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Abstract
Let C be a nonempty closed convex subset of a real Hilbert spaceH with inner
product 〈·, ·〉, and let f :H → H be a nonlinear operator. Consider the inverse
variational inequality (in short, IVI(C, f )) problem of finding a point ξ ∗ ∈ H such that

f (ξ ∗) ∈ C,
〈
ξ ∗, v – f (ξ ∗)

〉 ≥ 0, ∀v ∈ C.

In this paper, we prove that IVI(C, f ) has a unique solution if f is Lipschitz continuous
and strongly monotone, which essentially improves the relevant result in (Luo and
Yang in Optim. Lett. 8:1261–1272, 2014). Based on this result, an iterative algorithm,
named the alternating contraction projection method (ACPM), is proposed for solving
Lipschitz continuous and strongly monotone inverse variational inequalities. The
strong convergence of the ACPM is proved and the convergence rate estimate is
obtained. Furthermore, for the case that the structure of C is very complex and the
projection operator PC is difficult to calculate, we introduce the alternating
contraction relaxation projection method (ACRPM) and prove its strong convergence.
Some numerical experiments are provided to show the practicability and
effectiveness of our algorithms. Our results in this paper extend and improve the
related existing results.
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1 Introduction
Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖. Recall that
the metric projection operator of a nonempty closed convex subset C of H,
PC : H → C, is defined by

PC(x) := arg min
y∈C

‖x – y‖2, x ∈H.

Let C be a nonempty closed convex subset of H, and let F : C → H be a nonlinear
operator. The so-called variational inequality (in short, VI(C, F)) problem is to find a point
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u∗ ∈ C such that

〈
F
(
u∗), v – u∗〉 ≥ 0, ∀v ∈ C. (1)

The variational inequalities have many important applications in different fields and have
been studied intensively, see [1, 2, 4, 7–14, 17, 24, 26, 27, 31, 32, 36, 38–40, 42–46], and
the references therein.

It is easy to verify that u∗ solves VI(C, F) if and only if u∗ is a solution of the fixed point
equation

u∗ = PC(I – λF)u∗, (2)

where I is the identity operator on H and λ is an arbitrary positive constant.
A class of variant variational inequalities is the inverse variational inequality (in short

IVI(C, f )) problem [19], which is to find a point ξ ∗ ∈H such that

f
(
ξ ∗) ∈ C,

〈
ξ ∗, v – f

(
ξ ∗)〉 ≥ 0, ∀v ∈ C, (3)

where f : H → H is a nonlinear operator. The inverse variational inequalities are also
widely used in many different fields such as the transportation system operation, control
policies, and the electrical power network management [20, 22, 41].

Now we give a brief overview of the properties and algorithms of inverse variational in-
equalities. For the properties of inverse variational inequalities, Han et al. [16] proved that
the solution set of any monotone inverse variational inequality is convex. He [18] proved
that the inverse variational inequality IVI(C, f ) is equivalent to the following projection
equation:

f
(
ξ ∗) = PC

(
f
(
ξ ∗) – βξ ∗),

where β is an arbitrary positive constant. Consequently, the problem IVI(C, f ) equals the
fixed point problem of the mapping

T := I – f + PC(f – βI).

The following lemma reveals the intrinsic relationship between variational inequalities
and inverse variational inequalities.

Lemma 1.1 ([23, 34]) If f : H →H is a one-to-one correspondence, then ξ ∗ ∈H is a solu-
tion of IVI(C, f ) if and only if u∗ = f (ξ ∗) is a solution of VI(C, f –1).

As for the existence and uniqueness of solutions for Lipschitz continuous and strongly
monotone inverse variational inequalities, Luo et al. [34] proved the following result.

Lemma 1.2 ([34, Lemma 1.3]) If f : H → H is L-Lipschitz continuous and η-strongly
monotone, and there exists some positive constant β such that

|β – η| <
√

η2 – 2η + 2 – 2
√

1 – 2η + L2, (4)
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η2 – 2η + 2 – 2
√

1 – 2η + L2 > 0, (5)

and

η ≤ L <
√

2η, (6)

then T is a strict contraction with the coefficient

√
1 – 2η + L2 +

√
L2 – 2βη + β2 < 1.

Hence the inverse variational inequality IVI(C, f ) has one and only one solution.

It is easy to see that conditions (4)–(6) are not only rather harsh, but also nonessential.
The main iterative algorithms to approximate the inverse variational inequalities (3) are

projection methods [28]. He et al. [21, 23] introduced PPA-based methods, exact proximal
point algorithm and inexact proximal point algorithm, for monotone inverse variational
inequalities and constrained ‘black-box’ inverse variational inequalities, respectively. They
also gave the prediction-correction proximal point algorithm and the adaptive prediction-
correction proximal point algorithm. Under certain conditions, the convergence rate of
these algorithms is proved to be linear. Based on Lemma 1.2, Luo et al. [34] introduced
several regularized iterative algorithms to solve monotone and Lipschitz continuous in-
verse variational inequalities.

There is also a lot of research on the properties of the inverse variational inequalities.
We refer the reader to the papers [29, 30, 35, 37], and the references therein for the well-
posedness of inverse variational inequalities. Very recently, Chen et al. [6] obtained the
optimality conditions for solutions of constrained inverse vector variational inequalities
by means of nonlinear scalarization.

Although inverse variational inequalities have a wide range of applications, they have
not received enough attention. For example, some fundamental problems, including the
existence and uniqueness of solutions, still need further study.

In this paper, based on Lemma 1.1, we firstly prove that IVI(C, f ) has a unique solution
if f is Lipschitz continuous and strongly monotone. This means that conditions (4)–(6)
are all redundant and therefore can be eliminated. By making full use of the existing re-
sults, an iterative algorithm, named alternating contraction projection method (ACPM),
is proposed for solving Lipschitz continuous and strongly monotone inverse variational
inequalities. The strong convergence of the ACPM is proved and the convergence rate
estimate is obtained. Furthermore, for the case that the structure of C is very complex
and the projection operator PC is difficult to calculate, we introduce the alternating con-
traction relaxation projection method (ACRPM) and prove its strong convergence. Some
numerical experiments, which show advantages of the proposed algorithms, are provided.
The results in this paper extend and improve the related existing results.

2 Preliminaries
In this section, we list some concepts and tools that will be used in the proofs of the main
results. In the sequel, we use the notations:

(i) → denotes strong convergence;
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(ii) ⇀ denotes weak convergence;
(iii) ωw(xn) = {x | ∃{xnk }∞k=1 ⊂ {xn}∞n=1 such that xnk ⇀ x} denotes the weak ω-limit set of

{xn}∞n=1.
The next inequality is trivial but in common use.

Lemma 2.1

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀x, y ∈H.

Definition 2.1 Let f : H →H be a single-valued mapping. f is said to be
(i) monotone if

〈
f (x) – f (y), x – y

〉 ≥ 0, ∀x, y ∈H;

(ii) η-strongly monotone if there exists a constant η > 0 such that

〈
f (x) – f (y), x – y

〉 ≥ η‖x – y‖2, ∀x, y ∈H;

(iii) L-Lipschitz continuous if there exists a constant L > 0 such that

∥∥f (x) – f (y)
∥∥ ≤ L‖x – y‖, ∀x, y ∈H;

(iv) nonexpansive if

∥∥f (x) – f (y)
∥∥ ≤ ‖x – y‖, ∀x, y ∈H;

(v) firmly nonexpansive if

∥∥f (x) – f (y)
∥∥2 ≤ ‖x – y‖2 –

∥∥(
x – f (x)

)
–

(
y – f (y)

)∥∥2, ∀x, y ∈H.

It is well known that PC is also firmly nonexpansive.
For the projection operator PC , the following characteristic inequality holds.

Lemma 2.2 ([15, Sect. 3]) Let z ∈H and u ∈ C. Then u = PCz if and only if

〈z – u, v – u〉 ≤ 0, ∀v ∈ C.

By using Lemma 2.2 and the definition of variational inequality (1), we get the following
results.

Lemma 2.3 u ∈ C is a solution of VI(C, F) if and only if u satisfies the fixed-point equation

u = PC(I – μF)u,

where μ is an arbitrary positive constant.
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Lemma 2.4 ([5, Theorem 5]) Let C be a nonempty closed convex subset of a real Hilbert
space H, and let F : H →H be L-Lipschitz continuous and η-strongly monotone. Let λ and
μ be constants such that λ ∈ (0, 1) and μ ∈ (0, 2η

L2 ), respectively, and let Tμ = PC(I – μF) (or
I – μF) and Tλ,μ = PC(I – λμF) (or I – λμF). Then Tμ and Tλ,μ are all strict contractions
with coefficients 1 – τ and 1 – λτ , respectively, where τ = 1

2μ(2η – μL2).

The following two lemmas are crucial for the analysis of the proposed algorithms.

Lemma 2.5 ([33]) Assume that {an}∞n=0 is a sequence of nonnegative real numbers such
that

an+1 ≤ (1 – γn)an + γnδn, n ≥ 0,

where {γn}∞n=0 is a sequence in (0,1) and {δn}∞n=0 is a real sequence such that
(i)

∑∞
n=0 γn = ∞;

(ii) lim supn→∞ δn ≤ 0 or
∑∞

n=0 |γnδn| < ∞.
Then limn→∞ an = 0.

Lemma 2.6 ([27]) Assume that {sn}∞n=0 is a sequence of nonnegative real numbers such that

sn+1 ≤ (1 – γn)sn + γnδn, n ≥ 0,

sn+1 ≤ sn – ηn + αn, n ≥ 0,

where {γn}∞n=0 is a sequence in (0, 1), {ηn}∞n=0 is a sequence of nonnegative real numbers, and
{δn}∞n=0 and {αn}∞n=0 are two sequences in R such that

(i)
∑∞

n=0 γn = ∞,
(ii) limn→∞ αn = 0,

(iii) limk→∞ ηnk = 0 implies lim supk→∞ δnk ≤ 0 for any subsequence {nk}∞k=0 ⊂ {n}∞n=0.
Then limn→∞ sn = 0.

Recall that a function ϕ : H → R is called convex if

ϕ
(
λu + (1 – λ)v

) ≤ λϕ(u) + (1 – λ)ϕ(v), ∀λ ∈ [0, 1],∀u, v ∈H.

Recall that an element g ∈H is said to be asubgradient of a convex function ϕ : H →
R at u if

ϕ(z) ≥ ϕ(u) + 〈g, z – u〉, ∀z ∈H. (7)

A convex function ϕ : H →R is said to besubdifferentiable at u, if it has at least one
subgradient at u. The set of subgradients of ϕ at u is called thesubdifferential of ϕ at
u, which is denoted by ∂ϕ(u). Relation (7) is called the subdifferential inequal-

ity of ϕ at u. A function ϕ is called subdifferentiable, if it is subdifferentiable at
every u ∈ H. If a convex function ϕ is differentiable, then its gradient and subgradient
coincide.
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Recall that a function ϕ : H → R is said to be weakly lower semi-continuous

(w-lsc) at u if un ⇀ u implies

ϕ(u) ≤ lim inf
n→∞ ϕ(un).

3 An existence and uniqueness theorem
In this section, with the help of Lemma 1.1, an existence and uniqueness theorem of solu-
tions for inverse variational inequalities is established.

Firstly, applying Lemma 2.3, Lemma 2.4, and Banach’s contraction mapping principle, it
is not difficult to get the following well-known result.

Theorem 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H, and let
F : C →H be a Lipschitz continuous and strongly monotone operator. Then the variational
inequality VI(C, F) has a unique solution. Furthermore, if F : C → H is L-Lipschitz con-
tinuous and η-strongly monotone, then for any μ ∈ (0, 2η

L2 ), PC(I – μF) : C → C is a strict
contraction and the sequence {xn}∞n=0 generated by the gradient projection method

xn+1 = PC(I – μF)xn (8)

converges strongly to the unique solution of VI(C, F), where the initial guess x0 can be se-
lected in H arbitrarily.

Secondly, we show the following two facts.

Lemma 3.1 If f : H → H is Lipschitz continuous and strongly monotone, then f : H → H
is a bijection and thus f –1 : H →H is a single-valued mapping.

Proof In order to complete the proof, it suffices to verify that, for any v ∈ H, there exists
only one u ∈H such that f (u) = v. Suppose that f is L-Lipschitz continuous and η-strongly
monotone with L > 0 and η > 0. Take μ ∈ (0, 2η

L2 ) and set T = (I – μf ) + μv : H → H. It is
easy to verify that u ∈ H solves the equation f (u) = v if and only if u ∈ H is a fixed point
of T . Using Lemma 2.4, T is a strict contraction and hence T has only one fixed point.
Consequently, the equation f (u) = v has only one solution and this completes the proof. �

Lemma 3.2 If f : H → H is L-Lipschitz continuous and η-strongly monotone, then f –1 :
H →H is 1

η
-Lipschitz continuous and η

L2 -strongly monotone.

Proof For any x, y ∈H, setting f –1(x) = u and f –1(y) = v, and using the strong monotonicity
of f , we have

∥∥f –1(x) – f –1(y)
∥∥2 = ‖u – v‖2

≤ 1
η

〈
f (u) – f (v), u – v

〉

=
1
η

〈
x – y, f –1(x) – f –1(y)

〉

≤ 1
η
‖x – y‖ · ∥∥f –1(x) – f –1(y)

∥∥.
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Consequently,

∥∥f –1(x) – f –1(y)
∥∥ ≤ 1

η
‖x – y‖,

which implies that f –1 is 1
η

-Lipschitz continuous.
On the other hand, noting that f is L-Lipschitz continuous, we obtain

〈
f –1(x) – f –1(y), x – y

〉
=

〈
u – v, f (u) – f (v)

〉

≥ η‖u – v‖2

≥ η

L2

∥∥f (u) – f (v)
∥∥2 =

η

L2 ‖x – y‖2,

which yields that f –1 is η

L2 -strongly monotone. �

Theorem 3.2 Let C be a nonempty closed convex subset of a real Hilbert space H, and
let f : H →H be a Lipschitz continuous and strongly monotone operator. Then the inverse
variational inequality IVI(C, f ) has a unique solution.

Proof From Lemma 3.1 and Lemma 3.2, we have that f –1 is single-valued, 1
η

-Lipschitz con-
tinuous, and η

L2 -strongly monotone. Thus, by using Theorem 3.1, we assert that VI(C, f –1)
has a unique solution. From Lemma 1.1, it follows that the inverse variational inequality
problem IVI(C, f ) also has a unique solution. �

Remark 3.1 In Theorem 3.2, we just need that f : H → H is Lipschitz continuous and
strongly monotone and do not need (4)–(6). So, our result essentially improves Lemma 1.2.

4 An alternating contraction projection method
Let C be a nonempty closed convex subset of a real Hilbert space H, and let f : H →
H be an L-Lipschitz continuous and η-strongly monotone operator. Using Theorem 3.2,
we assert that the inverse variational inequality IVI(C, f ) has a unique solution, which is
denoted by ξ ∗. According to Lemma 1.1, u∗ = f (ξ ∗) is the unique solution of VI(C, f –1).
Based on this fundamental fact and the gradient projection method for solving VI(C, f –1),
in this section, we introduce an iterative algorithm for finding the unique solution ξ ∗ of
IVI(C, f ).

Set L̃ = 1
η

and η̃ = η

L2 . Take two positive constants μ and α such that 0 < μ < 2η̃

L̃2 and
0 < α < 2η

L2 , respectively and a sequence of positive numbers {εn}∞n=0 such that εn → 0 as
n → ∞. The alternating contraction projection method (ACPM) is defined as follows.

Algorithm 4.1 (The alternating contraction projection method)
Step 1: Take u0 ∈ C and ξ

(0)
0 ∈H arbitrarily and set n := 0.

Step 2: For the current un and ξ
(0)
n (n ≥ 0), calculate

ξ (m+1)
n = ξ (m)

n – αf
(
ξ (m)

n
)

+ αun, m = 0, 1, . . . , mn, (9)

where mn is the smallest positive integer such that

(1 – τ )mn+1

τ

∥∥ξ (1)
n – ξ (0)

n
∥∥ ≤ εn, (10)
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where τ = 1
2α(2η – αL2).

Set

ξn = ξ (mn+1)
n . (11)

Step 3: Calculate

un+1 = PC(un – μξn), (12)

and set

ξ
(0)
n+1 = ξn, (13)

n := n + 1 and return to Step 2.

We now establish the strong convergence of Algorithm 4.1.

Theorem 4.1 Let C be a nonempty closed convex subset of a real Hilbert space H, and let
f : H → H be an L-Lipschitz continuous and η-strongly monotone operator. Then the two
sequences {ξn}∞n=0 and {un}∞n=0 generated by Algorithm 4.1 converge strongly to the unique
solution ξ ∗ of IVI(C, f ) and the unique solution u∗ of VI(C, f –1), respectively.

Proof First of all, for each n ≥ 0 and un ∈ C, we define a mapping Tn : H →H by

Tn(ξ ) = (I – αf )(ξ ) + αun, ∀ξ ∈H. (14)

From Lemma 2.4, Tn is a strict contraction with the coefficient 1 – τ . Moreover, Banach’s
contraction mapping principle implies that the sequence {ξ (m)

n }∞m=0 generated by (9) con-
verges strongly to f –1(un) as m → ∞ and there exists the error estimate

∥∥ξ (m)
n – f –1(un)

∥∥ ≤ (1 – τ )m

τ

∥∥ξ (1)
n – ξ (0)

n
∥∥, m ≥ 1.

From (9), we have

∥∥ξn – f –1(un)
∥∥ =

∥∥ξ (mn+1)
n – f –1(un)

∥∥ ≤ (1 – τ )mn+1

τ

∥∥ξ (1)
n – ξ (0)

n
∥∥ ≤ εn. (15)

Secondly, using Lemma 2.4 again, we claim that the mapping PC(I – μf –1) : C → C is
also a strict contraction with the coefficient 1 – τ̃ , where τ̃ = 1

2μ(2η̃ – μL̃2). Based on these
facts and noting u∗ = PC(u∗ – μf –1(u∗)), we have from (15) that

∥∥un+1 – u∗∥∥ ≤ ∥∥PC(un – μξn) – PC
(
un – μf –1(un)

)∥∥

+
∥∥PC

(
un – μf –1(un)

)
– PC(u∗ – μf –1(u∗)∥∥

≤ μ
∥∥ξn – f –1(un)

∥∥ + (1 – τ̃ )
∥∥un – u∗∥∥

≤ (1 – τ̃ )
∥∥un – u∗∥∥ + μεn. (16)

Applying Lemma 2.5 to (16), we obtain that ‖un – u∗‖ → 0 as n → ∞.
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Finally, noting that ξ ∗ = f –1(u∗) and f –1 is L̃-Lipschitz continuous, we have from (15)
that

∥∥ξn – ξ ∗∥∥ ≤ ∥∥ξn – f –1(un)
∥∥ +

∥∥f –1(un) – ξ ∗∥∥

≤ εn +
∥∥f –1(un) – f –1(u∗)∥∥

≤ εn + L̃
∥∥un – u∗∥∥. (17)

Thus it concludes from (17) that ‖ξn – ξ ∗‖ → 0 holds as n → ∞. �

As for the convergence rate of Algorithm 4.1, we have the following result.

Theorem 4.2 Under the conditions of Theorem 4.1, we obtain the following estimates of
convergence rate for Algorithm 4.1:

∥∥un – u∗∥∥ ≤ (1 – τ̃ )n∥∥u0 – u∗∥∥ + μ

n–1∑

k=0

(1 – τ̃ )n–1–kεk , ∀n ≥ 1, (18)

and

∥∥ξn – ξ ∗∥∥ ≤ εn + L̃

{

(1 – τ̃ )n∥∥u0 – u∗∥∥ + μ

n–1∑

k=0

(1 – τ̃ )n–1–kεk

}

, ∀n ≥ 1. (19)

In particular, if we take εn = (1 – τ̃ )n+1 (n ≥ 0), then there hold

∥∥un – u∗∥∥ ≤ [∥∥u0 – u∗∥∥ + μn
]
(1 – τ̃ )n, ∀n ≥ 1, (20)

and

∥∥ξn – ξ ∗∥∥ ≤ {
(1 – τ̃ ) + L̃

[∥∥u0 – u∗∥∥ + μn
]}

(1 – τ̃ )n, ∀n ≥ 1. (21)

Proof Estimate (18) can be obtained easily by using (16) repeatedly. By combining (18)
and (17), we have (19). (20) and (21) can be gotten by substituting εn = (1 – τ̃ )n+1 into (18)
and (19), respectively. �

5 An alternating contraction relaxation projection method
Algorithm 4.1 (ACPM) can be well implemented if the structure of the set C is very simple
and the projection operator PC is easy to calculate. However, the calculation of a projection
onto a closed convex subset is generally difficult. To overcome this difficulty, Fukushima
[13] suggested a relaxation projection method to calculate the projection onto a level set of
a convex function by computing a sequence of projections onto half-spaces containing the
original level set. Since its inception, the relaxation technique has received much attention
and has been used by lots of authors to construct iterative algorithms for solving nonlinear
problems, see [25] and the references therein.

We now consider the inverse variational inequality problem IVI(C, f ), where f : H →H
is a Lipschitz continuous and strongly monotone operator. Let the closed convex subset
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C be the level set of a convex function, i.e.,

C =
{

z ∈H | c(x) ≤ 0
}

, (22)

where c : H → R is a convex function. We always assume that c is weakly lower semi-
continuous, subdifferentiable on H, and ∂c is a bounded operator (i.e., bounded on
bounded sets). It is worth noting that the subdifferential operator is bounded for a convex
function defined on a finite dimensional Hilbert space (see [3, Corollary 7.9]).

Take the constants L̃ = 1
η

, η̃ = η

L2 , μ, and α and the sequence of positive numbers {εn}∞n=0

as in the last section.
Adopting the relaxation technique of Fukushima [13], we introduce a relaxed projection

algorithm for computing the unique solution ξ ∗ of IVI(C, f ), where C is given as in (22).

Algorithm 5.1 (The alternating contraction relaxation projection method)
Step 1: Take u0 ∈ C and ξ

(0)
0 ∈H arbitrarily and set n := 0.

Step 2: For the current un and ξ
(0)
n (n ≥ 0), calculate

ξ (m+1)
n = ξ (m)

n – αf
(
ξ (m)

n
)

+ αun, m = 0, 1, . . . , mn, (23)

where mn is the smallest positive integer such that

(1 – τ )mn+1

τ

∥∥ξ (1)
n – ξ (0)

n
∥∥ ≤ εn, (24)

where τ = 1
2α(2η – αL2).

Set

ξn = ξ (mn+1)
n . (25)

Step 3: Calculate

un+1 = PCn (un – λnμξn), (26)

where

Cn =
{

z ∈H | c(un) + 〈νn, z – un〉 ≤ 0
}

,

νn ∈ ∂c(un) and λn ∈ (0, 1). (27)

Set

ξ
(0)
n+1 = ξn,

n := n + 1 and return to Step 2.

Next theorem establishes the strong convergence of Algorithm 4.1.
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Theorem 5.1 Let C be given by (22), and let f : H →H be an L-Lipschitz continuous and
η-strongly monotone operator. Assume that c : H → R is weakly lower semi-continuous
and subdifferentiable on H and ∂c is a bounded operator. Suppose that the sequence
{λn}∞n=0 ⊂ (0, 1) satisfies (i) λn → 0 as n → ∞ and (ii)

∑∞
n=0 λn = ∞. Then the two sequences

{ξn}∞n=0 and {un}∞n=0 generated by Algorithm 5.1 converge strongly to the unique solution ξ ∗

of IVI(C, f ) and the unique solution u∗ of VI(C, f –1), respectively.

Proof For convenience, we denote by M a positive constant, which represents different
values in different places. Firstly, we verify that {un}∞n=0 is bounded. Indeed, from the sub-
differential inequality (7) and the definition of Cn, it is easy to verify that Cn ⊃ C for all
n ≥ 0. Similar to (15), we also have

∥∥ξn – f –1(un)
∥∥ ≤ εn, n ≥ 0. (28)

Noting that the projection operator PCn is nonexpansive, we obtain from (26), (28), and
Lemma 2.4 that

∥∥un+1 – u∗∥∥ =
∥∥PCn (un – λnμξn) – PCn u∗∥∥

=
∥∥PCn (un – λnμξn) – PCn

(
un – λnμf –1(un)

)∥∥

+
∥∥PCn

(
un – λnμf –1(un)

)
– PCn u∗∥∥

≤ ∥∥PCn

(
un – λnμf –1(un)

)
– PCn

(
u∗ – λnμf –1(u∗))∥∥

+
∥∥PCn

(
u∗ – λnμf –1(u∗)) – PCn u∗∥∥ + λnμεn

≤ (1 – τ̃ λn)
∥∥un – u∗∥∥ + τ̃ λn

μ

τ̃

(
εn +

∥∥f –1(u∗)∥∥)

≤ (1 – τ̃ λn)
∥∥un – u∗∥∥ + τ̃ λn

μ

τ̃
M,

where τ̃ = 1
2μ(2η̃ – μL̃2). Inductively, it turns out that

‖un – u‖ ≤ max

{
‖u0 – u‖,

μ

τ̃
M

}
, ∀n ≥ 1,

which implies that {un}∞n=0 is bounded and so is {f –1(un)}∞n=0. Similar to (17), we have

∥∥ξn – ξ ∗∥∥ ≤ ∥∥ξn – f –1(un)
∥∥ +

∥∥f –1(un) – ξ ∗∥∥

≤ εn +
∥∥f –1(un) – f –1(u∗)∥∥

≤ εn + L̃
∥∥un – u∗∥∥, (29)

which implies that {ξn}∞n=0 is bounded. Using (26), (28), Lemma 2.1, and Lemma 2.4, we
have

∥∥un+1 – u∗∥∥2

=
∥∥PCn (un – λnμξn) – PCn u∗∥∥2

≤ ∥∥un – λnμξn – u∗∥∥2
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=
∥∥(un – λnμξn) –

(
un – λnμf –1(un)

)
+

(
un – λnμf –1(un)

)
– u∗∥∥2

≤ ∥∥(
un – λnμf –1(un)

)
– u∗∥∥2 + 2λnμεn

∥∥un – λnμf –1(un) – u∗∥∥

+ λ2
nμ

2ε2
n

≤ ∥∥(
un – λnμf –1(un)

)
–

(
u∗ – λnμf –1(u∗)) – λnμf –1(u∗)∥∥2 + λnεnM

≤ (1 – τ̃ λn)
∥∥un – u∗∥∥2 – 2λnμ

〈
f –1(u∗), un – u∗ – λnμf –1(un)

〉

+ λnεnM

= (1 – τ̃ λn)
∥∥un – u∗∥∥2 + τ̃ λn

[
1
τ̃

(
–2μ

〈
f –1(u∗), un – u∗〉

+ 2λnμ
2∥∥f –1(u∗)∥∥∥∥f –1(un)

∥∥ + εnM
)]

. (30)

Since the projection operator PCn is firmly nonexpansive, we get

∥∥PCn un – PCn u∗∥∥2 ≤ ∥∥un – u∗∥∥2 – ‖un – PCn un‖2. (31)

Using (28) and (31), we have

∥∥un+1 – u∗∥∥2

=
∥∥PCn (un – λnμξn) – PCn u∗∥∥2

=
∥∥PCn (un – λnμξn) – PCn

(
un – λnμf –1(un)

)

+ PCn

(
un – λnμf –1(un)

)
– PCn u∗∥∥2

≤ ∥∥PCn

(
un – λnμf –1(un)

)
– PCn u∗∥∥2 + 2λnμεn

∥∥un – u∗ – λnμf –1(un)
∥∥

+ λ2
nμ

2ε2
n

≤ ∥∥PCn

(
un – λnμf –1(un)

)
– PCn un + PCn un – PCn u∗∥∥2 + λnεnM

≤ ∥∥PCn un – PCn u∗∥∥2 + 2λnμ
∥∥f –1(un)

∥∥∥∥un – u∗∥∥ + λ2
nμ

2∥∥f –1(un)
∥∥2

+ λnεnM

≤ ∥∥PCn un – PCn u∗∥∥2 + λnM

≤ ∥∥un – u∗∥∥2 – ‖un – PCn un‖2 + λnM. (32)

Setting

sn =
∥∥un – u∗∥∥2, γn = τ̃ λn,

δn = –
1
τ̃

(
2μ

〈
f –1(u∗), un – u∗〉) +

1
τ̃

(
2λnμ

2∥∥f –1(u∗)∥∥∥∥f –1(un)
∥∥ + εnM

)
,

ηn = ‖un – PCn un‖2, αn = Mλn,

then (30) and (32) can be rewritten as the following forms, respectively:

sn+1 ≤ (1 – γn)sn + γnδn, n ≥ 0, (33)



He and Dong Journal of Inequalities and Applications        (2018) 2018:351 Page 13 of 19

and

sn+1 ≤ sn – ηn + αn, n ≥ 0. (34)

From the conditions λn → 0 and
∑+∞

n=1 λn = ∞, it follows αn → 0 and
∑∞

n=1 γn = ∞. So, in
order to use Lemma 2.6 to complete the proof, it suffices to verify that

lim
k→∞

ηnk = 0

implies

lim sup
k→∞

δnk ≤ 0

for any subsequence {nk}∞k=0 ⊂ {n}∞n=0. In fact, from ‖unk –PCnk
unk ‖ → 0 and the fact that ∂c

is bounded on bounded sets, it follows that there exists a constant δ > 0 such that ‖νnk ‖ ≤ δ

for all k ≥ 0. Using (27) and the trivial fact that PCnk
unk ∈ Cnk , we have

c(unk ) ≤ 〈νnk , unk – PCnk
unk 〉 ≤ δ‖unk – PCnk

unk ‖. (35)

For any u′ ∈ ωω(unk ), without loss of generality, we assume that unk ⇀ u′. Using w-lsc of c
and (35), we have

c
(
u′) ≤ lim inf

k→∞
c(unk ) ≤ 0,

which implies that u′ ∈ C. Hence ωω(unk ) ⊂ C.
Noting that u∗ is the unique solution of VI(C, f –1), it turns out that

lim sup
k→∞

{
–

2μ

τ

〈
f –1(u∗), unk – u∗〉

}
= –

2μ

τ
lim inf

k→∞
〈
f –1(u∗), unk – u∗〉

= –
2μ

τ
inf

ω∈ωω(unk )

〈
f –1(u∗),ω – u∗〉 ≤ 0.

Since λn → 0, εn → 0, and {f –1(un)}∞n=0 is bounded, it is easy to verify that lim supk→0 δnk ≤
0. Therefore, by using Lemma 2.6 we get that un → u∗ as n → ∞. Consequently, this
together with (29) leads to ξn → ξ ∗ and the proof is completed. �

Next we estimate the convergence rate of Algorithm 5.1. Note that the conditions λn →
0 and

∑∞
n=0 λn = ∞ guarantee the strong convergence, but slow down the convergence

rate. Since it is difficult to estimate the asymptotic convergence rate of Algorithm 5.1, we
will focus on the convergence rate of Algorithm 5.1 in the non-asymptotic sense. Based
on Lemma 1.1 and Theorem 5.1, estimating the convergence rate of Algorithm 5.1 for
IVI(C, f ) is equivalent to estimating the convergence rate of Algorithm 5.1 for VI(C, f –1),
so we will analyze the convergence rate of Algorithm 5.1 for VI(C, f –1).

The analysis of the convergence rate is based on the fundamental equivalence: a point
u ∈ C is a solution of VI(C, f –1) if and only if 〈f –1(v), v – u〉 ≥ 0 holds for all v ∈ C ∩ S(u, 1),
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where S(u, 1) is the closed sphere with the center u and the radius one (see [4] and [10] for
details).

A useful inequality for estimating the convergence rate of Algorithm 5.1 is given as fol-
lows.

Lemma 5.1 Let {un}∞n=1 be the sequence generated by Algorithm 5.1. Assume that the con-
ditions in Theorem 5.1 hold. Suppose

∑∞
n=0 λ2

n < ∞ and
∑∞

n=0 λnεn < ∞. Then, for any in-
teger n ≥ 1, we have a sequence {wn}∞n=1 which converges strongly to the unique solution u∗

of VI(C, f –1) and

〈
f –1(v), wn – v

〉

≤ ‖u0 – v‖2 + μ2(σ1 + σ2) + 2μ(σ3 + σ4‖v‖ + μσ5)
Υn

, ∀v ∈ C, (36)

where

σ1 =
∞∑

k=0

λ2
k
∥∥f –1(uk)

∥∥2, σ2 =
∞∑

k=0

λ2
kε

2
k ,

σ3 =
∞∑

k=0

λkεk‖uk‖, σ4 =
∞∑

k=0

λkεk ,

σ5 =
∞∑

k=0

λ2
kεk

∥∥f –1(uk)
∥∥, wn =

∑n
k=0 2μλkuk

Υn
, and Υn =

n∑

k=0

2μλk .

(37)

Proof For each k ≥ 0 and any v ∈ C, using (26) and (28), we have

‖uk+1 – v‖ =
∥∥PCk (uk – λkμξk) – PCk v

∥∥

≤ ‖uk – λkμξk – v‖
≤ ∥∥uk – v – λkμf –1(uk) + λkμf –1(uk) – λkμξk

∥∥

≤ ∥∥uk – v – λkμf –1(uk)
∥∥ + λkμεk .

Consequently, we obtain

‖uk+1 – v‖2

≤ ‖uk – v‖2 – 2λkμ
〈
f –1(uk), uk – v

〉
+ μ2λ2

k
∥∥f –1(uk)

∥∥2 + μ2λ2
kε

2
k

+ 2μλkεk‖uk‖ + 2μλkεk‖v‖ + 2μ2λ2
kεk

∥∥f –1(uk)
∥∥, (38)

which together with the monotonicity of f –1 yields

2λkμ
〈
f –1(v), uk – v

〉

≤ ‖uk – v‖2 – ‖uk+1 – v‖2 + μ2λ2
k
∥∥f –1(uk)

∥∥2 + μ2λ2
kε

2
k

+ 2μλkεk‖uk‖ + 2μλkεk‖v‖ + 2μ2λ2
kεk

∥∥f –1(uk)
∥∥. (39)
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Note the fact that {uk}∞k=0 and {‖f –1(uk)‖}∞k=0 are all bounded. So, from the conditions
∑∞

k=0 λ2
k < ∞ and

∑∞
k=0 λkεk < ∞, it follows that σk < ∞, k = 1, 2, 3, 4. Summing inequality

(39) over k = 0, . . . , n, we get

〈

f –1(v),
n∑

k=0

2μλkuk –
n∑

k=0

2μλkv

〉

≤ ‖u0 – v‖2 + μ2(σ1 + σ2) + 2μ
(
σ3 + σ4‖v‖ + μσ5

) ∀v ∈ C. (40)

Thus (36) follows from (37) and (40).
By Theorem 5.1, {un}∞n=0 converges strongly to the unique solution u∗ of VI(C, f –1). Since

wn is a convex combination of u0, u1, . . . , un, it is easy to see that {wn}∞n=1 also converges
strongly to u∗. �

Finally we are in a position to estimate the convergence rate of Algorithm 5.1.

Theorem 5.2 Assume that the conditions in Theorem 5.1 hold and the condition
∑∞

n=0 λnεn < ∞ is satisfied. Then, in the ergodic sense, Algorithm 5.1 has the O( 1
n1–α ) conver-

gence rate if {λn}∞n=1 = { 1
nα }∞n=1 with 1

2 < α < 1 and λ0 = 1
1–α

, and has the O( 1
ln n ) convergence

rate if {λn}∞n=1 = { 1
n }∞n=1.

Proof For {λn}∞n=1 = { 1
nα }∞n=1 with 1

2 < α < 1, one has that
∑∞

n=1 λn = ∞ and
∑∞

n=1 λ2
n < ∞.

For any integer k ≥ 1, it is easy to verify that

1
1 – α

{
(k + 1)1–α – k1–α

} ≤ 1
kα

.

Consequently, for all n ≥ 1, we have

1
1 – α

{
(n + 1)1–α – 1

} ≤
n∑

k=1

1
kα

. (41)

It concludes from (37) and (41) that

Υn ≥ 2μ

(1 – α)
(n + 1)1–α ≥ 2μ

(1 – α)
n1–α , (42)

which implies that Algorithm 5.1 has the O( 1
n1–α ) convergence rate. In fact, for any

bounded subset D ⊂ C, put γ = sup{‖v‖ | v ∈ D}, then from (36) and (42), we obtain

〈
f –1(v), wn – v

〉

≤ (1 – α){(‖u0‖ + γ )2 + μ2(σ1 + σ2) + 2μ(σ3 + σ4γ + μσ5)}
2μn1–α

, ∀v ∈ D. (43)

The conclusion can be similarly proved for {λn}∞n=1 = { 1
n }∞n=1. �
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6 Numerical experiments
In this section, in order to show the practicability and effectiveness of Algorithm 4.1
(ACPM), we present two examples in the setting of finite dimensional Hilbert spaces. The
codes were written in Matlab 2009a and run on personal computer.

In the following two examples, we denote by {un}∞n=0 and {ξn}∞n=0 the two sequences gen-
erated by Algorithm 4.1. Take L, η, α, μ, τ , and τ̃ as in Sect. 4 and εn := (1 – τ̃ )n+1 (n ≥ 0).
Since we do not know the exact solution ξ ∗ of IVI(C, f ), we use En = ‖ξn+1–ξn‖

‖ξn‖ to measure
the error of the nth step iteration.

It is worth noting that for the following two examples, condition (6) is not satisfied, so
the method proposed by Luo et al. [34] could not be used. However, Algorithm 4.1 can be
implemented easily.

Example 6.1 Let f : R1 →R
1 be defined by

f (x) = 2x + sin x, ∀x ∈R
1,

and let C = [1, 10] ⊂R
1. Obviously, f is 3-Lipschitz continuous and 1-strongly monotone.

Hence, L = 3 and η = 1. Choose α = μ = 1
9 , u0 = 5, ξ (0)

0 = 100.
The numerical results generated by implementing Algorithm 4.1 are provided in Fig. 1,

from which we observe that

Figure 1 (a)mn , (b) ξn , (c) En
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Figure 2 (a)mn , (b) ξn , (c) En

(a) mn is 1 when n < 33 and becomes 0 when n ≥ 33. Hence the calculation to find
suitable mn is not needed when n ≥ 33. This is a feature of our algorithms, which is
different with other line search techniques.

(b) ξn deceases with n and equals 3.3541803 when n ≥ 69.
(c) Except the first steps, the error En decreases linearly.

Example 6.2 Let f : R2 →R
2 be defined by

f (x, y) = (2x + 2y + sin x, –2x + 2y + sin y)�, ∀(x, y)� ∈R
2,

and let C = [1, 10] × [1, 10] ⊂ R
2. It is easy to directly verify that f is 3

√
2-Lipschitz con-

tinuous and 1-strongly monotone. So we have L = 3
√

2 and η = 1. Select α = μ = 1
18 ,

u0 = (3, 4)�, and ξ
(0)
0 = (20, 20)�.

From Fig. 2, we observe that: (a) mn is 1 when n < 222 and mn becomes 0 when
n ≥ 222; (b) the vectors of ξn do not decease as Example 6.1, and ξn equals [0.07546639,
0.38683623]T when n ≥ 290; (c) except the first steps, the decrease of error En is piecewise
linear.

7 Concluding remarks
In this paper, we give an existence-uniqueness theorem for the inverse variational inequal-
ities, whose conditions are weaker than those of Luo et al. [34]. Based on the existence-
uniqueness theorem, we introduce an alternating contraction projection method and its
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relaxed version and show their strong convergence. The convergence rates of the alternat-
ing contraction projection method and its relaxed version are both presented. Comparing
with the alternating contraction projection method, the convergence conditions of the al-
ternating contraction relaxation projection method are stronger, but the alternating con-
traction relaxation projection method is indeed easy to implement when the projection
operator PC is difficult to calculate.
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