexity of evolving curves on the time interval [0, Tmax), one
has

(
∂σ̃

∂θ

)2

– kα–1 < 0.

This completes the proof. �

Theorem 4.6 (Blaschke selection theorem) Let {Kj} be a sequence of convex sets which
are contained in a bounded set. Then there exist a subsequence Kjk and a convex set K such
that {Kjk} converges to K in the Hausdorff metric.

5 Proof of Theorem 1.2
By reasonably using Example 3.1 and the containment principle, we can get the conver-
gence of the hyperbolic flow (1.1).

Proof of Theorem 1.2 Let [0, Tmax) be the maximal time interval of the hyperbolic flow
(1.1). We divide the proof into the following several steps.

Step 1. Preserving convexity
By Proposition 4.3, the evolving curves F(·, t) remain strictly convex on [0, Tmax) and

their curvatures have a uniformly positive lower bound maxθ∈S1 k0(θ ) on S
1 × [0, Tmax).

Step 2. Short-time existence
Enclose the initial curve F by a large enough round circle γ0, and then let this circle

evolve under the hyperbolic flow (1.1) with the initial velocity minu∈S1 f (u) to get a solution
γ (·, t). By Example 3.1, we know that the solution γ (·, t) exists only at a finite time interval
[0, T∗), with T∗ < ∞, and γ (·, t) shrinks into a point as t → T∗. By Proposition 4.2, we know
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that F(·, t) is always enclosed by γ (·, t) for all t ∈ [0, T∗). Therefore, F(·, t) must become
singular at some time Tmax ≤ T∗.

Step 3. Hausdorff convergence
From Example 3.1, since f (u) is nonnegative, the round circle γ (·, t) constructed in Step 2

is shrinking. Since, for any time t ∈ [0, Tmax), F(·, t) is enclosed by γ (·, t) and γ (·, t) is shrink-
ing, every convex set KF(·,t) enclosed by F(·, t) must be contained in an open bounded disk
enclosed by γ (·, 0) = γ0. By Theorem 4.6, we know that F(·, t) converges to a (maybe de-
generate and non-smooth) weakly convex curve F(·, Tmax) in the Hausdorff metric.

Step 4. Asymptotical behavior
By Lemma 4.5, we know that, for all t ∈ [0, Tmax),

(
∂σ̃

∂θ

)2

– kα–1 < 0

holds, then one can obtain from Lemma 4.4 that, for all t ∈ [0, Tmax),

d�(t)
dt

< 0 and
d2�(t)

dt2 < 0.

Therefore, there exists a finite time T0 such that �(T0) = 0. There will be two situations (the
rest is similar to Step 4 of the proof of [6, Theorem 1.2], however, for readers’ convenience,
we would like to write down all the details here):

Case I. T0 ≤ Tmax. On the one hand, there exists a unique solution of the evolution equa-
tion (1.1) on the interval [0, T0). On the other hand, �(t) → 0 as t → T0, which implies
that the curvature k goes to infinity when t → T0, and then F(·, t) will blow up at time T0.
Hence, by the definition of Tmax, we have T0 = Tmax. That is to say, F(·, t) converges to a
point as t → Tmax.

Case II. T0 > Tmax. In this situation, we have �(Tmax) > 0, then the solution F(·, Tmax) must
be non-smooth. We divide the argument into the following three cases:

(1) ‖F(u, Tmax)‖ = supu∈S1 |F(u, Tmax)| = ∞. However, as shown in Step 2, we know that
F(·, t) is contained by the initial curve F0, and then ‖F(u, Tmax)‖ must be bounded,
which is a contradiction. So, this case is impossible.

(2) ‖Fu(u, Tmax)‖ = ∞, then the length of the limit curve satisfies

�(Tmax) = lim
t→Tmax

∫

F(u,t)
ds

= lim
t→Tmax

∫

F(u,t)

∣
∣Fu(u, t)

∣
∣du

=
∫

F(u,t)
lim

t→Tmax

∣
∣Fu(u, t)

∣
∣du

= ∞,

which is contradict with the fact �(Tmax) < �(0) < ∞. So, this case is also impossible.
(3) The curvature k is discontinuous. We cannot exclude this case, and then this

phenomenon will occur if the above shocks are impossible.
This completes our proof. �



Zhou et al. Journal of Inequalities and Applications         (2019) 2019:52 Page 17 of 17

Acknowledgements
The authors would like to thank the referees for their careful reading and interesting comments such that the paper
appears as its present version. The corresponding author, Prof. J. Mao, wants to thank the Department of Mathematics,
Instituto Superior Técnico, University of Lisbon for its hospitality during his visit from September 2018 to September 2019.

Funding
This research was supported in part by the NSF of China (Grant No. 11401131), China Scholarship Council, the Fok
Ying-Tung Education Foundation (China), and Hubei Key Laboratory of Applied Mathematics (Hubei University).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors declare that the study was realized in collaboration with the same responsibility. All authors read and
approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 11 August 2018 Accepted: 18 February 2019

References
1. Cao, F.: Geometric Curve Evolution and Image Processing. Lecture Notes in Mathematics, vol. 1805. Springer, Berlin

(2003)
2. Choudhary, K., Jha, A.-K., Mishra, L.-N., Vandana: Buoyancy and chemical reaction effects on MHD free convective slip

flow of Newtonian and polar fluid through porous medium in the presence of thermal radiation and ohmic heating
with Dufour effect. Facta Univ., Ser. Math. Inform. 33(1), 1–29 (2018)

3. Deepmala: A study on fixed point theorems for nonlinear contractions and its applications. Ph.D. thesis, Pt.
Ravishankar Shukla University (2013)

4. Deepmala, Mishra, L.-N.: Differential operators over modules and rings as a path to the generalized differential
geometry. Facta Univ., Ser. Math. Inform. 30(5), 753–764 (2015)

5. He, C.-L., Kong, D.-X., Liu, K.-F.: Hyperbolic mean curvature flow. J. Differ. Equ. 246, 373–390 (2009)
6. Kong, D.-X., Liu, K.-F., Wang, Z.-G.: Hyperbolic mean curvature flow: evolution of plane curves. Acta Math. Sci. 29B,

493–514 (2009)
7. Mao, J.: Forced hyperbolic mean curvature flow. Kodai Math. J. 35, 500–522 (2012)
8. Mishra, L.-N.: On existence and behavior of solutions to some nonlinear integral equations with Applications. Ph.D.

thesis, National Institute of Technology (2017)
9. Mishra, V.-N., Mishra, L.-N.: Trigonometric approximation of signals (functions) in Lp-norm. Int. J. Contemp. Math. Sci.

7(19), 909–918 (2012)
10. Protter, M.-H., Weinberger, H.-F.: Maximum Principles in Differential Equations. Springer, New York (1984)
11. Rotstein, H.-G., Brandon, S., Novick-Cohen, A.: Hyperbolic flow by mean curvature. J. Cryst. Growth 198–199,

1256–1261 (1999)
12. Zhu, X.-P.: Lectures on Mean Curvature Flow. AMS/IP Studies in Advanced Mathematics, vol. 32. Am. Math. Soc.,

Providence (2002)


	Hyperbolic curve ﬂows in the plane
	Abstract
	MSC
	Keywords

	Introduction and our main conclusions
	Proof of Theorem 1.1
	An interesting example
	Some propositions of the hyperbolic ﬂow
	Proof of Theorem 1.2
	Acknowledgements
	Funding
	Competing interests
	Authors' contributions
	Publisher's Note
	References


