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Abstract
In this paper, we study the valuation of swing options on electricity markets with local
volume and refraction time constraints, under the setting that the dynamic of the
underlying spot price is a 2-state regime-switching mean-reverting process. We
derive the corresponding optimal multiple stopping problem, reduce it to a
sequence of optimal single stopping problems, and further find that those value
functions satisfy HJB variational inequalities subject to suitable conditions. Then after
a prior estimation for the value functions, the viscosity solutions approach is adopted
to get existence and uniqueness results in viscosity sense.
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1 Introduction
In real electricity markets, swing options provide the holder with rights to exercise repeat-
edly under certain constraints, such as limits on the local volume, the global volume, and
refraction time etc. However, those trading rules add complexity to the associated valu-
ation, which can be handled as stochastic optimal control problems. Besides the specifi-
cation of option contracts, the other one of fundamental settings of the whole valuation
procedure is the dynamic process characterizing the behavior of electricity prices, which
remain high for a period of time after a jump, according to the empirical researches like [1–
4] and [5]. Among various kinds of models, the regime-switching type is widely adopted.
Wahab et al. [6] investigate the valuation problem under a three-state regime-switching
model, where one regime is the Ornstein–Uhlenbeck type, and another two are Gaussian
processes with constant coefficients. Wahab et al. [7] deal with a n-state regime-switching
model where processes in all regime are geometric Brownian motion. Chiarella et al. [8]
handle the valuation problem under a regime-switching forward curve model, and Bauerle
et al. [9] choose a 2-state regime-switching model.

In all of [6–9], the lattice method is applied to price swing options, though with different
choices of underlying price models. The lattice method concentrates on how to find the
value function (a specific type of conditional expectation) by directly computing expecta-
tion iteratively with lattice. More specifically, in the light of stochastic control theory, the
dynamic programming principle is satisfied by the value function leads us to the Bellman
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equation. Then lattices in different form can be applied to dealing with the conditional
expectations arising in the corresponding Bellman’s equations. Different from the lattice
method, another approach to tackling this problem is to seek the PDE characterization
of the value function, which leads to the HJB variational inequalities. In this direction,
Dahlgren et al. in [10] and [11] derive the variational inequalities and solve them by the
finite difference method. In addition, basing on [12], Wilhelm and Winter [13] solve the
related variational inequalities by finite element method. Besides, according to [14] and
[15], the viscosity solutions approach is a powerful tool to deal with stochastic optimal
control problems, and it is well known that the value function is the unique viscosity solu-
tion to the HJB-type equation or variational inequality subject to certain conditions, and
that this approach can also help studying properties (e.g. convergence and stability) of nu-
merical schemes. For pricing swings, the viscosity solution approach has been used in [16]
and [17].

In this paper, the electricity price model we use is of a regime-switching mean-reverting
type with two states, where the mean-reverting characteristic is added to the model
adopted in [6], and this modification is motivated by empirical researches in [1] and [18],
which report that electricity spot price is equipped with the mean-reversion feature. As for
the swing option contract, we assume that there exist: (i) the local volume constraint, that
is, the holder can either exercise one volume of spot or none each time she uses one right,
and (ii) the refraction time constraint, which requires a fixed time break between two suc-
cessive exercises. Under those settings, we formulate the pricing of the swing option as an
optimal multiple stopping problem. Basing on the work of Carmona and Touzi [12], we
reduce this problem. After the reduction, continuity and boundedness of value functions
is obtained and then we try to characterize the value functions as the unique viscosity
solution of the associated HJB variational inequalities. First, existence results can be re-
ceived. In addition, we prove the comparison principle fitting this problem which ensure
the uniqueness of the solutions in viscosity sense.

The structure of this paper is as follows. Section 2 introduces the model for the un-
derlying electricity price and derives the variational inequalities that the value functions
formally satisfy. Section 3 treats the properties of the value functions. Section 4 charac-
terizes the value functions as viscosity solutions of the associated variational inequalities.
Section 5 gives the comparison principle and the uniqueness result.

2 Formulation of the problem
2.1 Mean-reverting regime-switching model and swing options
For a fixed maturity T , we work on a probability space (Ω ,F , {F (t)}t∈[0,T],Q) and a real
{F (t)}t∈[0,T]-adapted Brownian motion {B(t), 0 ≤ t ≤ T} in risk-neutral measure Q. Let
{α(t)}0≤t≤T be an independent time-homogeneous Markov chain with values in a finite
state space M := {1, 2}, and the related generator matrix P = (qij)2×2, satisfying qij ≥ 0 and
∑2

j=1 qij = 0 for each i, j ∈M and i �= j.
We model the electricity price by the stochastic process {S(t)}t∈[0,T], which is governed

by the following:

dS(t) = β
(
α(t)

)(
ξ
(
α(t)

)
– S(t)

)
dt + σ

(
α(t)

)
dBQ(t); S(0) = S0, α(0) = i; (1)

where S0 and i are initial data; β(i), ξ (i) and σ (i) for each i ∈M are constants representing
the speed of adjustment, the long-term mean level, and the volatility. Moreover, we notice
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that the usual Lipschitz and linear growth conditions are satisfied to ensure the existence
and uniqueness of the strong solution to the SDE(1).

On the settings of swings, we follow [12]. Consider a swing option with n ∈ N+ exercise
rights during the time period [0, T]. The strike price is K ∈ R+, thus the holder gets the
payoff φ(x) = (K – x)+. All of the above parameters are fixed. And there are two rules the
holder must obey:

1 Each time the holder use the right, she can exercise either one volume or none.
2 If one right is used at time t, the holder cannot use another right until after the time

t + δ, where δ > 0 is the refraction period.
We call the first item above the local volume constraint and the second the refraction time
constraint.

2.2 Variational inequalities of value functions
In this subsection, we start from introducing the value function of this problem. For sim-
plicity, we sometimes use fi(t, s) to stand for any function f (t, s, i) : [0, T] ×R+ ×M �→R.

Definition 1 Let (t, s, i) ∈ [0, T] × R+ × M. For fixed integer n ∈ N, we define the value
function

V (n)
i (t, s) := sup

�τ∈T (n)
t,T

E

[ n∑

k=1

e–r(τk –t)φ
(
S(τk)

)∣∣
∣St = s,αt = i

]

, (2)

where T (n)
t,T is the collection of �τ := (τ1, τ2, . . . , τn) having the following properties:

• t ≤ τ1 ≤ T a.s.,
• τi – τi–1 ≥ δ on {0 ≤ τi–1 ≤ T} a.s., ∀i = 1, 2, . . . , n,
• τi := T+ on {τi > T} a.s., ∀i = 1, 2, . . . , n;

moreover, T+ > T is a cemetery time and we set φ(ST+) ≡ 0.

Here, the notation V (n)
i (t, s) denotes the value of swing option at time t with state value

(S(t),α(t)) = (s, i), and the superscript n is used to emphasize that the holder still has n
rights before the expiry.

For the above value functions, we state in the following proposition an iterative equation
showing the relationship between V (n) and V (n–1). It is this relationship that transforms the
optimal multiple stopping problem into a sequence of optimal single stopping problems.

Proposition 1 Let (t, s, i) ∈ [0, T] × R+ × M. For fixed integer n ∈ N, the value function
V (n)

i of (2) can be equivalently written follows.
(i) For n = 0,

V (0)
i (t, s) = 0. (3)

(ii) For n ≥ 1,

V (n)
i (t, s) = sup

τ∈Tt,T

EQ
[
e–r(τ–t)G(n)

α(τ )
(
τ , S(τ )

)|S(t) = s,α(t) = i
]
, (4)
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where Tt,T is the same as in the above definition, and

G(n)
i (t, s) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(K – s)+ + EQ[e–rδV (n–1)
α(t+δ)(t + δ, S(t + δ))|S(t) = s,α(t) = i],

t ∈ [0, T – δ],

(K – s)+,

t ∈ (T – δ, T],

(5)

where δ is the refraction time.

Proof Notice that the reward (or payoff) process φ(St) = (K – St)+ has continuous paths
and the strong Markov property, which indicates that it satisfies conditions (2.1), (2.2) and
(2.8) in [12]. In addition, according to [19] we find that the filtration {F (t)}t∈[0,T] satisfies
the usual conditions and additional requirements (2.10) in [12]. In this way, we can apply
Theorem 1 in [12] to rewrite the problem (2) into the iteration form (4) with (5). �

Remark 1 The specific form of G(n)
i of (5) in Proposition 1 can be further written as follows.

(i) For n = 1,

G(1)
i (t, s) = (K – s)+, ∀t ∈ [0, T].

(ii) For n ≥ 2, G(n)
i involves a European option price, i.e.,

G(n)
i (t, s) :=

⎧
⎨

⎩

(K – s)+ + f (n)
i (0, s), t ∈ [0, T – δ],

(K – s)+, t ∈ (T – δ, T],

where (f (n)
1 (τ , s), f (n)

2 (τ , s)) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

L1f (n)
1 + q12(f (n)

2 – f (n)
1 ) = 0, τ ∈ [0, δ), s > 0,

L2f (n)
2 + q21(f (n)

1 – f (n)
2 ) = 0, τ ∈ [0, δ), s > 0,

f (n)
1 (δ, ·) = f (n)

2 (δ, ·) =
∑2

j=1 wij(δ)V (n–1)
j (t + δ, ·), s > 0,

(6)

in which

LiV (n)
i :=

∂

∂t
V (n)

i +
1
2
σ 2(i)

∂2

∂s2 V (n)
i + β(i)

(
ξ (i) – s

) ∂

∂s
V (n)

i – rV (n)
i , i ∈M.

To see how (6) comes about, we define

u(n)
i (t, s) := EQ

[

e–rδ
2∑

j=1

wij(δ)V (n–1)
j

(
t + δ, S(t + δ)

)∣∣
∣S(t) = s,α(t) = i

]

,

t ∈ [0, T – δ], s ∈R+, i = 1, 2.

Let f (n)
i (0, s) = u(n)

i (t, s), then using the Feynman–Kac formula, one gets what one wants.

Having transformed the problem in Proposition 1, now we show the PDE characterization
of the value functions V (n)

i in the form of variational inequalities.
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Theorem 1 For n ∈ N+, the pair (V (n)
1 (t, s), V (n)

2 (t, s)) formally satisfy the coupled varia-
tional inequalities

⎧
⎪⎪⎨

⎪⎪⎩

min{–L1V (n)
1 – q12(V (n)

2 – V (n)
1 ), V (n)

1 – G(n)
1 } = 0, s > 0, 0 < t < T ,

min{–L2V (n)
2 – q21(V (n)

1 – V (n)
2 ), V (n)

2 – G(n)
2 } = 0, s > 0, 0 < t < T ,

V (n)
1 = V (n)

2 = (K – s)+, s > 0, t = T ,

(7)

where LiV (n)
i and G(n)

i are the same as in Proposition 1.

Proof Let ζ : [0, T] × R+ × M �→ R be smooth function. Denote ζi(t, s) := ζ (t, s, i). Let τ

be a stopping time in Tt,T . Then we have from the Dynkin formula that

e–r(τ–t)ζ
(
τ , S(τ ),α(τ )

)
– ζ

(
t, S(t),α(t)

)

=
∫ τ

t
d
(
e–r(θ–t)ζ

(
θ , S(θ ),α(θ )

))

=
∫ τ

t

[
e–r(θ–t)(Lα(θ )ζα(θ ) + qi1(ζ1 – ζ2)

)
dθ + e–r(θ–t) dM(θ )

]
,

where M is a martingale under measure Q, and

Liζi :=
∂

∂t
ζi +

1
2
σ 2(i)

∂2

∂s2 ζi + β(i)
(
ξ (i) – s

) ∂

∂s
ζi – rζi, i ∈M.

Taking the expectation on both sides, we obtain

ζi(t, s)

= EQ

[

e–r(τ–t)ζα(τ )
(
τ , S(τ )

)

–
∫ τ

t
e–r(θ–t)(Lα(θ )ζα(θ ) + qij

(
ζj

(
θ , S(θ )

)
– ζi

(
θ , S(θ )

)))
dθ

∣
∣
∣S(t) = s,α(t) = i

]

,

where i, j ∈M, j �= i. Then under the assumption that

ζi(·, ·) ≥ G(n)
i (·, ·) and –Liζi(·, ·) – qij

(
ζj(·, ·) – ζi(·, ·)

) ≥ 0, i ∈M,

we have

ζi(t, s) ≥ EQ
[
e–r(τ–t)G(n)

α(τ )
(
τ , S(τ )

)|S(t) = s,α(t) = i
]
, i ∈M,

and by taking the supreme on both sides, it follows that

ζi(t, s) ≥ V (n)
i (t, s).

Hence, we assume that (ζ1(t, s), ζ2(t, s)) is the solution of
⎧
⎨

⎩

min{–Liζi – qij(ζj – ζi), ζi – G(n)
i } = 0, 0 < t < T , s > 0, i, j ∈M, j �= i,

ζi = G(n)
i (s, i, T) = (K – s)+, t = T , s > 0, i ∈M.
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On the other hand, define

τ ∗ := inf
{

t ≤ τ ≤ T |ζ (n)
α(τ )(τ , Sτ ) = G(n)(τ , S(τ ),α(τ )

)} ∈ Tt,T ,

which implies that

ζi(t, s) = EQ

[

e–r(τ∗–t)ζα(τ∗)
(
τ ∗, S

(
τ ∗))

–
∫ τ∗

t
e–r(θ–t)(Lα(θ )ζα(θ ) + qij(ζj – ζi) dθ |S(t) = s,α(t) = i

]

= EQ
[
e–r(τ∗–t)G(n)

α(τ∗)
(
τ ∗, S

(
τ ∗))|S(t) = s,α(t) = i

] ≤ V (n)
i (t, s).

Above all, if V (n) is as smooth as ζ , then it is the solution of the problem (7). �

2.3 Viscosity solutions
In this subsection, after introducing the notion of viscosity solution, we state that the value
functions in this paper is the unique viscosity solution of the problem (7).

Definition 2 (Viscosity supersolution) For (t, s) ∈ [0, T] ×R+, i ∈M and n ∈ N+, assume
that f (n)

i (t, s) satisfies the following four conditions:
1 f (n)

i (t, s) is locally bounded.
2 f (n)

i (·, ·) is continuous in [0, T] ×R+.
3 f (n)

1 (T , s) = f (n)
2 (T , s) = (K – s)+ on {T} ×R+.

4 For ∀(t̄, s̄) ∈ [0, T) ×R+ and ∀φ ∈ C1,2([0, T) ×R+) such that

0 = f (n)
i (t̄, s̄) – φ(t̄, s̄) = strict min

[0,T)×R+

(
f (n)
i (t, s) – φ(t, s)

)
,

we always have

min

{

–
∂φ(t̄, s̄)

∂t
–

1
2
σ 2(i)

∂2φ(t̄, s̄)
∂s2 – β(i)

(
ξ (i) – s̄

)∂φ(t̄, s̄)
∂s

+ rφ(t̄, s̄, i) – qij
(
f (n)
j (t̄, s̄) – φ(t̄, s̄)

)
,φ(t̄, s̄) – G(n)

i (t̄, s̄)
}

≥ 0,

i, j ∈M, j �= i,

where

G(n)
i (t̄, s̄) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(K – s̄)+ + EQ[e–rδf (n–1)
α(t̄+δ)(t̄ + δ, S(t̄ + δ))|S(t̄) = s̄,α(t̄) = i],

t̄ ∈ [0, T – δ],

(K – s̄)+,

t̄ ∈ (T – δ, T).

(8)

Then we say f (n)
i (t, s) is a continuous viscosity supersolution of the variational inequalities

in (7) on [0, T) ×R+.
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Definition 3 (Viscosity subsolution) For (t, s) ∈ [0, T] × R+, i ∈ M and n ∈ N+, assume
that f (n)

i (t, s) satisfies the following four conditions:
1 f (n)

i (t, s) is locally bounded.
2 f (n)

i (·, ·) is continuous in [0, T] ×R+.
3 f (n)

1 (T , s) = f (n)
2 (T , s) = (K – s)+ on {T} ×R+.

4 For ∀(t̄, s̄) ∈ [0, T) ×R+ and ∀φ ∈ C1,2([0, T) ×R+) such that

0 = f (n)
i (t̄, s̄) – φ(t̄, s̄) = strict max

[0,T)×R+

(
f (n)
i (t, s) – φ(t, s)

)
,

we always have

min

{

–
∂φ(t̄, s̄)

∂t
–

1
2
σ 2(i)

∂2φ(t̄, s̄)
∂s2 – β(i)

(
ξ (i) – s̄

)∂φ(t̄, s̄)
∂s

+ rφ(t̄, s̄, i) – qij
(
f (n)
j (t̄, s̄) – φ(t̄, s̄)

)
,φ(t̄, s̄) – G(n)

i (t̄, s̄)
}

≤ 0,

i, j ∈M, j �= i,

where G(n)
i (t̄, s̄) is the same as in (8).

Then we say f (n)
i (t, s) is a continuous viscosity subsolution of the variational inequalities in

(7) on [0, T) ×R+.

Definition 4 (Viscosity solution) For (t, s) ∈ [0, T] × R+, i ∈ M and n ∈ N+, we say that
f (n)
i (t, s) is a continuous viscosity solution of (7) on [0, T] × R+ if it is both a continuous

supersolution and a continuous subsolution of the variational inequalities in (7).

Theorem 2 For (t, s) ∈ [0, T] ×R+, i ∈ M and n ∈ N+, V (n)
i (t, s) defined in Definition 1 is

the unique viscosity solution of the problem (7).

In Sects. 4 and 5, we will show the proofs of the existence and uniqueness results, respec-
tively.

3 Properties of the value function
In this part, we derive properties including continuity and local boundedness of the value
function to demonstrate that it satisfies the first two conditions in Definition 2 (or in Def-
inition 3, notice that they are the same).

Lemma 1 Let (t, s) ∈ [0, T] × R+, then, for each i ∈ M and n ∈ N+, the value function
V (n)

i (t, s) is continuous with respect to s.

Proof For each i ∈M, given s1, s2 and t ∈ [0, T], let S1 and S2 be two solutions of the SDE
(1) with S1(t) = s1 and S2(t) = s2, respectively. We adopt mathematical induction.

(i) For n = 1, we have

V (1)(t, s1, i) – V (1)(t, s2, i)

= sup
τ∈Tt,T

EQ
[
e–r(τ–t)(K – S1(τ )

)+]
– sup

τ∈Tt,T

EQ
[
e–r(τ–t)(K – S2(τ )

)+]
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≤ sup
τ∈Tt,T

EQ
[
e–r(τ–t)∣∣

(
K – S1(τ )

)+ –
(
K – S2(τ )

)+∣
∣
]

≤ sup
τ∈Tt,T

EQ
[
e–r(τ–t)∣∣S1(τ ) – S2(τ )

∣
∣
]
. (9)

Here we need to obtain the upper bound of EQ[|S1(u) – S2(u)|] (u ∈ [t, T]). From SDE (1),
by using the Cauchy–Schwarz inequality and Tonelli’s theorem we find that

EQ
[∣
∣S1(u) – S2(u)

∣
∣2]

= EQ

[∣
∣
∣
∣(s1 – s2) +

∫ u

t
β
(
α(τ )

)(
S2(τ ) – S1(τ )

)
dτ

∣
∣
∣
∣

2]

= EQ

[

(s1 – s2)2 + 2(s1 – s2)
∫ u

t
β
(
α(τ )

)(
S2(τ ) – S1(τ )

)
dτ

+
(∫ u

t
β
(
α(τ )

)(
S2(τ ) – S1(τ )

)
dτ

)2]

≤ 2|s1 – s2|2 + 2EQ

[(∫ u

t
β
(
α(τ )

)(
S2(τ ) – S1(τ )

)
dτ

)2]

≤ 2|s1 – s2|2 + CEQ

[∫ u

t
β2(α(τ )

)(
S2(τ ) – S1(τ )

)2 dτ

]

≤ 2|s1 – s2|2 + CEQ

[∫ u

t

(
S2(τ ) – S1(τ )

)2 dτ

]

= 2|s1 – s2|2 + C
∫ u

t
EQ

[(
S2(τ ) – S1(τ )

)2]dτ . (10)

Notice that C is a generic positive constant, whose value varies in different cases. Next we
adopt Gronwall’s inequality to deal with (10), and we obtain

EQ
[∣
∣S1(u) – S2(u)

∣
∣2] ≤ C|s1 – s2|2, ∀u ∈ [t, T].

Then, by using the Cauchy–Schwarz inequality again, we get an upper bound of EQ[|S1(u)–
S2(u)|], that is,

EQ
[∣
∣S1(u) – S2(u)

∣
∣
] ≤ C|s1 – s2|, ∀t ∈ [0, T]. (11)

With the inequality (11), we can continue to deal with the inequality (9) and finally get

V (1)(t, s1, i) – V (1)(t, s2, i) ≤ C|s1 – s2|.

Hence V (1)(t, s, i) is (Lipschitz) continuous respect to s.
(ii) For n = k, k ≥ 2, we assume that

V (k–1)(t, S1(t), i
)

– V (k–1)(t, S2(t), i
) ≤ C|s1 – s2|, ∀t ∈ [0, T],

under which we can compute for n = k,

∣
∣V (k)(t, s1, i) – V (k)(t, s2, i)

∣
∣ ≤ sup

τ∈Tt,T

CEQ
[∣
∣G(k)(τ , S1(τ ),α(τ )

)
– G(k)(τ , S2(τ ),α(τ )

)∣
∣
]
.
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Here we need to investigate the property of |G(k)(τ , S1(τ ),α(τ )) – G(k)(τ , S2(τ ),α(τ ))| as
follows:

∣
∣G(k)(τ , S1(τ ),α(τ )

)
– G(k)(τ , S2(τ ),α(τ )

)∣
∣

≤ ∣
∣
(
K – S1(τ )

)+ –
(
K – S2(τ )

)+∣
∣

+
∣
∣EQ

[
e–rδ(V (k–1)(τ + δ, S1(τ + δ),α(τ + δ)

)
– V (k–1)(τ + δ, S2(τ + δ),α(τ + δ)

))]∣
∣

≤ C
∣
∣S1(τ ) – S2(τ )

∣
∣ + CEQ

[∣
∣V (k–1)(τ + δ, S1(τ + δ),α(τ + δ)

)

– V (k–1)(τ + δ, S2(τ + δ),α(τ + δ)
)∣
∣
]

≤ C
∣
∣S1(τ ) – S2(τ )

∣
∣ + CEQ

[∣
∣S1(τ + δ) – S2(τ + δ)

∣
∣
]

≤ C
∣
∣S1(τ ) – S2(τ )

∣
∣ + C|s1 – s2|.

In this way, we get

∣
∣V (k)(t, s1, i) – V (k)(t, s2, i)

∣
∣ ≤ sup

τ∈Tt,T

EQ
[
C

∣
∣S1(τ ) – S2(τ )

∣
∣ + C|s1 – s2|

] ≤ C|s1 – s2|,

which completes the proof of continuity of V (n)(t, s, i) with respect to s. �

Lemma 2 Let (t, s) ∈ [0, T] × R+, then, for each i ∈ M and n ∈ N+, the value function
V (n)

i (t, s) is continuous with respect to t.

Proof Firstly, we define the objective function

J (n)(t, s, i, τ ) := EQ
[
e–r(τ–t)G(n)(τ , S(τ ),α(τ )

)|S(t) = s,α(t) = i
]

= ertEQ
[
h(n)(τ , S(τ ),α(τ )

)|S(t) = s,α(t) = i
]
, τ ∈ [t, T],

where

h(n)(τ , S(τ ),α(τ )
)

:= e–rτ G(n)(τ , S(τ ),α(τ )
)
.

Next, for any t and t′, we set 0 < t < t′ < τ < τ ′ := τ + t′ – t < T , our discussion is based on
mathematical induction.

(i) For n = 1, we have

J (1)(t, s, i, τ ) := ertEQ
[
h(1)(τ , S(τ ),α(τ )

)|S(t) = s,α(t) = i
]

= ert′EQ
[
h(1)(τ ′, S

(
τ ′),α

(
τ ′))|S(

t′) = s,α
(
t′) = i

]

= ert′EQ
[
h(1)(τ +

(
t′ – t

)
, S

(
τ ′),α

(
τ ′))|S(

t′) = s,α
(
t′) = i

]
, (12)

and

J (1)(t′, s, i, τ ′) := ert′EQ
[
h(1)(τ ′, S

(
τ ′),α

(
τ ′))|S(

t′) = s,α
(
t′) = i

]

= ertEQ
[
h(1)(τ , S(τ ),α(τ )

)|S(t) = s,α(t) = i
]
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= ertEQ
[
h(1)(τ ′ –

(
t′ – t

)
, S(τ ),α(τ )

)|S(t) = s,α(t) = i
]
. (13)

Then we investigate the property of h(1)(t, S(t),α(t)) (t ∈ [0, T]). To this end, we assume
that, for any t1, t2 > 0, S(t1) = s1, S(t2) = s2, and since |e–x1 – e–x2 | ≤ |x1 – x2| for any x1, x2 ≥
0, we obtain

h(1)(t1, s1,α(t1)
)

– h(1)(t2, s2,α(t2)
)

≤ ∣
∣h(1)(t1, s1,α(t1)

)
– h(1)(t2, s2,α(t2)

)∣
∣

=
∣
∣e–rt1

(
K – S(t1)

)+ – e–rt2
(
K – S(t2)

)+∣
∣

≤ ∣
∣e–rt1

(
K – S(t1)

)
– e–rt2

(
K – S(t2)

)∣
∣

=
∣
∣K

(
e–rt1 – e–rt2

)
+ e–rt2 S(t2) – e–rt1 S(t1)

∣
∣

≤ K
∣
∣e–rt1 – e–rt2

∣
∣ +

∣
∣e–rt2 s2 – e–rt2 s1 + e–rt2 s1 – e–rt1 s1

∣
∣

≤ K
∣
∣e–rt1 – e–rt2

∣
∣ + e–rt2 |s2 – s1| + s1

∣
∣e–rt2 – e–rt1

∣
∣

≤ K |t2 – t1| + e–rt2 |s2 – s1| + s1|t2 – t1|
= C|t2 – t1| + C|s2 – s1|.

Now we proceed to dealing with the equality (12) to find

J (1)(t, s, i, τ )

≤ ert′EQ
[
h(1)(τ , S(τ ),α(τ )

)
+ C

(∣
∣t′ – t

∣
∣
)

+ C
∣
∣S

(
τ ′) – S(τ )

∣
∣|S(

t′) = s,α
(
t′) = i

]
. (14)

With the fact that

EQ
[∣
∣S

(
τ ′) – S(τ )

∣
∣
] ≤

√

EQ
[∣
∣S

(
τ ′) – S(τ )

∣
∣2] ≤ C

∣
∣τ ′ – τ

∣
∣

1
2 = C

∣
∣t′ – t

∣
∣

1
2 ,

it follows from (14) that

J (1)(t, s, i, τ )

≤ ert′EQ
[
h(1)(τ , S(τ ),α(τ )

)|S(
t′) = s,α

(
t′) = i

]
+ C

∣
∣t′ – t

∣
∣ + C

(∣
∣t′ – t

∣
∣

1
2
)

= J (1)(t′, s, i, τ̃
)

+ C
∣
∣t′ – t

∣
∣ + C

∣
∣t′ – t

∣
∣

1
2

= J (1)(t′, s, i, τ̃
)

+ C
∣
∣t′ – t

∣
∣

1
2 , τ ∈ [t, T], τ̃ ∈ [

t′, T
]
.

Similarly, we can restart from the inequality (13) and get

J (1)(t′, s, i, τ ′) ≤ ertEQ
[
h
(
τ , S(τ ),α(τ )

)|S(t) = s,α(t) = i
]

+ C
∣
∣t′ – t

∣
∣ + C

(∣
∣t′ – t

∣
∣

1
2
)

= J (1)(t, s, i, τ̃ ) + C
∣
∣t′ – t

∣
∣ + C

∣
∣t′ – t

∣
∣

1
2

= J (1)(t, s, i, τ̃ ) + C
∣
∣t′ – t

∣
∣

1
2 , τ ′ ∈ [

t′, T
]
, τ̃ ∈ [t, T].
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Finally, we get

∣
∣V (1)(t′, s, i

)
– V (1)(t, s, i)

∣
∣

≤ sup
τ̂∈Tt′ ,T ,τ∈Tt,T

∣
∣J (1)(t′, s, i, τ̂

)
– J (1)(t, s, i, τ )

∣
∣

≤ C
∣
∣t′ – t

∣
∣

1
2 , 0 < t < t′ < T ,

and this indicates the continuity of V (1) with respect to t.
(ii) For n = k, k ≥ 2, we assume that

∣
∣V (k–1)(t′, s, i

)
– V (k–1)(t, s, i)

∣
∣ ≤ C

∣
∣t′ – t

∣
∣

1
2 , 0 < t < t′ < T .

Then we start from defining

J (k)(t, s, i, τ ) := ertEQ
[
h(k)(τ , S(τ ),α(τ )

)|S(t) = s,α(t) = i
]

= ert′EQ
[
h(k)(τ ′, S

(
τ ′),α

(
τ ′))|S(

t′) = s,α
(
t′) = i

]

= ert′EQ
[
h(k)(τ +

(
t′ – t

)
, S

(
τ ′),α

(
τ ′))|S(

t′) = s,α
(
t′) = i

]
(15)

and

J (k)(t′, s, i, τ ′) := ert′EQ
[
h(k)(τ ′, S

(
τ ′),α

(
τ ′))|S(

t′) = s,α
(
t′) = i

]

= ertEQ
[
h(k)(τ , S(τ ),α(τ )

)|S(t) = s,α(t) = i
]

= ertEQ
[
h(k)(τ ′ –

(
t′ – t

)
, S(τ ),α(τ )

)|S(t) = s,α(t) = i
]
. (16)

Next we need to investigate the property of h(k)(t, S(t),α(t)) (t ∈ [0, T]). For this purpose,
let t1, t2 > 0, S(t1) = s1, S(t2) = s2, and we estimate

h(k)(t1, s1,α(t1)
)

– h(k)(t2, s2,α(t2)
)

≤ ∣
∣h(k)(t1, s1,α(t1)

)
– h(k)(t2, s2,α(t2)

)∣
∣

=
∣
∣e–rt1 G(k)(t1, S(t1),α(t1)

)
– e–rt2 G(k)(t2, S(t2),α(t2)

)∣
∣

≤ ∣
∣e–rt1 G(k)(t1, S(t1),α(t1)

)
– e–rt1 G(k)(t2, S(t2),α(t2)

)∣
∣

+
∣
∣e–rt1 G(k)(t2, S(t2),α(t1)

)
– e–rt2 G(k)(t2, S(t2),α(t2)

)∣
∣

:= I1 + I2,

here we need to deal with I1 and I2. Note that

I1 =
∣
∣e–rt1 G(k)(t1, S(t1),α(t1)

)
– e–rt1 G(k)(t2, S(t2),α(t2)

)∣
∣

≤ e–rt1
∣
∣G(k)(t1, S(t1),α(t1)

)
– G(k)(t2, S(t2),α(t2)

)∣
∣

= C
∣
∣G(k)(t1, S(t1),α(t1)

)
– G(k)(t2, S(t2),α(t2)

)∣
∣

≤ C
(∣
∣G(k)(t1, S(t1),α(t1)

)
– G(k)(t1, S(t2),α(t2)

)∣
∣
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+
∣
∣G(k)(t1, S(t2),α(t1)

)
– G(k)(t2, S(t2),α(t2)

)∣
∣
)

:= C(I11 + I12),

where

I11 =
∣
∣G(k)(t1, S(t1),α(t1)

)
– G(k)(t1, S(t2),α(t2)

)∣
∣

=
∣
∣G(k)(t1, s1,α(t1)

)
– G(k)(t1, s2,α(t1)

)∣
∣

=
∣
∣(K – s1)+ + EQ

[
e–rδV (k–1)(t1 + δ, S1(t1 + δ),α(t1 + δ)

)]

– (K – s2)+ – EQ
[
e–rδV (k–1)(t1 + δ, S2(t1 + δ),α(t1 + δ)

)]∣
∣

≤ |s2 – s1| + CEQ
[∣
∣V (k–1)(t1 + δ, S1(t1 + δ),α(t1 + δ)

)

– V (k–1)(t1 + δ, S2(t1 + δ),α(t1 + δ)
)∣
∣
]

≤ |s2 – s1| + CEQ
[∣
∣S2(t1 + δ) – S1(t1 + δ)

∣
∣
]

≤ C|s2 – s1|

and

I12 =
∣
∣G(k)(t1, S(t2),α(t1)

)
– G(k)(t2, S(t2),α(t2)

)∣
∣

=
∣
∣EQ

[
e–rδV (k–1)(t1 + δ, S(t1 + δ),α(t1 + δ)

)|S(t1) = s2,α(t1) = i
]

– EQ
[
e–rδV (k–1)(t2 + δ, S(t2 + δ),α(t2 + δ)

)|S(t2) = s2,α(t2) = i
]∣
∣

=
∣
∣EQ

[
e–rδV (k–1)(t1 + δ, St1,s2,i(t1 + δ),α(t1 + δ)

)]

– EQ
[
e–rδV (k–1)(t2 + δ, St2,s2,i(t2 + δ),α(t2 + δ)

)]∣
∣

≤ EQ
[
C

∣
∣V (k–1)(t1 + δ, St1,s2,i(t1 + δ),α(t1 + δ)

)

– V (k–1)(t2 + δ, St2,s2,i(t2 + δ),α(t2 + δ)
)∣
∣
]

≤ EQ
[
C|t2 – t1| 1

2
] (

since St1,s2,i(t1 + δ) = St2,s2,i(t2 + δ)
)

≤ C|t2 – t1| 1
2 ,

and in this way we get

I1 =
∣
∣e–rt1 G(k)(t1, S(t1),α(t1)

)
– e–rt1 G(k)(t2, S(t2),α(t2)

)∣
∣

≤ C|s2 – s1| + C|t2 – t1| 1
2 .

For I2, we get

I2 =
∣
∣e–rt1 G(k)(t2, S(t2),α(t2)

)
– e–rt2 G(k)(t2, S(t2),α(t2)

)∣
∣

≤ G(k)(t2, S(t2),α(t2)
)∣
∣e–rt1 – e–rt2

∣
∣

≤ C
∣
∣e–rt1 – e–rt2

∣
∣

≤ C|t2 – t1|.
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Hence we can conclude that

∣
∣h(k)(t1, s1,α(t1)

)
– h(k)(t2, s2,α(t2)

)∣
∣ ≤ C|s2 – s1| + C|t2 – t1| 1

2 + C|t2 – t1|.

Now we come back to Eq. (15), and we estimate

J (k)(t, s, i, τ )

≤ ert′EQ
[
h(k)(τ , S(τ )

)
+ C

∣
∣S

(
τ ′) – S(τ )

∣
∣ + C

∣
∣t′ – t

∣
∣

1
2 + C

∣
∣t′ – t

∣
∣|S(

t′) = s,α
(
t′) = i

]
.

With the fact that

EQ
[∣
∣S

(
τ ′) – S(τ )

∣
∣
] ≤

√

EQ
[∣
∣S

(
τ ′) – S(τ )

∣
∣2] ≤ C

∣
∣τ ′ – τ

∣
∣

1
2 = C

∣
∣t′ – t

∣
∣

1
2 ,

we find that

J (k)(t, s, i, τ ) ≤ ert′EQ
[
h(k)(τ , S(τ ),α(τ )

)|S(
t′) = s,α

(
t′) = i

]
+ C

∣
∣t′ – t

∣
∣ + C

(∣
∣t′ – t

∣
∣

1
2
)

= J (k)(t′, s, i, τ̃
)

+ C
∣
∣t′ – t

∣
∣ + C

∣
∣t′ – t

∣
∣

1
2

= J (k)(t′, s, i, τ̃
)

+ C
∣
∣t′ – t

∣
∣

1
2 , τ ∈ [t, T], τ̃ ∈ [

t′, T
]
.

Similarly, we can restart from the equality (16) to get

J (k)(t′, s, i, τ ′) ≤ ertEQ
[
h
(
τ , S(τ ),α(τ )

)|S(t) = s,α(t) = i
]

+ C
∣
∣t′ – t

∣
∣ + C

(∣
∣t′ – t

∣
∣

1
2
)

= J (k)(t, s, i, τ̃ ) + C
∣
∣t′ – t

∣
∣ + C

∣
∣t′ – t

∣
∣

1
2

= J (k)(t, s, i, τ̃ ) + C
∣
∣t′ – t

∣
∣

1
2 , τ ′ ∈ [

t′, T
]
, τ̃ ∈ [t, T].

In this way, we finally arrive at the estimation that

∣
∣V (k)(t′, s, i

)
– V (k)(t, s, i)

∣
∣ ≤ sup

τ̂∈Tt′ ,T ,τ∈Tt,T

∣
∣J (k)(t′, s, i, τ̂

)
– J (k)(t, s, i, τ )

∣
∣

≤ C
∣
∣t′ – t

∣
∣

1
2 ,

and this indicates the continuity of V (k) with respect to t. Therefore we complete the proof
of the continuity of V (n) with respect to t. �

Lemma 3 Let (t, s) ∈ [0, T] ×R+, then, for each i ∈M and n ∈ N+, there exists a constant
C such that |V (n)(t, s, i)| ≤ C(1 + |s|).

Proof For each i ∈ M, given any t ∈ [0, T], assume that S(t) = s and α(t) = i. Then, by
mathematical induction, we have the following.

(i) For n = 1,

∣
∣V (1)(t, s, i)

∣
∣ = sup

τ∈Tt,T

EQ
[
e–r(τ–t)G(1)

j
(
τ , S(τ )

)|S(t) = s,α(t) = i
]
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= sup
τ∈Tt,T

EQ
[
e–r(τ–t)(K – S(τ )

)+|S(t) = s,α(t) = i
]

≤ sup
τ∈Tt,T

EQ
[
C

∣
∣K – S(τ )

∣
∣|S(t) = s,α(t) = i

]

≤ sup
τ∈Tt,T

EQ
[
C

(∣
∣K – S(t)

∣
∣ +

∣
∣S(t) – S(τ )

∣
∣
)|S(t) = s,α(t) = i

]

≤ sup
τ∈Tt,T

EQ
[
C

(
K + |s| +

∣
∣S(t) – S(τ )

∣
∣
)|S(t) = s,α(t) = i

]

= sup
τ∈Tt,T

C
(
K + |s|) + EQ

[
C

∣
∣S(t) – S(τ )

∣
∣|S(t) = s,α(t) = i

]

≤ sup
τ∈Tt,T

C
(
K + |s|) + C|τ – t| 1

2 ≤ C
(
K + |s|) + CT

1
2 = C

(
1 + |s|).

(ii) For n = k, k ≥ 2, assuming that

∣
∣V (k–1)(t, s, i)

∣
∣ ≤ C

(
1 + |s|), ∀t ∈ [0, T],

then using the results in Lemma 1 and Lemma 2, we get

∣
∣V (k)(t, s, i)

∣
∣ = sup

τ∈Tt,T

EQ
[
e–r(τ–t)G(k)(τ , S(τ ),α(τ )

)|S(t) = s,α(t) = i
]

≤ sup
τ∈Tt,T

(
CEQ

[(
K – S(τ )

)+|S(t) = s,α(t) = i
]

+ CEQ
[∣
∣V (k–1)(τ + δ, S(τ + δ), j

)∣
∣|S(t) = s,α(t) = i

])

≤ C
(
1 + |s|) + sup

τ∈Tt,T

EQ
[
C

(∣
∣V (k–1)(t, s, j)

∣
∣ + C|τ + δ – t| 1

2

+ C
∣
∣S(τ + δ) – S(t)

∣
∣
)|S(t) = s,α(t) = i

]

≤ C
(
1 + |s|) + sup

τ∈Tt,T

EQ[C
(
C

(
1 + |s|) + |τ + δ – t| 1

2 + C|τ + δ – t| 1
2
)

≤ C
(
1 + |s|). �

4 Existence of the viscosity solution
This section shows the existence result. We break the whole proof into two parts, where
the first part corresponds to the supersolution property of the value function, and in the
second part we deal with the subsolution property.

Lemma 4 For any n ∈N+, (V (n)(t, s, 1), V (n)(t, s, 2)) is the viscosity supersolution of (7).

Proof We only need to show that, for any i ∈M, V (n)(t, s, i) is a viscosity supersolution to

⎧
⎨

⎩

min{–LiW – qij(V (n)
j – W ), W – G(n)

i } = 0, s > 0, 0 < t < T ,

W = (K – s)+, s > 0, t = T ,
(17)

where LiV and G(n)
i are the same as in Propersition 1.
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Given (t̄, s̄) ∈ [0, T) × R+, assume that α(t̄) = i ∈ M, and let φ ∈ C1,2([0, T) × R+) such
that

0 = V (n)(t̄, s̄, i) – φ(t̄, s̄) = strict min
(t,s)∈(0,T]×R+

(
V (n)(t, s, i) – φ(t, s)

)
. (18)

Let {(tm, sm)} be a sequence in [0, T] ×R+ such that

{
(tm, sm)

} → (t̄, s̄) and V (n)
i (tm, sm) → V (n)

i (t̄, s̄).

Since φ ∈ C1,2, we have

ηm := V (n)(tm, sm, i) – φ(tm, sm) → 0. (19)

Next, let θ be the time such that α(t) ≡ i in [t̄, θ ]. In addition, we denote by Sm(t) :=
Stm ,sm ,i(t) the associated state process with initial data Sm(tm) = sm. For m sufficiently large,
we have

0 < hm := η
1
2
m1{ηm �=0} +

1
m

1{ηm=0} ≤ θ – tm.

Then we define the stopping time

γm := inf
{

t > tm :
(
t – tm, Sm(t) – sm

)
/∈ [0, hm) × [–α,α]

}
,

where α > 0 is some given constant. By the dynamic programming principle we have

V (n)(tm, sm, i) ≥ EQ
[
e–r(γm–tm)V

(
γm, Sm(γm), i

)]
,

and, together with (18) and (19), we have

0 ≤ EQ
[
ηm + φ(tm, sm) – e–r(γm–tm)φ

(
γm, Sm(γm)

)]
. (20)

Similar to [20], we set

ψ
(
t, S(t),α(t)

)
=

⎧
⎨

⎩

φ(t, S(t)), if α(t) = i,

V (n)(t, S(t),α(t)), otherwise.

Therefore by Dynkin’s formula, we continue the inequality (20) as follows:

0 ≤ ηm + EQ
[
ψ(tm, sm, i) – e–r(γm–tm)ψ

(
γm, Sm(γm), i

)]

= ηm – EQ

[∫ γm

tm

d
(
e–r(τ–tm)ψ

(
τ , Sm(τ ), i

))
]

= ηm – EQ

[∫ γm

tm

e–r(τ–tm)
(

∂ψ(τ , Sm(τ ), i)
∂t

+
1
2
σ 2(i)

∂2ψ(τ , Sm(τ ), i)
∂s2

+ β(i)
(
ξ (i) – Sm(τ )

)∂ψ(τ , Sm(τ ), i)
∂s
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– rψ
(
τ , Sm(τ ), i

)
+ qij

(
ψ

(
τ , Sm(τ ), j

)
– ψ

(
τ , Sm(τ ), i

))
)

dt
]

+ EQ

[∫ γm

tm

e–r(τ–tm) dM(τ )
]

= ηm – EQ

[∫ γm

tm

e–r(τ–tm)
(

∂ψ(τ , Sm(τ ), i)
∂t

+
1
2
σ 2(i)

∂2ψ(τ , Sm(τ ), i)
∂s2

+ β(i)
(
ξ (i) – Sm(τ )

)∂ψ(τ , Sm(τ ), i)
∂s

– rψ
(
τ , Sm(τ ), i

)
+ qij

(
V (n)(τ , Sm(τ ), j

)
– ψ

(
τ , Sm(τ ), i

))
)

dt
]

, j �= i.

Next we divide both sides by γm – tm, then the mean value theorem leads us to

ηm

γm – tm
– e–r(τ–tm)(

∂ψ(τ , Sm(τ ), i)
∂t

+
1
2
σ 2(i)

∂2ψ(τ , Sm(τ ), i)
∂s2

+ β(i)
(
ξ (i) – Sm(τ )

)∂ψ(τ , Sm(τ ), i)
∂s

– rψ
(
τ , Sm(τ ), i

)

+ qij
(
V (n)(τ , Sm(τ ), j

)
– ψ

(
τ , Sm(τ ), i

)) ≥ 0, τ ∈ [tm,γm], j �= i, (21)

Note that, for m sufficiently large, γm = tm + hm, therefore

ηm

γm – tm
=

ηm

hm
=

⎧
⎨

⎩

0 · 1
m , if ηm = 0,

√
ηm, otherwise.

Finally, we send m to infinity, and the inequality (21) becomes

–
∂φ(t̄, s̄)

∂t
–

1
2
σ 2(i)

∂2φ(t̄, s̄)
∂s2 – β(i)

(
ξ (i) – s̄

)∂φ(t̄, s̄)
∂s

+ rφ(t̄, s̄) – qij
(
V (n)(t̄, s̄, j) – φ(t̄, s̄)

)

≥ 0, j �= i.

In addition, Theorem 1 states

V (n)(t̄, s̄, i) – G(n)(t̄, s̄, i) ≥ 0

and together with Lemma 1, we find that V (n)(t, s, i) is the continuous viscosity supersolu-
tion of (17). �

Lemma 5 For any n ∈N+, (V (n)(t, s, 1), V (n)(t, s, 2)) is the viscosity subsolution of (7).

Proof We only need to show that, for any i ∈M, V (n)(t, s, i) is a viscosity subsolution to

⎧
⎨

⎩

min{–LiW – qij(V (n)
j – W ), W – G(n)

i } = 0, s > 0, 0 < t < T ,

W = (K – s)+, s > 0, t = T ,
(22)

where LiV and G(n)
i are the same as in Lemma 1.
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We argue by contradiction. Given (t̄, s̄) ∈ [0, T) × R+, assume α(t̄) = i ∈ M and let
φ1,2([0, T) ×R+) such that

0 = V (n)(t̄, s̄, i) – φ(t̄, s̄) = strict max
(t,s)∈(0,T]×R+

(
V (n)(t, s, i) – φ(t, s)

)
. (23)

We assume to the contrary that

–
∂φ(t̄, s̄)

∂t
–

1
2
σ 2(i)

∂2φ(t̄, s̄)
∂s2 – β(i)

(
ξ (i) – s̄

)∂φ(t̄, s̄)
∂s

+ rφ(t̄, s̄) – qij
(
V (n)(t̄, s̄, j) – φ(t̄, s̄)

)

> 0, j �= i,

and

V (n)(t̄, s̄, i) – g(t̄, s̄, i) > 0.

Next, let θ be the time such that α(t) ≡ i in [t̄, θ ]. We try to work towards a contradiction
of the weak dynamic programming principle, i.e.,

V (n)(t̄, s̄, i)

≤ EQ
[
e–r(τ∧τ ′–t̄)(1{τ<τ ′}G(n)(τ , S(τ ), i

)

+ 1{τ≥τ ′}V (n)(τ ′, S
(
τ ′), i

))|S(t̄) = s̄,α(t̄) = i
]

(24)

for all (t̄, s̄) ∈ [0, T] ×R+ and τ ′ ∈ Tt̄,θ such that St̄,s̄(τ ′) is L∞-bounded.
Firstly by the properties that G(n) ∈ C([0, T] ×R+ ×M) and the first equality of (23), we

know that there exist δ > 0 and 0 < h ≤ θ such that the following inequalities hold:

–
∂φ(t̄, s̄)

∂t
–

1
2
σ 2(i)

∂2φ(t̄, s̄)
∂s2 – β(i)

(
ξ (i) – s̄

)∂φ(t̄, s̄)
∂s

+ rφ(t̄, s̄) – qij
(
V (n)(t̄, s̄, j) – φ(t̄, s̄)

) ≥ 0, j �= i (25)

and

φ(t, s) – G(n)(t, s, i) ≥ V (n)(t, s, i) – G(n)(t, s, i) ≥ δ (26)

on D := [t̄, t̄ + h] × [s̄ – δ, s̄ + δ]. Secondly, by the second equality of (23), we get

–γ := max
∂D

(
V (n)(·, ·, i) – φ(·, ·, i)

)
< 0. (27)

Thirdly, by the continuity of V (n)(t, s, i), there exists a sequence {(tm, sm)} in (0, T] × R+

such that

(tm, sm) → (t̄, s̄) and V (tm, sm, i) → V (t̄, s̄, i) as m → ∞.

Next we define the stopping time,

γm := inf
{

t > tm|(t, Stm ,sm (t)
)

/∈ D
}

,
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and denote

ηm := V (n)(tm, sm, i) – φ(tm, sm) → 0. (28)

Then, for arbitrary stopping time τ ∈ Ttm ,T ,

V (n)(tm, sm, i) = ηm + φ(tm, sm).

And we define

ψ
(
t, S(t),α(t)

)
=

⎧
⎨

⎩

φ(t, S(t)), if α(t) = i,

V (n)(t, S(t),α(t)), otherwise.

Therefore,

V (n)(tm, sm, i)

= ηm + φ(tm, sm)

= ηm + EQ

[

e–r(τ∧γm–tm)ψ
(
τ ∧ γm, S(τ ∧ γm), i

)
–

∫ τ∧γm

tm

e–r(t–tm)
(

∂ψ(t, S(t), i)
∂t

+
1
2
σ 2(i)

∂2φ(t, S(t), i)
∂s2 + β(i)

(
ξ (i) – S(t)

)∂ψ(t, S(t), i)
∂s

– rψ
(
t, S(t), i

)

+ qij
(
ψ

(
t, S(t), j

)
– ψ

(
t, S(t), i

))
)

dt

+
∫ τ∧γm

tm

e–r(t–tm) dM(t)|S(tm) = sm,α(tm) = i
]

, j ∈M, j �= α(t)

= ηm + EQ

[

e–r(τ∧γm–tm)ψ
(
τ ∧ γm, S(τ ∧ γm), i

)
–

∫ τ∧γm

tm

e–r(t–tm)
(

∂ψ(t, S(t), i)
∂t

+
1
2
σ 2(i)

∂2φ(t, S(t), i)
∂s2 + β(i)

(
ξ (i) – S(t)

)∂ψ(t, S(t), i)
∂s

– rψ
(
t, S(t), i

)

+ qij
(
V (n)(t, S(t), j

)
– ψ

(
t, S(t), i

))
)

dt|S(tm) = sm,α(tm) = i
]

, j ∈M, j �= α(t).

Noting that the process (t, Stm ,sm ,i(t)) is in D, then, by (25), (26) and (27) we find that

V (n)(tm, sm, i)

≥ ηm + EQ
[
e–r(τ∧γm–tm)ψ

(
τ ∧ γm, S(τ ∧ γm), i

)|S(tm) = sm,α(tm) = i
]

= ηm + EQ
[
e–r(τ∧γm–tm)(ψ

(
τ , S(τ ), i

)
1{τ<γm} + ψ

(
γm, S(γm), i

)
1{τ≥γm}

)|
S(tm) = sm,α(tm) = i

]

= ηm + EQ
[
e–r(τ∧γm–tm)(φ

(
τ , S(τ )

)
1{τ<γm} + φ

(
γm, S(γm)

)
1{τ≥γm}

)|
S(tm) = sm,α(tm) = i

]

≥ ηm + EQ
[
e–r(τ∧γm–tm)((G(n)(τ , S(τ ), i

)
+ δ

)
1{τ<γm}

+
(
V (n)(γm, S(γm), i

)
+ γ

)
1{τ≥γm}

)|S(tm) = sm,α(tm) = i
]
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≥ ηm + δ ∧ γ + EQ
[
e–r(τ∧γm–tm)((G(n)(τ , S(τ ), i

))
1{τ<γm}

+
(
V (n)(γm, S(γm), i

))
1{τ≥γm}

)|S(tm) = sm,α(tm) = i
]
,

since ηm → 0 as m → ∞, and τ is arbitrary. This provides the contradiction of (24). �

5 Uniqueness of the viscosity solution
The main task of this section is to prove the comparison principle of the HJB variational
inequality problem (7), which ensures the uniqueness of the solution.

Before that, we try to prove the following comparison principle of the HJB equation
problem:

(P)

⎧
⎪⎪⎨

⎪⎪⎩

F1(t, s,ρ1, q, p, M) := –q + (r + q12)ρ1 – H1(t, s, p, M) = 0, (t, s) ∈ [0, T) ×R+,

F2(t, s,ρ2, q, p, M) := –q + (r + q21)ρ2 – H2(t, s, p, M) = 0, (t, s) ∈ [0, T) ×R+,

ρ1(T , s) = ρ2(T , s) = (K – s)+, s ∈R+,

where

Hi(t, s, p, M) := –qijρj(t, s) + βi(ξi – s)p –
σ 2

2
M, i ∈M.

Since the problem (P) is of the weakly coupled type, we only need to consider the problem

(
P′)

⎧
⎪⎪⎨

⎪⎪⎩

Fi(t, s, W , q, p, M)

:= –q + (r + qij)W – Hi(t, s, p, M) = 0, j �= i, (t, s) ∈ [0, T) ×R+,

W (T , s) = (K – s)+, s ∈R+,

where V is as above. To begin with, we introduce Definitions 5, 6,7 and Ishii’s lemma,
which will play important roles in the succeeding proof. For more details as regards the
above definitions and Ishii’s lemma, we refer to the classical literature [21] and [22].

Definition 5 Let Ui be upper semicontinous (u.s.c.), φ ∈ C1,2([0, T] × R+), and (t̄, s̄) ∈
[0, T) ×R+ be a maximum point of Ui – φ. Define a second-order superjet of Ui at (t̄, s̄) as

P2,+Ui(t̄, s̄) :=
{

(q, p, M) ∈ R × R × S|Ui(t, s) ≤ Ui(t̄, s̄) + q(t – t̄) + p(s – s̄)

+
1
2

M(s – s̄)2 + o
(|t – t̄| + |s – s̄|2)

}

.

Definition 6 Let Vi be lower semicontinuous (l.s.c.), φ ∈ C1,2([0, T] × R+), and (t̄, s̄) ∈
[0, T) ×R+ be a maximum point of Vi – φ. Define a second-order subjet of Vi at (t̄, s̄) as

P2,–Vi(t̄, s̄) :=
{

(q, p, M) ∈R×R× S|Vi(t, s) ≥ Vi(t̄, s̄) + q(t – t̄) + p(s – s̄)

+
1
2

M(s – s̄)2 + o
(|t – t̄| + |s – s̄|2)

}

.
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Definition 7 An u.s.c. (resp. l.s.c.) function wi on [0, T) × R+ is a viscosity subsolution
(resp. supersolution) of (P) on [0, T) × R+ if and only if for all (t, s) ∈ [0, T) × R+ and all
(q, p, M) ∈P2,+w(t, s) (resp. P2,–wi(t, s)),

F
(
t, s, wi(t, s), q, p, M

) ≤ 0 (resp. ≥ 0).

Lemma 6 (Ishii’s lemma) Let Ui(Vi) be a u.s.c. (l.s.c.) function on [0, T) × R+, ϕ ∈
C1,1,2,2([0, T)2 ×R+ ×R+) and (t̄, τ̄ , x̄, ȳ) ∈ [0, T)2 ×R+ ×R+ a local maximum (minimum)
of Ui(t, x) – Vi(τ , y) – ϕ(t, τ , x, y). Then, for all η > 0, there exist M, N ∈ S satisfying

(
∂ϕ

∂t
(t̄, τ̄ , x̄, ȳ), Dxϕ(t̄, τ̄ , x̄, ȳ), M

)

∈P2,+Ui(t̄, x̄),

(

–
∂ϕ

∂τ
(t̄, τ̄ , x̄, ȳ), –Dyϕ(t̄, τ̄ , x̄, ȳ), N

)

∈P2,–Vi(τ̄ , ȳ),

and

(
M 0
0 –N

)

≤ D2
xyϕ(t̄, τ̄ , x̄, ȳ) + η

(
D2

xyϕ(t̄, τ̄ , x̄, ȳ)
)2.

Now we proceed to the statement of the comparison principle for the problem (P′), and
the proof of it.

Theorem 3 Let Ui be a u.s.c. viscosity subsolution of problem (P′) with polynomial growth
condition, and let Vi be l.s.c. viscosity supersolution of problem (P′) with polynomial growth
condition. In addition, let Ui(T , s) = Vi(T , s) = (K – s)+ for s ∈R+. If Ui(T , ·) ≤ Vi(T , ·), then
Ui ≤ Vi in [0, T) ×R+.

Proof We argue by contradiction.
Step 1. Assume that the supreme of Ui – Vi on [0, T]×R+ is attained at (t̄, x̄) ∈ [0, T)×O

for some bounded set O ⊂ R+, i.e.,

M := sup
[0,T]×R+

(Ui – Vi) = max
[0,T)×O

(Ui – Vi) = (Ui – Vi)(t̄, x̄), (29)

and suppose that

M > 0. (30)

Then, for any ε > 0, we define

Φε(t, τ , x, y) = Ui(t, x) – Vi(τ , y) – ϕε(tε , τε , xε , yε)

with

ϕε(t, τ , x, y) =
1

2ε

[
(t – τ )2 + (x – y)2] ≥ 0. (31)
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Similar to (29), we denote

Mε := sup
[0,T]2×O2

Φε = Ui(tε , xε) – Vi(τε , yε) – ϕε(tε , τε , xε , yε). (32)

In the sequel, we try to show

Mε → M, ϕε → 0, as ε → 0. (33)

Note that

M ≤ Mε ,

which implies that

(Ui – Vi)(t̄, x̄) ≤ Ui(tε , xε) – Vi(τε , yε) – ϕε(tε , τε , xε , yε),

i.e.,

ϕε(tε , τε , xε , yε) ≤ Ui(tε , xε) – Vi(τε , yε) – (Ui – Vi)
(
t∗, s∗), (34)

which indicates that ϕε(tε , τε , xε , yε) is bounded. Then sending ε → 0+, we find from (31)
and (34) that

(tε , τε , xε , yε) → (t̄, τ̄ , x̄, ȳ) ∈ [0, T]2 ×O2 and t̄ = τ̄ , x̄ = ȳ. (35)

Hence,

0 ≤ lim
ε→0

ϕε(tε , τε , xε , yε) ≤ (Ui – Vi)(t̄, x̄) – (U – V )(t̄, x̄) ≤ 0, (36)

which implies ϕε → 0 as ε → 0. From (32), (35), (36), Mε → M.
In view of Ishii’s lemma, there exist M, N ∈ S satisfying

(
M 0
0 –N

)

≤ 3
ε

(
1 –1

–1 1

)

,

which implies that

σ 2(xε)M – σ 2(yε)N ≤ 3
ε

∣
∣σ 2(xε) – σ 2(yε)

∣
∣2 = 0

(
since σ 2(xε) = σ 2(yε)

)
,

and
(

1
ε

(tε – τε),
1
ε

(xε – yε), M
)

∈P2,+U(tε , xε),

(
1
ε

(tε – τε),
1
ε

(xε – yε), N
)

∈P2,–V (τε , yε).
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Step 2. Since Ui, Vi are, respectively, a subsolution and a supersolution of (P′), we have

–
1
ε

(tε – τε) + (r + qij)Ui(tε , xε) – Hi

(

tε , xε ,
1
ε

(xε – yε), M
)

≤ 0,

–
1
ε

(tε – τε) + (r + qij)Vi(τε , yε) – Hi

(

τε , yε ,
1
ε

(xε – yε), N
)

≥ 0,

which leads to

(r + qij)
(
Ui(tε , xε) – Vi(τε , yε)

)

≤Hi

(

tε , xε ,
1
ε

(xε – yε), M
)

– Hi

(

τε , yε ,
1
ε

(xε – yε), N
)

≤ qij
(
Vj(τε , yε) – Uj(tε , xε)

)
–

1
ε

(xε – yε)2 +
σ 2

2
(M – N)

≤ qijC
(|tε – τε | 1

2 + |xε – yε |
)

–
1
ε
|xε – yε |2.

Finally, after sending ε to 0, we conclude that

(r + qij)M = (r + qij)
(
Ui(t̄, x̄) – Vi(τ̄ , ȳ)

) ≤ 0,

which contradicts the assumption (30). �

Now we consider the corresponding coupled variational inequalities problem,

(C)

⎧
⎪⎪⎨

⎪⎪⎩

min{F1(t, s,ρ1, q, p, M),ρ1 – G(n)
1 } = 0, (t, s) ∈ [0, T) ×R+,

min{F2(t, s,ρ2, q, p, M),ρ2 – G(n)
2 } = 0, (t, s) ∈ [0, T) ×R+,

ρ1(T , s) = ρ2(T , s) = (K – s)+, s ∈R+.

Similarly, we only need to consider the problem

(UNC)

⎧
⎨

⎩

min{Fi(t, s, W , q, p, M), W – G(n)
i } = 0, j �= i, (t, s) ∈ [0, T) ×R+,

W (T , s) = (K – s)+, s ∈R+.

Theorem 4 Let Ui be a u.s.c. viscosity subsolution of problem (UNC) with polynomial
growth condition, and let Vi be l.s.c. viscosity supersolution of problem (UNC) with poly-
nomial growth condition. If Ui(T , ·) ≤ Vi(T , ·), then Ui ≤ Vi in [0, T) ×R+.

Proof The only difference appears at Step 2 in the proof of Theorem 3, that is,

min
{

Fi(tε , xε , W , q, p, M), Ui – G(n)
i

} ≤ 0,

min
{

Fi(τε , yε , W , q, p, M), Vi – G(n)
i

} ≥ 0.

These two inequalities lead to the following two cases:
1 Either Ui – G(n)

i ≤ 0. Together with the inequality Vi – G(n)
i ≥ 0 leads to contradiction

of (29).
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2 Or Fi(tε , xε , W , q, p, M) ≤ 0, which can be combined with the supersolution part
Fi(τε , yε , W , q, p, M) ≥ 0 exactly as in the proof of Theorem 3, and this leads to the
same contradiction as above. �
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