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Abstract
In this paper, we deal with the problem of finding the best possible bounds for the
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1 Introduction
A mean is a function f : R2

+ →R+ which satisfies

min(a, b) ≤ f (a, b) ≤ max(a, b), ∀a, b > 0. (1.1)

Each mean is reflexive, namely

f (a, a) = a, ∀a > 0. (1.2)

That is also used as the definition of f (a, a).
A mean is symmetric if

f (a, b) = f (b, a), ∀a, b > 0; (1.3)

it is homogeneous (of degree 1) if

f (ta, tb) = tf (a, b), ∀a, b, t > 0. (1.4)

We shall refer here to some symmetric and homogeneous means as follows.
For a, b > 0 with a �= b, the Neuman–Sándor mean M(a, b) [16], the first Seiffert mean

P(a, b) [18], the second Seiffert mean T(a, b) [19] and the logarithmic mean L(a, b) are
defined by

M(a, b) =
a – b

2 sinh–1( a–b
a+b )

, (1.5)

P(a, b) =
a – b

2 arcsin( a–b
a+b )

, (1.6)
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T(a, b) =
a – b

2 arctan( a–b
a+b )

, (1.7)

and

L(a, b) =
a – b

log a – log b
, (1.8)

respectively.
Let Mp(a, b) = ((ap + bp)/2)1/p (p �= 0) stand for the pth power means. The mean M1 = A is

the arithmetic mean, and the mean M2 = Q is the root-square mean. The geometric mean
is given by G(a, b) =

√
ab, but verifying also the property limp→0 Mp(a, b) = M0(a, b) =

G(a, b).
As Carlson remarked in [2], the logarithmic mean can be rewritten as

L(a, b) =
a – b

2 tanh–1( a–b
a+b )

, (1.9)

thus the means M, P, T and L are very similar. In [16] it is also proven that these means
can be defined using the non-symmetric Schwab–Borchardt mean SB given by

SB(a, b) =

⎧
⎨

⎩

√
b2–a2

cos–1(a/b) if a < b,
√

a2–b2

cosh–1(a/b) if a > b;
(1.10)

see [1]. It has been established in [16] that

L = SB(A, G), P = SB(G, A), T = SB(A, Q), M = SB(Q, A). (1.11)

For two means M and N we write M < N if M(a, b) < N (a, b) for ∀a, b > 0, a �= b. It is
well known that the inequalities

G < L < P < A < M < T < Q. (1.12)

Recently, the inequalities for means have been the subject of intensive research. Many
remarkable inequalities can be found in the literature [5, 7, 9, 14, 15, 17, 20].

In [6], Costin and Toader presented

Mlog 2/(logπ–log 2)(a, b) < T(a, b) < M5/3(a, b) (1.13)

holding for all a, b > 0 with a �= b.
The following sharp power mean bounds for the first Seiffert mean P(a, b) are given by

Jagers in [13]:

M1/2(a, b) < P(a, b) < M2/3(a, b) (1.14)

for all a, b > 0 with a �= b. Hästö [11] improved the results of [13] and the sharp result was
found that

P(a, b) > Mlog 2/ logπ (a, b). (1.15)
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In [8, 12], the authors proved that the double inequalities

α1P(a, b) + (1 – α1)T(a, b) < M(a, b) < β1P(a, b) + (1 – β1)T(a, b), (1.16)

Pα2 (a, b)T1–α2 (a, b) < M(a, b) < Pβ2 (a, b)T1–β2 (a, b), (1.17)

hold for all a, b > 0 with a �= b if and only if α1 ≥ 1/3,β1 ≤ (1/2)π (4/π – 1/ sinh–1(1)), α2 ≥
1/3, β2 ≤ log(4 log(1 +

√
2)/π )/ log 2.

In [3, 4, 10], the authors proved that the double inequalities

α3Q(a, b) + (1 – α3)A(a, b) < T(a, b) < β3Q(a, b) + (1 – β3)A(a, b), (1.18)

Qα4 (a, b)A1–α4 (a, b) < T(a, b) < Qβ4 (a, b)A1–β4 (a, b), (1.19)

Pα5 (a, b)Q1–α5 (a, b) < M(a, b) < Pβ5 (a, b)Q1–β5 (a, b), (1.20)

α6P(a, b) + (1 – α6)Q(a, b) < M(a, b) < β6P(a, b) + (1 – β6)Q(a, b), (1.21)

hold for all a, b > 0 with a �= b if and only if α3 ≤ (4 – π )/[(
√

2 – 1)π ], β3 ≥ 2/3, α4 ≤ 2/3,
β4 ≥ 4 – 2 logπ/ log 2, α5 ≤ 1/2, β5 ≤ [2 log(log(1 +

√
2) + log 2)]/(2 logπ – log 2) and α6 ≥

1/2, β6 ≤ [π (
√

2 log(1 +
√

2) – 1)]/[(
√

2π – 2) log(1 +
√

2)].
The main purpose of this paper is to find the least values α and β such that the inequal-

ities

P(a, b) > Lα(a, b)T1–α(a, b) (1.22)

and

P(a, b) > Lβ (a, b)M1–β(a, b) (1.23)

hold for all a, b > 0 with a �= b. Moreover, we find that both upper bounds for P(a, b)
are trivial cases. That is to say, the inequalities P(a, b) < Lλ1 (a, b)T1–λ1 (a, b) and P(a, b) <
Lλ2 (a, b)M1–λ2 (a, b) hold for all a, b > 0 with a �= b if and only if λ1 = 0 and λ2 = 0, which we
will address at the end of this paper.

2 Lemmas
To establish our main results, we need several lemmas, which we present in this section.

For x ∈ (0, 1), the following power series expansions of the functions sin–1(x), sinh–1(x),
tan–1(x) and tanh–1(x) are presented:

sin–1(x) = x +
x3

6
+

3x5

40
+ · · · =

∞∑

n=0

(2n)!
(2n + 1)22n(n!)2 x2n+1, (2.1)

sinh–1(x) = x –
x3

6
+

3x5

40
– · · · =

∞∑

n=0

(–1)n(2n)!
(2n + 1)22n(n!)2 x2n+1, (2.2)

tan–1(x) = x –
x3

3
+

x5

5
– · · · =

∞∑

n=0

(–1)n

2n + 1
x2n+1, (2.3)

tanh–1(x) = x +
x3

3
+

x5

5
+ · · · =

∞∑

n=0

1
2n + 1

x2n+1. (2.4)
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Lemma 2.1 Let f1(x) = 4(1 + x2)
√

1 – x2tanh–1(x) tan–1(x). Then

f1(x) < 4x2 + 2x4 –
5

12
x6 (2.5)

for x ∈ (0, 1).

Proof Let

g(x) = tanh–1(x)
√

1 – x2 –
(

x –
1
6

x3
)

, (2.6)

then

g ′(x) =
1√

1 – x2
h(x), (2.7)

where h(x) = 1 – xtanh–1(x) –
√

1 – x2(1 – 1
2 x2). Noting that, for any x ∈ (0, 1),

√
1 – x2 > 1 –

1
2

x2 –
1
2

x4, (2.8)

tanh–1(x) > x +
1
3

x3, (2.9)

we can get

h(x) < 1 – x
(

x +
1
3

x3
)

–
(

1 –
1
2

x2
)(

1 –
1
2

x2 –
1
2

x4
)

= –
1

12
x4 –

1
4

x6 < 0. (2.10)

It follows from (2.7) and (2.10) that

g ′(x) < 0 (2.11)

for x ∈ (0, 1). Considering g(0) = 0, then we have g(x) < 0 for x ∈ (0, 1). That is,

tanh–1(x)
√

1 – x2 < x –
1
6

x3 (2.12)

for x ∈ (0, 1).
Considering (2.3), we have

tan–1(x)
(
1 + x2) = x +

∞∑

n=1

(–1)n+1 2
(2n – 1)(2n + 1)

x2n+1

= x +
2
3

x3 –
2

15
x5 +

2
35

x7 – · · ·

< x +
2
3

x3 (2.13)

for x ∈ (0, 1).
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Therefore, it follows from (2.12) and (2.13) that

f1(x) < 4
(

x –
1
6

x3
)(

x +
2
3

x3
)

= 4x2 + 2x4 –
4
9

x6

< 4x2 + 2x4 –
5

12
x6 (2.14)

for x ∈ (0, 1). �

Lemma 2.2 Let f2(x) = 3 tan–1(x) sin–1(x)(1 + x2), f3(x) = tanh–1(x) sin–1(x)(1 – x2). Then

f2(x) > 3x2 +
5
2

x4 +
1

12
x6, (2.15)

f3(x) > x2 –
1
2

x4 –
1
2

x6, (2.16)

for x ∈ (0, 1).

Proof Noticing that

sin–1(x)
(
1 + x2) >

(

x +
1
6

x3 +
3

40
x5

)
(
1 + x2)

= x +
7
6

x3 +
29

120
x5 +

3
40

x7, (2.17)

we obtain

f2(x) = 3 tan–1(x) sin–1(x)
(
1 + x2)

> 3 tan–1(x)
(

x +
7
6

x3 +
29

120
x5 +

3
40

x7
)

= 3
(

x2 +
5
6

x4 +
19

360
x6 +

107
1260

x8 · · ·
)

> 3
(

x2 +
5
6

x4 +
1

36
x6

)

= 3x2 +
5
2

x4 +
1

12
x6 (2.18)

for x ∈ (0, 1). Therefore, (2.15) holds.
By (2.1) and (2.4), we have

f3(x) –
(

x2 –
1
2

x4 –
1
2

x6
)

>
(

x +
1
3

x3
)(

x +
1
6

x3
)

(
1 – x2) –

(

x2 –
1
2

x4 –
1
2

x6
)

=
1

18
(
x6 – x8) > 0 (2.19)

for x ∈ (0, 1). Therefore, (2.16) holds. �
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Lemma 2.3 If x ∈ (0, 1), then one has

tanh–1(x)
√

1 – x4 < x +
1
3

x3 –
3

10
x5, (2.20)

sinh–1(x)
√

1 + x2 > x +
1
3

x3 –
2

15
x5. (2.21)

Proof Let

g1(x) = tanh–1(x)
√

1 – x4 –
(

x +
1
3

x3 –
3

10
x5

)

. (2.22)

It follows that

g ′
1(x) =

1 + x2 – 2x3 tanh–1(x) – (1 + x2 – 3
2 x4)

√
1 – x4

√
1 – x4

. (2.23)

Notice that
√

1 – x > 1 – 1
2 x – 1

2 x2 for x ∈ (0, 1), therefore
√

1 – x4 > 1 – 1
2 x4 – 1

2 x8 for x ∈
(0, 1). Considering tanh–1(x) > x + 1

3 x3 + 1
5 x5 for x ∈ (0, 1), we have

1 + x2 – 2x3tanh–1(x) –
(

1 + x2 –
3
2

x4
)√

1 – x4

< 1 + x2 – 2x3
(

x +
1
3

x3 +
1
5

x5
)

–
(

1 + x2 –
3
2

x4
)(

1 –
1
2

x4 –
1
2

x8
)

= –x6
(

1
6

+
13
20

x2 –
1
2

x4 +
3
4

x6
)

< 0 (2.24)

for any x ∈ (0, 1).
Equation (2.23) and inequality (2.24) lead to g ′

1(x) < 0 for any x ∈ (0, 1). Noting that
g1(0) = 0, thus we have g1(x) < 0 for any x ∈ (0, 1). Inequality (2.20) is proved.

Let

g2(x) = sinh–1(x)
√

1 + x2 –
(

x +
1
3

x3 –
2

15
x5

)

. (2.25)

Then one has

g ′
2(x) =

(–x2 + 2
3 x4)

√
1 + x2 + x sinh–1(x)√
1 + x2

. (2.26)

Because
√

1 + x2 < 1 + 1
2 x2 and sinh–1(x) > x – 1

6 x3 for x ∈ (0, 1), it follows that

(

–x2 +
2
3

x4
)√

1 + x2 + x sinh–1(x)

>
(

–x2 +
2
3

x4
)(

1 +
1
2

x2
)

+ x
(

x –
1
6

x3
)

=
1
3

x6 > 0 (2.27)

for any x ∈ (0, 1).
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Equation (2.26) and inequality (2.27) lead to g ′
2(x) > 0 for any x ∈ (0, 1). Note that

g2(0) = 0. So g2(x) > 0 for any x ∈ (0, 1). Inequality (2.21) is established. �

Lemma 2.4 Let f4(x) = 3 sinh–1(x) tanh–1(x)
√

1 – x4 and f5(x) = 2 sin–1(x) sinh–1(x)
√

1 + x2.
Then

f4(x) < 3x2 +
1
2

x4 –
3
5

x6, (2.28)

f5(x) > 2x2 + x4 –
1

10
x6 (2.29)

for any x ∈ (0, 1).

Proof Because

sinh–1(x) < x –
1
6

x3 +
3

40
x5, (2.30)

for x ∈ (0, 1), we can get

f4(x) = 3 sinh–1(x)tanh–1(x)
√

1 – x4

< 3
(

x –
1
6

x3 +
3

40
x5

)(

x +
1
3

x3 –
3

10
x5

)

= x2
(

3 +
1
2

x2 –
101
120

x4 +
9

40
x6 –

27
400

x8
)

< x2
(

3 +
1
2

x2 –
101
120

x4 +
9

40
x4

)

< x2
(

3 +
1
2

x2 –
3
5

x4
)

= 3x2 +
1
2

x4 –
3
5

x6

(2.31)

for any x ∈ (0, 1). This is inequality (2.28).
Observe sin–1(x) > x + 1

6 x3 + 3
40 x5 for x ∈ (0, 1). It follows that

f5(x) = 2 sin–1(x) sinh–1(x)
√

1 + x2

> 2
(

x +
1
6

x3 +
3

40
x5

)(

x +
1
3

x3 –
2

15
x5

)

= x2
(

2 + x2 –
1

180
x4 +

1
180

x6 –
1

50
x8

)

> x2
(

2 + x2 –
1

180
x4 –

1
50

x8
)

> x2
(

2 + x2 –
1

10
x4

)

(2.32)

for any x ∈ (0, 1). Inequality (2.29) holds. �

3 Main results
Note that L(a, b), P(a, b), T(a, b) and M(a, b) are symmetric and homogeneous of degree 1.
In this section, without loss of generality, we can assume that a > b, then x := (a – b)/(a +
b) ∈ (0, 1). We have the following two theorems.
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Theorem 3.1 The inequality

P(a, b) > Lα(a, b)T1–α(a, b) (3.1)

holds for all a, b > 0 with a �= b if and only if α ≥ 3
4 .

Proof Noting that

P(a, b)
A(a, b)

=
x

sin

–1
(x),

T(a, b)
A(a, b)

=
x

tan

–1
(x),

L(a, b)
A(a, b)

=
x

tanh

–1
(x), (3.2)

we have

log[T(a, b)] – log[P(a, b)]
log[T(a, b)] – log[L(a, b)]

=
log[sin–1(x)] – log[tan–1(x)]

log[tanh–1(x)] – log[tan–1(x)]
. (3.3)

Direct computations lead to

lim
x→0+

log[sin–1(x)] – log[tan–1(x)]
log[tanh–1(x)] – log[tan–1(x)]

=
3
4

. (3.4)

Next, we take the logarithm of (3.1) and consider the difference between the convex
combination of log L(a, b), log P(a, b) and log T(a, b) as follows:

3
4

log
[
L(a, b)

]
+

1
4

log
[
T(a, b)

]
– log

[
P(a, b)

]

=
3
4

log

[
L(a, b)
A(a, b)

]

+
1
4

log

[
T(a, b)
A(a, b)

]

– log

[
P(a, b)
A(a, b)

]

=
3
4

log

[
x

tanh–1(x)

]

+
1
4

log

[
x

tan–1(x)

]

– log

[
x

sin–1(x)

]

= log
[
sin–1(x)

]
–

1
4

log
[
tan–1(x)

]
–

3
4

log
[
tanh–1(x)

]

:= D 3
4

(x). (3.5)

It follows that

D 3
4

(
0+)

= 0, (3.6)

D′
3
4

(x) =
f1(x) – f2(x) – f3(x)

4 sin–1(x) tan–1(x) tanh–1(x)(1 – x2)(1 + x2)
, (3.7)

where f1(x), f2(x), and f3(x) are defined as in Lemmas 2.1 and 2.2, respectively. Thus, from
Lemmas 2.1 and 2.2 one deduces that

f1(x) – f2(x) – f3(x) < 4x2 + 2x4 –
5

12
x6 –

(

3x2 +
5
2

x4 +
1

12
x6

)

–
(

x2 –
1
2

x4 –
1
2

x6
)

= 0. (3.8)
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Therefore, it follows from (3.6)–(3.8) that

D 3
4

(x) < 0 (3.9)

for x ∈ (0, 1).
According to (3.5) and (3.9), we conclude that P(a, b) > L 3

4 (a, b)T 1
4 (a, b) for all a, b > 0

with a �= b. Considering L(a, b) < P(a, b) < T(a, b) holds for all a, b > 0 with a �= b, we can
see that (3.1) holds for all a, b > 0 with a �= b and α ≥ 3

4 .
If α < 3

4 , then Eqs. (3.3) and (3.4) imply that there exists 0 < σ1 < 1 such that P(a, b) <
Lα(a, b)T1–α(a, b) for all a, b with (a – b)/(a + b) ∈ (0,σ1). The proof is completed. �

Theorem 3.2 The inequality

P(a, b) > Lβ (a, b)M1–β(a, b) (3.10)

holds for all a, b > 0 with a �= b if and only if β ≥ 2
3 .

Proof Noting that

P(a, b)
A(a, b)

=
x

sin–1(x)
,

M(a, b)
A(a, b)

=
x

sinh–1(x)
,

L(a, b)
A(a, b)

=
x

tanh–1(x)
, (3.11)

we have

log[M(a, b)] – log[P(a, b)]
log[M(a, b)] – log[L(a, b)]

=
log[sin–1(x)] – log[sinh–1(x)]

log[tanh–1(x)] – log[sinh–1(x)]
. (3.12)

Direct computations lead to

lim
x→0+

log[sin–1(x)] – log[sinh–1(x)]
log[tanh–1(x)] – log[sinh–1(x)]

=
2
3

. (3.13)

Let

2
3

log
[
L(a, b)

]
+

1
3

log
[
M(a, b)

]
– log

[
P(a, b)

]

=
2
3

log

[
L(a, b)
A(a, b)

]

+
1
3

log

[
M(a, b)
A(a, b)

]

– log

[
P(a, b)
A(a, b)

]

=
2
3

log

[
x

tanh–1(x)

]

+
1
3

log

[
x

sinh–1(x)

]

– log

[
x

sin–1(x)

]

= log
[
sin–1(x)

]
–

1
3

log
[
sinh–1(x)

]
–

2
3

log
[
tanh–1(x)

]

:= D 2
3

(x). (3.14)

It follows that

D 2
3

(
0+)

= 0, (3.15)

D′
2
3

(x) =
f4(x) – f5(x) – f3(x)

3 tanh–1(x) sin–1(x) sinh–1(x)
√

1 + x2(1 – x2)
, (3.16)
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where f3(x), f4(x), and f5(x) are defined as in Lemmas 2.2 and 2.4, respectively. Thus, from
Lemmas 2.2 and 2.4 one deduces that

f4(x)– f5(x)– f3(x) < 3x2 +
1
2

x4 –
3
5

x6 –
(

2x2 +x4 –
1

10
x6

)

–
(

x2 –
1
2

x4 –
1
2

x6
)

= 0. (3.17)

Therefore, it follows from (3.15)–(3.17) that

D 2
3

(x) < 0 (3.18)

for any x ∈ (0, 1).
According to (3.14) and (3.18), we conclude that P(a, b) > L 2

3 (a, b)M 1
3 (a, b) for all a, b > 0

with a �= b. Considering L(a, b) < P(a, b) < M(a, b) holds for all a, b > 0 with a �= b, we can
see that (3.10) holds for all a, b > 0 with a �= b and β ≥ 2

3 .
If β < 2

3 , then Eqs. (3.12) and (3.13) imply that there exists 0 < σ2 < 1 such that P(a, b) <
Lβ (a, b)M1–β (a, b) for all a, b, with (a – b)/(a + b) ∈ (0,σ2). The proof is completed. �

Remark Let us show there is no λ1,λ2 ∈ (0, 1) such that P(a, b) < Lλ1 (a, b)T1–λ1 (a, b) and
P(a, b) < Lλ2 (a, b)M1–λ2 (a, b) hold for all a, b > 0 with a �= b. Firstly, we assume that λ1 >
0, then Eq. (3.3) and limx→1–

log[sin–1(x)]–log[tan–1(x)]
log[tanh–1(x)]–log[tan–1(x)] = 0 imply that there exists 0 < σ3 < 1

such that P(a, b) > Lλ1 (a, b)T1–λ1 (a, b) for all a, b with (a – b)/(a + b) ∈ (1 – σ3, 1). This in
conjunction with the well-known inequality P(a, b) < T(a, b), which is the case of λ1 = 0,
indicates that P(a, b) < Lλ1 (a, b)T1–λ1 (a, b) if and only if λ1 = 0. With the same method, we
can obtain P(a, b) < Lλ2 (a, b)M1–λ2 (a, b) if and only if λ2 = 0.

4 Conclusion
In the article, we give the best possible bounds for the first Seiffert mean in terms of the
geometric combination of logarithmic and the Neuman–Sándor means, and in terms of
the geometric combination of logarithmic and the second Seiffert means.
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