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Abstract
In this paper, we are concerned with the split equality problem (SEP) in Hilbert spaces.
By converting it to a coupled fixed-point equation, we propose a new algorithm for
solving the SEP. Whenever the convex sets involved are level sets of given convex
functionals, we propose two new relaxed alternating algorithms for the SEP. The first
relaxed algorithm is shown to be weakly convergent and the second strongly
convergent. A new idea is introduced in order to prove strong convergence of the
second relaxed algorithm, which gives an affirmative answer to Moudafi’s question.
Finally, preliminary numerical results show the efficiency of the proposed algorithms.
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1 Introduction
The split feasibility problem (SFP) was first introduced by Censor and Elfving [5]. It models
various inverse problems arising from phase retrievals and medical image reconstruction
[3]. More specifically, the SFP requires to find a point x ∈ H1 satisfying the property

x ∈ C and Ax ∈ Q, (1.1)

where C and Q are nonempty, closed and convex subsets of real Hilbert spaces H1 and H2,
respectively, and A : H1 → H2 is a bounded linear operator.

Various iterative methods have been constructed to solve the SFP (1.1); see [3–5, 16,
19, 20, 22–25, 28]. One of the well-known methods appearing in the literature for solving
the SFP is Byrne’s CQ algorithm [3, 4], which generates a sequence {xn} by the recursive
procedure

xn+1 = PC
(
xn – γ A∗(I – PQ)Axn

)
, (1.2)

where γ ∈ (0, 2
‖A‖2 ), PC and PQ are projections onto C and Q, respectively, I denotes the

identity operator, and A∗ denotes the adjoint of A. The SFP can be also solved by a different
method [17, 27], namely

xn+1 = xn – γ
[
(I – PC)xn + A∗(I – PQ)Axn

]
, (1.3)
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where γ is a properly chosen parameter. In Hilbert spaces, both (1.2) and (1.3) converge
weakly to a solution of the SFP whenever such a solution exists.

Recently, Moudafi [11] introduced the split equality problem (SEP):

Find x ∈ C, y ∈ Q such that Ax = By, (1.4)

where H1, H2, H3 are real Hilbert spaces, C ⊆ H1, Q ⊆ H2 are two nonempty, closed and
convex subsets, and A : H1 → H3, B : H2 → H3 are two bounded linear operators. It is
clear that the SEP is more general than the SFP. As a matter of fact, if B = I and H3 = H2,
then the SEP (1.4) reduces to the SFP (1.1). Algorithms for solving the SEP have received
great attention; see, for instance, [6, 7, 10–12, 14, 18]. Among these works, Moudafi [11]
introduced the alternating CQ-algorithm (ACQA), namely

⎧
⎨

⎩
xn+1 = PC(xn – γnA∗(Axn – Byn)),

yn+1 = PQ(yn + γnB∗(Axn+1 – Byn)).
(1.5)

It is shown that the sequence {(xn, yn)} produced by ACQA converges weakly to a solution
of (1.4) provided that the solution set S = {(x, y) ∈ C ×Q | Ax = By} is nonempty and {γn} is
a positive nondecreasing sequence such that γn ∈ (ε, min( 1

‖A‖2 , 1
‖B‖2 )–ε) for a small enough

ε > 0.
However, the ACQA might be hard to implement whenever PC or PQ fails to have a

closed-form expression. A typical example of such a situation is the level set of convex
functions. Indeed, Moudafi [10] considered the case when C and Q are level sets:

C =
{

x ∈ H1 | c(x) ≤ 0
}

(1.6)

and

Q =
{

y ∈ H2 | q(y) ≤ 0
}

, (1.7)

where c : H1 → R and q : H2 → R are two convex and subdifferentiable functions on H1

and H2, respectively. Here the subdifferential operators ∂c and ∂q of c and q are assumed
to be bounded, i.e., bounded on bounded sets. In this case, it is known that the associated
projections are very hard to calculate. To overcome this difficulty, Moudafi [10] presented
the relaxed alternating CQ-algorithm (RACQA):

⎧
⎨

⎩
xn+1 = PCn (xn – γ A∗(Axn – Byn)),

yn+1 = PQn (yn + γ B∗(Axn+1 – Byn)).
(1.8)

where γ ∈ (0, min( 1
‖A‖2 , 1

‖B‖2 )), {Cn} and {Qn} are two sequences of closed convex sets de-
fined by

Cn =
{

x ∈ H1 | c(xn) + 〈ξn, x – xn〉 ≤ 0
}

, ξn ∈ ∂c(xn), (1.9)

and

Qn =
{

y ∈ H2 | q(yn) + 〈ηn, y – yn〉 ≤ 0
}

, ηn ∈ ∂q(yn). (1.10)
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Since Cn and Qn are clearly half-spaces, the associated projections thus have closed form
expressions. This indicates that the implementation of RACQA is very easy. Under suitable
conditions, Moudafi [10] proved that the sequence {(xn, yn)} generated by the RACQA
converges weakly to a solution of (1.4). Meanwhile, he raised the following open question
in [10].

Question 1.1 Is there any strong convergence theorem of an alternating algorithm for the
SEP (1.4) in real Hilbert spaces?

Motivated by the works mentioned above, we continue to study the SEP. We will treat the
SEP in a different way. Indeed, we will prove that the SEP amounts to solving the coupled
fixed point equation:

⎧
⎨

⎩
x = x – τ [(x – PCx) + A∗(Ax – By)],

y = y – τ [(y – PQy) – B∗(Ax – By)],
(1.11)

where τ is a positive real number. This equation enables us to propose a new algorithm
for solving the SEP. We also consider the case when the convex sets involved are level sets
of given convex functionals. Inspired by (1.11) and the relaxed projection algorithm, we
propose two new relaxed alternating algorithms for the SEP governed by level sets, which
present an affirmative answer to Moudafi’s question. Finally, we give numerical results for
the split equality problem to demonstrate the feasibility and efficiency of the proposed
algorithms.

2 Preliminaries
Throughout this paper, we always assume that H is a real Hilbert space with the inner
product 〈·, ·〉 and norm ‖ · ‖. We denote by I the identity operator on H , and by Fix(T) the
set of the fixed points of an operator T . The notation → stands for strong convergence
and ⇀ stands for weak convergence.

Definition 2.1 ([2, 4]) Let T : H → H be an operator. Then T is
(1) nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ H ;

(2) firmly nonexpansive if

‖Tx – Ty‖2 ≤ ‖x – y‖2 –
∥∥(I – T)x – (I – T)y

∥∥2, ∀x, y ∈ H .

Let C be a nonempty, closed and convex subset of H . For any x ∈ H , the projection onto
C is defined as

PCx = argmin
{‖y – x‖ | y ∈ C

}
.

The projection PC has the following well-known properties.

Lemma 2.2 ([2, 15]) For all x, y ∈ H ,
(1) 〈x – PCx, z – PCx〉 ≤ 0, ∀z ∈ C;
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(2) PC is nonexpansive;
(3) PC is firmly nonexpansive;
(4) 〈PCx – PCy, x – y〉 ≥ ‖PCx – PCy‖2.

Definition 2.3 Let T : H → H be an operator with Fix(T) �= ∅. Then I – T is said to be
demiclosed at zero, if, for any {xn} in H , the following implication holds:

xn ⇀ x and (I – T)xn → 0 ⇒ x ∈ Fix(T).

It is well known that if T is a nonexpansive operator, then I – T is demiclosed at zero.
Since the projection PC is nonexpansive, then I – PC is demiclosed at zero.

Definition 2.4 Let λ ∈ (0, 1) and f : H → (–∞, +∞] be a proper function.
(1) f is convex if

f
(
λx + (1 – λ)y

) ≤ λf (x) + (1 – λ)f (y), ∀x, y ∈ H .

(2) A vector u ∈ H is a subgradient of f at a point x if

f (y) ≥ f (x) + 〈u, y – x〉, ∀y ∈ H .

(3) The set of all subgradients of f at x, denoted by ∂f (x), is called the subdifferential
of f .

To prove our main results, we need the following lemmas.

Lemma 2.5 For all x, y ∈ H , we have

‖x + y‖2 ≤ ‖y‖2 + 2〈x, x + y〉.

Lemma 2.6 ([21]) Let {an} be a sequence of nonnegative real numbers such that

an+1 ≤ (1 – γn)an + γnδn, n ≥ 0,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that
(1)

∑∞
n=0 γn = ∞;

(2) lim supn→∞ δn ≤ 0 or
∑∞

n=0 |δnγn| < ∞.
Then, limn→∞ an = 0.

3 A new alternating CQ-algorithm
In what follows, we always assume that the solution set of the SEP is nonempty, i.e.,
S = {(x, y) ∈ C × Q | Ax = By} �= ∅. In order to solve problem (1.4), we need the following
lemma, which has as a key role in later developments.

Lemma 3.1 An element (x, y) ∈ H1 × H2 solves (1.4) if and only if it solves the fixed point
equation (1.11).
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Proof If (x, y) solves (1.4), then x = PCx, y = PQy and Ax = By. It is obvious that the fixed
point equation (1.11) holds.

To see the converse, let (x, y) be a solution of equation (1.11). Then,

⎧
⎨

⎩
(x – PCx) + A∗(Ax – By) = 0,

(y – PQy) – B∗(Ax – By) = 0.
(3.1)

Choosing any (x̃, ỹ) ∈ S, we get

0 =
〈
(x – PCx) + A∗(Ax – By), x – x̃

〉

= 〈x – PCx, x – x̃〉 + 〈Ax – By, Ax – Ax̃〉,

and

0 =
〈
(y – PQy) – B∗(Ax – By), y – ỹ

〉

= 〈y – PQy, y – ỹ〉 – 〈Ax – By, By – Bỹ〉.

Adding the above two equalities, we have

0 = 〈x – PCx, x – x̃〉 + 〈y – PQy, y – ỹ〉 + ‖Ax – By‖2

= 〈x – PCx, x – PCx〉 + 〈x – PCx, PCx – x̃〉 + 〈y – PQy, y – PQy〉
+ 〈y – PQy, PQy – ỹ〉 + ‖Ax – By‖2

≥ ‖x – PCx‖2 + ‖y – PQy‖2 + ‖Ax – By‖2.

Thus, x = PCx, y = PQy and Ax = By. That is, (x, y) solves (1.4), and the proof is complete.
�

Applying Lemma 3.1, we introduce a new alternating CQ-algorithm for the SEP (1.4).

Algorithm 3.2 Let (x0, y0) ∈ H1 × H2 be arbitrary. Given (xn, yn), construct (xn+1, yn+1) via
the formula

⎧
⎨

⎩
xn+1 = xn – τ [(xn – PCxn) + A∗(Axn – Byn)],

yn+1 = yn – τ [(yn – PQyn) – B∗(Axn+1 – Byn)],
(3.2)

where 0 < τ < (1 + c)–1 with c = max(‖A‖2,‖B‖2).

Theorem 3.3 Let {(xn, yn)} be the sequence generated by Algorithm 3.2. Then {(xn, yn)} con-
verges weakly to a solution of the SEP (1.4).

Proof Let (x∗, y∗) ∈ S. Then x∗ ∈ C, y∗ ∈ Q and Ax∗ = By∗. In view of (3.2), Lemma 2.2 and
Young’s inequality, we conclude that

∥
∥xn+1 – x∗∥∥2 =

∥
∥xn – x∗∥∥2 – 2τ

〈
(xn – PCxn) + A∗(Axn – Byn), xn – x∗〉

+ τ 2∥∥(xn – PCxn) + A∗(Axn – Byn)
∥∥2
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≤ ∥∥xn – x∗∥∥2 – 2τ
〈
xn – PCxn, xn – x∗〉 – 2τ

〈
Axn – Byn, Axn – Ax∗〉

+ τ 2
((

1 + ‖A‖2)‖xn – PCxn‖2 +
(

1 +
1

‖A‖2

)∥
∥A∗(Axn – Byn)

∥
∥2

)

≤ ∥∥xn – x∗∥∥2 – 2τ‖xn – PCxn‖2 – 2τ
〈
Axn – Byn, Axn – Ax∗〉

+ τ 2(1 + ‖A‖2)(‖xn – PCxn‖2 + ‖Axn – Byn‖2).

Similarly, we obtain

∥
∥yn+1 – y∗∥∥2 =

∥
∥yn – y∗∥∥2 – 2τ

〈
(yn – PQyn) – B∗(Axn+1 – Byn), yn – y∗〉

+ τ 2∥∥(yn – PQyn) – B∗(Axn+1 – Byn)
∥
∥2

≤ ∥
∥yn – y∗∥∥2 – 2τ

〈
yn – PQyn, yn – y∗〉 + 2τ

〈
Axn+1 – Byn, Byn – By∗〉

+ τ 2
(

(
1 + ‖B‖2)‖yn – PQyn‖2 +

(
1 +

1
‖B‖2

)∥∥B∗(Axn+1 – Byn)
∥∥2

)

≤ ∥
∥yn – y∗∥∥2 – 2τ‖yn – PQyn‖2 + 2τ

〈
Axn+1 – Byn, Byn – By∗〉

+ τ 2(1 + ‖B‖2)(‖yn – PQyn‖2 + ‖Axn+1 – Byn‖2).

On the other hand, we have

2
〈
Axn – Byn, Axn – Ax∗〉

= ‖Axn – Byn‖2 +
∥∥Axn – Ax∗∥∥2 –

∥∥Byn – Ax∗∥∥2

= ‖Axn – Byn‖2 +
∥∥Axn – Ax∗∥∥2 –

∥∥Byn – By∗∥∥2

and

2
〈
Axn+1 – Byn, Byn – By∗〉

= –‖Axn+1 – Byn‖2 –
∥∥Byn – By∗∥∥2 +

∥∥Axn+1 – By∗∥∥2

= –‖Axn+1 – Byn‖2 –
∥
∥Byn – By∗∥∥2 +

∥
∥Axn+1 – Ax∗∥∥2.

Altogether, we have

∥
∥xn+1 – x∗∥∥2 ≤ ∥

∥xn – x∗∥∥2 – τ
(
2 –

(
1 + ‖A‖2)τ

)‖xn – PCxn‖2 – τ
∥
∥Axn – Ax∗∥∥2

– τ
(
1 –

(
1 + ‖A‖2)τ

)‖Axn – Byn‖2 + τ
∥
∥Byn – By∗∥∥2

≤ ∥
∥xn – x∗∥∥2 – τ

(
2 – (1 + c)τ

)‖xn – PCxn‖2 – τ
∥
∥Axn – Ax∗∥∥2

– τ
(
1 – (1 + c)τ

)‖Axn – Byn‖2 + τ
∥
∥Byn – By∗∥∥2

and

∥
∥yn+1 – y∗∥∥2 ≤ ∥

∥yn – y∗∥∥2 – τ
(
2 –

(
1 + ‖B‖2)τ

)‖yn – PQyn‖2 + τ
∥
∥Axn+1 – Ax∗∥∥2

– τ
(
1 –

(
1 + ‖B‖2)τ

)‖Axn+1 – Byn‖2 – τ
∥∥Byn – By∗∥∥2
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≤ ∥∥yn – y∗∥∥2 – τ
(
2 – (1 + c)τ

)‖yn – PQyn‖2 + τ
∥∥Axn+1 – Ax∗∥∥2

– τ
(
1 – (1 + c)τ

)‖Axn+1 – Byn‖2 – τ
∥∥Byn – By∗∥∥2.

Adding the two last inequalities, we obtain

∥∥xn+1 – x∗∥∥2 +
∥∥yn+1 – y∗∥∥2

≤ ∥∥xn – x∗∥∥2 +
∥∥yn – y∗∥∥2 – τ

∥∥Axn – Ax∗∥∥2 + τ
∥∥Axn+1 – Ax∗∥∥2

– τ
(
2 – (1 + c)τ

)(‖xn – PCxn‖2 + ‖yn – PQyn‖2)

– τ
(
1 – (1 + c)τ

)(‖Axn – Byn‖2 + ‖Axn+1 – Byn‖2). (3.3)

Let Γn(x∗, y∗) = ‖xn – x∗‖2 + ‖yn – y∗‖2 – τ‖Axn – Ax∗‖2. Then τ‖Axn – Ax∗‖2 ≤
τ‖A‖2‖xn – x∗‖2, which implies

Γn
(
x∗, y∗) ≥ (

1 – τ‖A‖2)∥∥xn – x∗∥∥2 +
∥∥yn – y∗∥∥2 ≥ 0. (3.4)

In view of (3.3), we obtain the following inequality:

Γn+1
(
x∗, y∗) ≤ Γn

(
x∗, y∗) – τ

(
2 – (1 + c)τ

)(‖xn – PCxn‖2 + ‖yn – PQyn‖2)

– τ
(
1 – (1 + c)τ

)(‖Axn – Byn‖2 + ‖Axn+1 – Byn‖2). (3.5)

This, together with (3.4), implies that the sequence {Γn(x∗, y∗)} is bounded and converges
to some finite limit γ (x∗, y∗). By passing to the limit in (3.5) and by taking into account the
assumption on τ , we finally obtain

lim
n→+∞‖xn – PCxn‖ = lim

n→∞‖yn – PQyn‖ = 0 (3.6)

and

lim
n→∞‖Axn – Byn‖ = lim

n→∞‖Axn+1 – Byn‖ = 0. (3.7)

We next prove that any weak cluster point of the sequence {(xn, yn)} is a solution of the
SEP (1.4). Since {Γn(x∗, y∗)} is bounded, in view of (3.4), the sequences {xn} and {yn} are also
bounded. Let x̄ and ȳ be weak cluster points of the sequences {xn} and {yn}, respectively.
Without loss of generality, we assume that xn ⇀ x̄ and yn ⇀ ȳ. Since I – PC and I – PQ are
demiclosed at zero, from (3.6), we obtain x̄ = PCx̄ and ȳ = PCȳ, i.e., x̄ ∈ C and ȳ ∈ Q. On
the other hand, since xn ⇀ x̄ and yn ⇀ ȳ, we deduce that Axn – Byn ⇀ Ax̄ – Bȳ. The weak
lower semicontinuity of the squared norm implies

‖Ax̄ – Bȳ‖2 ≤ lim inf
n→∞ ‖Axn – Byn‖2 = 0,

hence (x̄, ȳ) ∈ S.
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We finally show the weak convergence of the sequence {(xn, yn)}. Assume on the contrary
that (x̂, ŷ) is another weak cluster point of {(xn, yn)}. By the definition of Γn, we have

Γn(x̄, ȳ) = Γn(x̂, ŷ) + ‖x̄ – x̂‖2 + ‖ȳ – ŷ‖2 – τ‖Ax̄ – Ax̂‖2

+ 2〈xn – x̂, x̂ – x̄〉 + 2〈yn – ŷ, ŷ – ȳ〉 – 2τ 〈Axn – Ax̂, Ax̂ – Ax̄〉.

By passing to the limit in the above, we obtain

γ (x̄, ȳ) = γ (x̂, ŷ) + ‖x̄ – x̂‖2 + ‖ȳ – ŷ‖2 – τ‖Ax̄ – Ax̂‖2,

γ (x̂, ŷ) = γ (x̄, ȳ) + ‖x̄ – x̂‖2 + ‖ȳ – ŷ‖2 – τ‖Ax̄ – Ax̂‖2.

By adding the last two equalities, we obtain

(
1 – τ‖A‖2)‖x̄ – x̂‖2 + ‖ȳ – ŷ‖2 ≤ 0,

which clearly yields x̄ = x̂ and ȳ = ŷ. This in particular implies that the weak cluster point
of the sequence {(xn, yn)} is unique. Consequently, the whole sequence {(xn, yn)} converges
weakly to a solution of problem (1.4). �

4 A relaxed alternating CQ-algorithm
When C and Q are level sets, the projections in Algorithm 3.2 might be hard to be im-
plemented (see [1, 8, 9, 13, 25, 26]). To overcome this difficulty, we propose a relaxed al-
ternating CQ-algorithm, which is inspired by methods (1.8) and (3.2). In what follows, we
will treat the SEP (1.4) under the following assumptions:

(A1) The sets C and Q are given by (1.6) and (1.7), respectively.
(A2) For any x ∈ H1 and y ∈ H2, at least one subgradient ξ ∈ ∂c(x) and η ∈ ∂q(y) can be

calculated.
We now present a new relaxed alternative CQ algorithm for solving the SEP (1.4).

Algorithm 4.1 Let (x0, y0) be arbitrary. Given (xn, yn), construct (xn+1, yn+1) via the for-
mula

⎧
⎨

⎩
xn+1 = xn – τ [(xn – PCn xn) + A∗(Axn – Byn)],

yn+1 = yn – τ [(yn – PQn yn) – B∗(Axn+1 – Byn)],
(4.1)

where 0 < τ < (1 + c)–1 with c = max(‖A‖2,‖B‖2), and Cn and Qn are given as (1.9) and
(1.10), respectively.

Remark 4.2 By the definition of the subgradient, it is clear that C ⊆ Cn and Q ⊆ Qn for all
n ≥ 0. Since Cn and Qn are both half-spaces, the projections onto Cn and Qn can be easily
calculated. Thus Algorithm 4.1 is easily implementable.

Theorem 4.3 Let {(xn, yn)} be the sequence generated by Algorithm 4.1. Then {(xn, yn)} con-
verges weakly to a solution of the SEP (1.4).
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Proof Taking (x∗, y∗) ∈ S, i.e., x∗ ∈ C (and thus x∗ ∈ Cn), y∗ ∈ Q (and thus y∗ ∈ Qn), we
have Ax∗ = By∗. Let Γn(x∗, y∗) = ‖xn – x∗‖2 + ‖yn – y∗‖2 – τ‖Axn – Ax∗‖2. Similarly as in
Theorem 3.3, we obtain the following inequality:

Γn+1
(
x∗, y∗) ≤ Γn

(
x∗, y∗) – τ

(
2 – (1 + c)τ

)(‖xn – PCn xn‖2 + ‖yn – PQn yn‖2)

– τ
(
1 – (1 + c)τ

)(‖Axn – Byn‖2 + ‖Axn+1 – Byn‖2). (4.2)

In addition, we have

Γn
(
x∗, y∗) ≥ (

1 – τ‖A‖2)∥∥xn – x∗∥∥2 +
∥
∥yn – y∗∥∥2 ≥ 0. (4.3)

It follows that the sequence {Γn(x∗, y∗)} is bounded and converges to some finite limit
γ (x∗, y∗), which yields

lim
n→∞‖xn – PCn xn‖ = lim

n→∞‖yn – PQn yn‖ = 0 (4.4)

and

lim
n→∞‖Axn – Byn‖ = lim

n→∞‖Axn+1 – Byn‖ = 0. (4.5)

From (4.1), we obtain

‖xn+1 – xn‖ =
∥∥τ

[
(xn – PCn xn) + A∗(Axn – Byn)

]∥∥

≤ τ
(‖xn – PCn xn‖ + ‖A‖‖Axn – Byn‖

) → 0

and

‖yn+1 – yn‖ =
∥
∥τ

[
(yn – PQn yn) – B∗(Axn+1 – Byn)

]∥∥

≤ τ
(‖yn – PQn yn‖ + ‖B‖‖Axn+1 – Byn‖

) → 0.

We next prove that any weak cluster point of the sequence {(xn, yn)} is a solution of the
SEP (1.4). Since {Γn(x∗, y∗)} is bounded, in view of (4.3), the sequences {xn} and {yn} are also
bounded. Let x̄ and ȳ be weak cluster points of the sequences {xn} and {yn}, respectively.
Without loss of generality, we assume that xn ⇀ x̄ and yn ⇀ ȳ. Since ∂c is bounded on
bounded sets, there is a constant δ1 > 0 such that ‖ξn‖ ≤ δ1 for all n ≥ 0. From (4.1), we
have

xn –
1
τ

(xn – xn+1) + A∗(Axn – Byn) = PCn xn ∈ Cn.

This implies that

c(xn) +
〈
ξn, –

1
τ

(xn – xn+1) + A∗(Axn – Byn)
〉
≤ 0.
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Thus

c(xn) ≤
〈
ξn,

1
τ

(xn – xn+1) – A∗(Axn – Byn)
〉

≤ δ1

τ
‖xn – xn+1‖ + δ1‖A‖‖Axn – Byn‖ → 0.

The weak lower semicontinuity of c leads to

c(x̄) ≤ lim inf
n→∞ c(xn) ≤ 0,

and therefore x̄ ∈ C. Likewise, since ∂q is bounded on bounded sets, there is a constant
δ2 > 0 such that ‖ηn‖ ≤ δ2 for all n ≥ 0. From (4.1), we have

yn –
1
τ

(yn – yn+1) – B∗(Axn+1 – Byn) = PQn yn ∈ Qn.

This implies that

q(yn) +
〈
ηn, –

1
τ

(yn – yn+1) – B∗(Axn+1 – Byn)
〉
≤ 0.

Hence

q(yn) ≤
〈
ηn,

1
τ

(yn – yn+1) + B∗(Axn+1 – Byn)
〉

≤ δ2

τ
‖yn – yn+1‖ + δ2‖B‖‖Axn+1 – Byn‖ → 0.

Again, the weak lower semicontinuity of q leads to

q(ȳ) ≤ lim inf
n→∞ q(yn) ≤ 0,

and therefore ȳ ∈ Q. Furthermore, the weak convergence of {Axn – Byn} to Ax̄ – Bȳ and the
weak lower semicontinuity of the squared norm imply

‖Ax̄ – Bȳ‖2 ≤ lim inf
n→∞ ‖Axn – Byn‖2 = 0.

Hence (x̄, ȳ) ∈ S.
The proof of the uniqueness of the weak cluster point is analogous to that of Theo-

rem 3.3. Therefore, the whole sequence {(xn, yn)} converges weakly to a solution of prob-
lem (1.4). This completes the proof. �

5 A strongly convergent algorithm
As we see from the previous section, the sequence generated by Algorithm 4.1 is only
weakly convergent. So, the aim of this section is to modify Algorithm 4.1 so that it gen-
erates a strongly convergent sequence. This provides an affirmative answer to the open
question raised by Moudafi [10].
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Algorithm 5.1 Let (u, v) ∈ H1 × H2 be fixed and start with an initial guess (x0, y0) ∈ H1 ×
H2. Given (xn, yn), construct (xn+1, yn+1) via the formula

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

un = xn – τ [(xn – PCn xn) + A∗(Axn – Byn)],

xn+1 = αnu + (1 – αn)un,

vn = yn – τ [(yn – PQn yn) – B∗(Axn+1 – Byn)],

yn+1 = αnv + (1 – αn)vn,

(5.1)

where {αn} is a sequence in [0, 1], 0 < τ < (1 + c)–1 with c = max(‖A‖2,‖B‖2), and Cn and
Qn are given as (1.9) and (1.10), respectively.

Theorem 5.2 Let {(xn, yn)} be the sequence generated by Algorithm 5.1. If {αn} satisfies the
following conditions:

lim
n→∞αn = 0 and

∞∑

n=1

αn = ∞,

then {(xn, yn)} converges strongly to a solution (x∗, y∗) of the SEP (1.4), where (x∗, y∗) =
PS(u, v).

Proof Since (x∗, y∗) = PS(u, v) ∈ S, we have x∗ ∈ C (and thus x∗ ∈ Cn), y∗ ∈ Q (and thus
y∗ ∈ Qn), Ax∗ = By∗. In what follows, we divide the proof into four steps.

Step 1. We prove that the sequences {xn} and {yn} are bounded. By the same argument
as in the proof of Theorem 3.3, we arrive at

∥
∥un – x∗∥∥2 +

∥
∥vn – y∗∥∥2

≤ ∥
∥xn – x∗∥∥2 +

∥
∥yn – y∗∥∥2 – τ

∥
∥Axn – Ax∗∥∥2 + τ

∥
∥Axn+1 – Ax∗∥∥2

– τ
(
2 – (1 + c)τ

)(‖xn – PCn xn‖2 + ‖yn – PQn yn‖2)

– τ
(
1 – (1 + c)τ

)(‖Axn – Byn‖2 + ‖Axn+1 – Byn‖2). (5.2)

In view of (5.1) and the convexity of the squared norm, we obtain

∥∥xn+1 – x∗∥∥2 +
∥∥yn+1 – y∗∥∥2

=
∥∥αn

(
u – x∗) + (1 – αn)

(
un – x∗)∥∥2 +

∥∥αn
(
v – y∗) + (1 – αn)

(
vn – y∗)∥∥2

≤ αn
∥∥u – x∗∥∥2 + (1 – αn)

∥∥un – x∗∥∥2 + αn
∥∥v – y∗∥∥2 + (1 – αn)

∥∥vn – y∗∥∥2

= αn
(∥∥u – x∗∥∥2 +

∥∥v – y∗∥∥2) + (1 – αn)
(∥∥un – x∗∥∥2 +

∥∥vn – y∗∥∥2).

This, along with (5.2), implies that

∥
∥xn+1 – x∗∥∥2 +

∥
∥yn+1 – y∗∥∥2

≤ αn
(∥∥u – x∗∥∥2 +

∥
∥v – y∗∥∥2) + (1 – αn)

[∥∥xn – x∗∥∥2 +
∥
∥yn – y∗∥∥2

– τ
∥∥Axn – Ax∗∥∥2 + τ

∥∥Axn+1 – Ax∗∥∥2
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– τ
(
2 – (1 + c)τ

)(‖xn – PCn xn‖2 + ‖yn – PQn yn‖2)

– τ
(
1 – (1 + c)τ

)(‖Axn – Byn‖2 + ‖Axn+1 – Byn‖2)]

≤ αn
(∥∥u – x∗∥∥2 +

∥∥v – y∗∥∥2) + τ
∥∥Axn+1 – Ax∗∥∥2

+ (1 – αn)
[∥∥xn – x∗∥∥2 +

∥∥yn – y∗∥∥2 – τ
∥∥Axn – Ax∗∥∥2

– τ
(
2 – (1 + c)τ

)(‖xn – PCn xn‖2 + ‖yn – PQn yn‖2)

– τ
(
1 – (1 + c)τ

)(‖Axn – Byn‖2 + ‖Axn+1 – Byn‖2)]. (5.3)

Now, by setting

Γn
(
x∗, y∗) =

∥
∥xn – x∗∥∥2 +

∥
∥yn – y∗∥∥2 – τ

∥
∥Axn – Ax∗∥∥2,

we have

Γn
(
x∗, y∗) ≥ (

1 – τ‖A‖2)∥∥xn – x∗∥∥2 +
∥∥yn – y∗∥∥2 ≥ 0. (5.4)

In view of (5.3), we conclude that

Γn+1
(
x∗, y∗) ≤ (1 – αn)Γn

(
x∗, y∗) + αn

(∥∥u – x∗∥∥2 +
∥
∥v – y∗∥∥2)

– (1 – αn)
[
τ
(
2 – (1 + c)τ

)(‖xn – PCn xn‖2 + ‖yn – PQn yn‖2)

+ τ
(
1 – (1 + c)τ

)(‖Axn – Byn‖2 + ‖Axn+1 – Byn‖2)].

This implies

Γn+1
(
x∗, y∗) ≤ (1 – αn)Γn

(
x∗, y∗) + αn

(∥∥u – x∗∥∥2 +
∥∥v – y∗∥∥2)

≤ max
{
Γn

(
x∗, y∗),

∥∥u – x∗∥∥2 +
∥∥v – y∗∥∥2}.

By induction, we obtain

Γn+1
(
x∗, y∗) ≤ max

{
Γ0

(
x∗, y∗),

∥
∥u – x∗∥∥2 +

∥
∥v – y∗∥∥2}

for all n ≥ 0. This implies that the sequence {Γn(x∗, y∗)} is bounded. Hence, in view of (5.4),
the sequences {xn} and {yn} are bounded, too.

Step 2. We show that the following inequality holds:

Γn+1
(
x∗, y∗) ≤ (1 – αn)Γn

(
x∗, y∗) + αnδn, (5.5)

where

δn = 2
(〈

u – x∗, xn+1 – x∗〉 +
〈
v – y∗, yn+1 – y∗〉)

–
(1 – αn)

αn

[
τ
(
2 – (1 + c)τ

)(‖xn – PCn xn‖2 + ‖yn – PQn yn‖2)

+ τ
(
1 – (1 + c)τ

)(‖Axn – Byn‖2 + ‖Axn+1 – Byn‖2)].
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Indeed, by Lemma 2.5, we have

∥
∥xn+1 – x∗∥∥2 +

∥
∥yn+1 – y∗∥∥2

=
∥
∥αn

(
u – x∗) + (1 – αn)

(
un – x∗)∥∥2 +

∥
∥αn

(
v – y∗) + (1 – αn)

(
vn – y∗)∥∥2

≤ (1 – αn)
∥
∥un – x∗∥∥2 + 2αn

〈
u – x∗, xn+1 – x∗〉

+ (1 – αn)
∥∥vn – y∗∥∥2 + 2αn

〈
v – y∗, yn+1 – y∗〉

= (1 – αn)
(∥∥un – x∗∥∥2 +

∥∥vn – y∗∥∥2)

+ 2αn
(〈

u – x∗, xn+1 – x∗〉 +
〈
v – y∗, yn+1 – y∗〉).

Again from (5.2), we obtain

∥∥xn+1 – x∗∥∥2 +
∥∥yn+1 – y∗∥∥2

≤ (1 – αn)
[∥∥xn – x∗∥∥2 +

∥∥yn – y∗∥∥2 – τ
∥∥Axn – Ax∗∥∥2 + τ

∥∥Axn+1 – By∗∥∥2

– τ
(
2 – (1 + c)τ

)(‖xn – PCn xn‖2 + ‖yn – PQn yn‖2)

– τ
(
1 – (1 + c)τ

)(‖Axn – Byn‖2 + ‖Axn+1 – Byn‖2)]

+ 2αn
(〈

u – x∗, xn+1 – x∗〉 +
〈
v – y∗, yn+1 – y∗〉)

≤ (1 – αn)
(∥∥xn – x∗∥∥2 +

∥
∥yn – y∗∥∥2 – τ

∥
∥Axn – Ax∗∥∥2) + τ

∥
∥Axn+1 – By∗∥∥2

– (1 – αn)
[
τ
(
2 – (1 + c)τ

)(‖xn – PCn xn‖2 + ‖yn – PQn yn‖2)

+ τ
(
1 – (1 + c)τ

)(‖Axn – Byn‖2 + ‖Axn+1 – Byn‖2)]

+ 2αn
(〈

u – x∗, xn+1 – x∗〉 +
〈
v – y∗, yn+1 – y∗〉).

This implies

Γn+1
(
x∗, y∗) ≤ (1 – αn)Γn

(
x∗, y∗)

– (1 – αn)
[
τ
(
2 – (1 + c)τ

)(‖xn – PCn xn‖2 + ‖yn – PQn yn‖2)

+ τ
(
1 – (1 + c)τ

)(‖Axn – Byn‖2 + ‖Axn+1 – Byn‖2)]

+ 2αn
(〈

u – x∗, xn+1 – x∗〉 +
〈
v – y∗, yn+1 – y∗〉)

= (1 – αn)Γn
(
x∗, y∗) + αn

{
2
(〈

u – x∗, xn+1 – x∗〉 +
〈
v – y∗, yn+1 – y∗〉)

–
(1 – αn)

αn

[
τ
(
2 – (1 + c)τ

)(‖xn – PCn xn‖2 + ‖yn – PQn yn‖2)

+ τ
(
1 – (1 + c)τ

)(‖Axn – Byn‖2 + ‖Axn+1 – Byn‖2)]
}

.

Hence, the desired inequality follows at once.
Step 3. We show that lim supn→∞ δn is finite. Since {xn} and {yn} are bounded, we have

δn ≤ 2
(〈

u – x∗, xn+1 – x∗〉 +
〈
v – y∗, yn+1 – y∗〉)

≤ 2
(∥∥u – x∗∥∥∥∥xn+1 – x∗∥∥ +

∥∥v – y∗∥∥∥∥yn+1 – y∗∥∥)
< ∞.
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This implies that lim supn→∞ δn < ∞. We now show lim supn→∞ δn ≥ –1 by contradiction.
If we assume on the contrary that lim supn→∞ δn < –1, then there exists n0 such that δn ≤
–1 for all n ≥ n0. It then follows from (5.5) that

Γn+1
(
x∗, y∗) ≤ (1 – αn)Γn

(
x∗, y∗) + αnδn

≤ (1 – αn)Γn
(
x∗, y∗) – αn

= Γn
(
x∗, y∗) – αn

(
Γn

(
x∗, y∗) + 1

)

≤ Γn
(
x∗, y∗) – αn

for all n ≥ n0. By induction, we have

Γn+1
(
x∗, y∗) ≤ Γn0

(
x∗, y∗) –

n∑

i=n0

αi.

Since
∑∞

i=n0
αi = ∞, there exists N > n0 such that

∑N
i=n0

αi > Γn0 (x∗, y∗). Therefore, we
have

ΓN+1
(
x∗, y∗) ≤ Γn0

(
x∗, y∗) –

N∑

i=n0

αi < 0,

which clearly contradicts the fact that Γn(x∗, y∗) is a nonnegative real sequence. Thus,
lim supn→∞ δn ≥ –1 and it is finite.

Step 4. We show that lim supn→∞ δn ≤ 0 and {(xn, yn)} converges strongly to (x∗, y∗). Since
lim supn→∞ δn is finite, we can take a subsequence {nk} such that

lim sup
n→∞

δn = lim
k→∞

δnk

= lim
k→∞

{
2
(〈

u – x∗, xnk +1 – x∗〉 +
〈
v – y∗, ynk +1 – y∗〉)

–
(1 – αnk )

αnk

[
τ
(
2 – (1 + c)τ

)(‖xnk – PCnk
xnk ‖2 + ‖ynk – PQnk

ynk ‖2)

+ τ
(
1 – (1 + c)τ

)(‖Axnk – Bynk ‖2 + ‖Axnk +1 – Bynk ‖2)]
}

. (5.6)

Since 〈u – x∗, xn+1 – x∗〉 and 〈v – y∗, yn+1 – y∗〉 are bounded, without loss of generality, we
may assume the existence of the limits

lim
k→∞

〈
u – x∗, xnk +1 – x∗〉 and lim

k→∞
〈
v – y∗, ynk +1 – y∗〉.

Hence, from (5.6), the following limit also exists:

lim
k→∞

(1 – αnk )
αnk

[
τ
(
2 – (1 + c)τ

)(‖xnk – PCnk
xnk ‖2 + ‖ynk – PQnk

ynk ‖2)

+ τ
(
1 – (1 + c)τ

)(‖Axnk – Bynk ‖2 + ‖Axnk +1 – Bynk ‖2)].
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Since limk→∞ αnk = 0, we get limk→∞
1–αnk
αnk

= ∞. This implies that

lim
k→∞

[
τ
(
2 – (1 + c)τ

)(‖xnk – PCnk
xnk ‖2 + ‖ynk – PQnk

ynk ‖2)

+ τ
(
1 – (1 + c)τ

)(‖Axnk – Bynk ‖2 + ‖Axnk +1 – Bynk ‖2)] = 0.

So, by taking into account the assumption on τ , we have

lim
k→∞

‖xnk – PCnk
xnk ‖ = lim

k→∞
‖ynk – PQnk

ynk ‖ = 0

and

lim
k→∞

‖Axnk – Bynk ‖ = lim
k→∞

‖Axnk +1 – Bynk ‖ = 0.

From (5.1), we deduce that

lim
k→∞

‖unk – xnk ‖ = lim
k→∞

τ
∥
∥(xnk – PCnk

xnk ) + A∗(Axnk – Bynk )
∥
∥

≤ τ lim
k→∞

(‖xnk – PCnk
xnk ‖ + ‖A‖‖Axnk – Bynk ‖

)
= 0

and

lim
k→∞

‖vnk – ynk ‖ = lim
k→∞

τ
∥∥(ynk – PQnk

ynk ) – B∗(Axnk +1 – Bynk )
∥∥

≤ τ lim
k→∞

(‖ynk – PQnk
ynk ‖ + ‖B‖‖Axnk +1 – Bynk ‖

)
= 0.

Similarly as in the proof of Theorem 4.3, we conclude that any weak cluster point of
{(xnk , ynk )} belongs to S.

Since the sequences {xn} and {yn} are bounded, one gets

lim
k→∞

‖xnk +1 – xnk ‖ = lim
k→∞

∥
∥αnk (u – xnk ) + (1 – αnk )(unk – xnk )

∥
∥

≤ lim
k→∞

(
αnk ‖u – xnk ‖ + ‖unk – xnk ‖

)
= 0

and

lim
k→∞

‖ynk +1 – ynk ‖ = lim
k→∞

∥
∥αnk (v – ynk ) + (1 – αnk )(vnk – ynk )

∥
∥

≤ lim
k→∞

(
αnk ‖v – ynk ‖ + ‖vnk – ynk ‖

)
= 0.

This implies that any weak cluster point of {(xnk +1, ynk +1)} also belongs to S. Without loss
of generality, we assume that {(xnk +1, ynk +1)} converges weakly to (x̂, ŷ) ∈ S. Now by (5.6),
Lemma 2.2 and the fact that (x∗, y∗) = PS(u, v), we obtain

lim sup
n→∞

δn ≤ lim
k→∞

2
(〈

u – x∗, xnk +1 – x∗〉 +
〈
v – y∗, ynk +1 – y∗〉)

= 2
(〈

u – x∗, x̂ – x∗〉 +
〈
v – y∗, ŷ – y∗〉) ≤ 0.
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Applying Lemma 2.6 to (5.5), we have limn→∞ Γn(x∗, y∗) = 0. Finally, by (5.4), we infer that

lim
n→∞

∥
∥xn – x∗∥∥ = 0 and lim

n→∞
∥
∥yn – y∗∥∥ = 0,

which ends the proof. �

6 Numerical results
In this section, we verify the feasibility and efficiency of our algorithms through an exam-
ple. The whole codes are written in Matlab R2012b on a personal computer with Inter(R)
Core(TM) i5-4590 CPU, 3.30 GHz and 4 GB RAM.

Example 6.1 Let H1 = H2 = H3 = R
3,

A =

⎡

⎢
⎣

√
5 0 0

0 5 0
0 0 1

⎤

⎥
⎦ , B =

⎡

⎢
⎣

1 0 0
0 1 0
0 0 1

⎤

⎥
⎦ ,

C = {x ∈ R
3 | x = (u, v, w)T , v2 + w2 – 1 ≤ 0}, and Q = {y ∈ R

3 | y = (u, v, w)T , u2 – v + 5 ≤ 0}.
Find x ∈ C, y ∈ Q such that Ax = By.

It is easy to verify that this problem has a unique solution (x̄, ȳ) ∈ R
3 × R

3, where x̄ =
(0, 1, 0)T , ȳ = (0, 5, 0)T . In the experiments, we take γ = 0.9 × min( 1

‖A‖2 , 1
‖B‖2 ) in RACQA

algorithm (1.8) and τ = 0.9 × (1 + c)–1 with c = max(‖A‖2,‖B‖2) in Algorithm 4.1. The
stopping criterion is ‖xk+1 –xk‖+‖yk+1 –yk‖ < 10–3 and ‖Axk –Byk‖ < 10–3. The numerical
results can be seen from Tables 1–3. It is worth noting that the initial point in Table 3 is
generated randomly. From Tables 1–3, we can see that the CPU time and iteration number
of Algorithm 4.1 are less than that of RACQA algorithm (1.8).

Table 1 Numerical results of Example 6.1

Initial point: x0 = (1, 1, 1)T , y0 = (0, 0, 0)T

Algorithm Time (s) No. Iterations Approximate solution (x∗ , y∗)
RACQA (1.8) 0.34021 7357 x∗ = (0.0130, 1.000, 0.0079)T

y∗ = (0.0291, 5.0008, 0.0079)T

Algorithm 4.1 0.26312 5847 x∗ = (0.0001, 0.9996, 0.1028)T

y∗ = (0.0002, 4.9990, 0.1030)T

Table 2 Numerical results of Example 6.1

Initial point: x0 = (5, 5, 5)T , y0 = (1, 1, 1)T

Algorithm Time (s) No. Iterations Approximate solution (x∗ , y∗)
RACQA (1.8) 0.32586 7010 x∗ = (0.0120, 0.9999, 0.0106)T

y∗ = (0.0268, 5.0007, 0.0106)T

Algorithm 4.1 0.27749 6250 x∗ = (0.0003, 0.9996, 0.1028)T

y∗ = (0.0006, 4.9990, 0.1030)T
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Table 3 Numerical results of Example 6.1

Initial point: x0 = (0.9528, 0.7041, 0.9539)T , y0 = (0.5982, 0.8407, 0.4428)T

Algorithm Time (s) No. Iterations Approximate solution (x∗ , y∗)
RACQA (1.8) 0.28871 6581 x∗ = (0.0107, 0.9999, 0.0130)T

y∗ = (0.0240, 5.0006, 0.0131)T

Algorithm 4.1 0.27543 6004 x∗ = (0.0002, 0.9996, 0.1028)T

y∗ = (0.0005, 4.9990, 0.1030)T
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