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Abstract
In this paper, we introduce a new problem, the modified split generalized equilibrium
problem, which extends the generalized equilibrium problem, the split equilibrium
problem and the split variational inequality problem. We introduce a new method of
an iterative scheme {xn} for finding a common element of the set of solutions of
variational inequality problems and the set of common fixed points of a finite family
of quasi-nonexpansive mappings and the set of solutions of the modified split
generalized equilibrium problem without assuming a demicloseness condition and
Tω := (1 –ω)I +ωT , where T is a quasi-nonexpansive mapping and ω ∈ (0, 12 ); a
difficult proof in the framework of Hilbert space. In addition, we give a numerical
example to support our main result.
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1 Introduction
Let C be a nonempty closed convex subset of a real Hilbert space H . The set of fixed points
of T is denoted by F(T). The mapping T : C → C is said to be quasi-nonexpansive if

‖Tx – p‖ ≤ ‖x – p‖,

for all x ∈ C and p ∈ F(T).

Definition 1.1 ([1]) Let T : H → H . Then the following are equivalent:
1. T is firmly nonexpansive,
2. ‖Tx – Ty‖2 ≤ 〈x – y, Tx – Ty〉, ∀x, y ∈ H ,
3. 〈Tx – Ty, (I – T)x – (I – T)y〉 ≥ 0, ∀x, y ∈ H .

Let A : C → H be a mapping. The variational inequality is to find a point u ∈ C such
that

〈Au, v – u〉 ≥ 0, (1.1)
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for all v ∈ C. The set of solutions of (1.1) is denoted by VI(C, A). A mapping A : C → H is
called α-inverse strongly monotone if there exists a positive real number α > 0 such that

〈Ax – Ay, x – y〉 ≥ α‖Ax – Ay‖2,

for all x, y ∈ C. They have been investigated in the literature; see, for example, [2, 3]. Let
F be a bifunction of C × C into R, where R is the set of real numbers. The equilibrium
problem for F : C × C →R is to find x ∈ C such that

F(x, y) ≥ 0, ∀y ∈ C. (1.2)

The set of solutions of (1.2) is denoted by EP(F). Equilibrium problems were introduced
by [4] in 1994 and included many well-known problems such as variational inequality,
optimization problem, nonexpansive mapping and fixed point problem; see, for example,
[5–8].

Let F be a function of C × C into R and let f : H → H be a mapping. The generalized
equilibrium problem is to find x ∈ C such that

F(x, y) +
〈
f (x), y – x

〉 ≥ 0, (1.3)

for all y ∈ C. The set of solutions of (1.3) is denoted by EP(F , f ). When f ≡ 0, EP(F , f ) is
denoted by EP(F) and F ≡ 0, EP(F , f ) is denoted by VI(C, f ).

Throughout this section, let H1, H2 be real Hilbert spaces and let C, Q be nonempty
closed convex subsets of real Hilbert spaces H1 and H2, respectively. Let A : H1 → H2 be
a bounded linear operator.

In 1994, Censor and Elfving [9] introduced the split feasibility problem (in short, SFP)
which is to find a point x ∈ C such that Ax ∈ Q. The set of all solutions of split feasibility
problem is denoted by ϕ = {x ∈ C : Ax ∈ Q}.

To solve the SFP, Byrne [10] introduced CQ algorithm whose sequence {xn} is generated
by

xn+1 = PC1

(
xn – γ A∗(I – PC2 )Axn

)
,

where the initial x0 ∈ H1 and γ ∈ (0, 2/L), L is the spectral radius of the operator A∗A
and A∗ is the adjoint of A. Then the CQ algorithm converges to a solution of the SFP,
whenever solutions exist. If there are no solutions of the SFP, the CQ algorithm converges
to a minimizer of the function

1
2
∥∥(I – PC2 )Ax

∥∥2,

whenever such minimizers exist.
Let U : H1 → H1 and T : H2 → H2 be two nonlinear operators. The split common fixed

points problem (SCFPP) [11, 12] is to find a point x∗ such that

x∗ ∈ F(U) and Ax∗ ∈ F(T).
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The solution set of SCFPP is denoted by � = {p∗ ∈ F(U) : Ap∗ ∈ F(T)}. The split common
fixed point problem is a generalization of the split feasibility problem.

In 2017, Wang [13] introduced a new method for solving SCFPP as follows:

xn+1 = xn – ρn
(
(I – U)xn + A∗(I – T)Axn

)
,

where ρn ⊂ (0,∞) is chosen such that

ρn =
‖(I – U)xn‖2 + ‖(I – T)Axn‖2

‖(I – U)xn + A∗(I – T)Axn‖2 (1.4)

and U and T are firmly quasi-nonexpansive mappings. Then the sequence {xn} converges
weakly to z, where z = limn→∞ P�xn.

Censor et al. [11, 14] introduced the prototypical split inverse problem (SIP) which is
a generalization of the split common fixed points problem. In this, there are given two
vector spaces X and Y and a linear operator A : X → Y . In addition, two inverse problems
are involved. The first one, denoted IP1, is formulated in the space X and the second one,
denoted IP2, is formulated in the space Y . Given these data, the split inverse problem is
formulated as follows:

find a point x∗ ∈ X that solves IP1, (1.5)

and such that

find a point y∗ ∈ Y that solves IP2. (1.6)

This problem is used in many modeling arising in sensor networks, radiation therapy treat-
ment planning, color imaging, etc.

The split equilibrium problem (SEP) [12] is to find x̂ ∈ C such that

F1(̂x, x) ≥ 0, ∀x ∈ C, (1.7)

and such that

ŷ = Âx ∈ Q solves F2(̂y, y) ≥ 0, ∀y ∈ Q, (1.8)

where F1 : C × C → R and F2 : Q × Q → R be nonlinear bifunctions. If we consider only
problem (1.7), it is the equilibrium problem and we denoted its solution set by EP(F1). The
solution set of SEP is denoted by � = {̂p ∈ EP(F1) : Âp ∈ EP(F2)}. SEP is reduced to EP(F),
where H1 ≡ H2, F1 ≡ F2 and A ≡ I . EP(F) is an unifying model for several problems arising
in physics, engineering, science, optimization, economics, etc.

The split variational inequality problems (in short, SVIP) were introduced and studied
by Cencor et al. [11]: find x ∈ C such that

〈
f1(x), x – x

〉 ≥ 0, ∀x ∈ C, (1.9)
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and such that

y = Ax ∈ Q solves
〈
f2(y), y – y

〉 ≥ 0, ∀y ∈ Q, (1.10)

where f1 : C → H1 and f2 : Q → H2 are nonlinear mappings. The solution set of SVIP is
denoted by 	 = {p ∈ VI(C, f1) : Ap ∈ VI(Q, f2)}. The split variational inequality problems
have already been studied and used in practice as a model in intensity-modulated radia-
tion therapy (IMRT) treatment planning; see, for example, [15] and the modeling of many
inverse problems arising for phase retrieval and other real-world problems; for instance,
in sensor networks in computerized tomography and data compression; see, for example,
[16, 17].

By investigating SEP and SVIP, we introduce the modified split generalized equilibrium
problem (MSGEP) which is to find x∗ ∈ C such that

F1
(
x∗, x

)
+

〈
f1

(
x∗), x – x∗〉 ≥ 0, ∀x ∈ C, (1.11)

and such that

y∗ = Ax∗ ∈ Q solves F2
(
y∗, y

)
+

〈
f2

(
y∗), y – y∗〉 ≥ 0, ∀y ∈ Q, (1.12)

where F1 : C × C → R and F2 : Q × Q →R are nonlinear bifunctions and f1 : C → H1 and
f2 : Q → H2 are nonlinear mappings. The solution set of MSGEP is denoted by 
 = {p∗ ∈
EP(F1, f1) : Ap∗ ∈ EP(F2, f2)}.

Remark 1.1
1. If we put f1 ≡ f2 ≡ 0 in MSGEP then the MSGEP is reduced to SEP.
2. If we put F1 ≡ F2 ≡ 0 in MSGEP then the MSGEP is reduced to SVIP.
3. In the case of bifunctions F1 and F2 are according to (A1)–(A4). From (1.11), (1.12)

and Lemma 2.2, we have x∗ ∈ F(TF1
r (I – rf1)) and Ax∗ ∈ F(TF2

s (I – sf2)), for all
r, s > 0. So, MSGEP can be viewed as SCFPP.

MSGEP is a generalization of the generalized equilibrium problem, the split equilib-
rium problem and the split variational inequality problem. So, this problem can be used
in sensor networks, data compression, practice as a model in intensity-modulated radia-
tion therapy (IMRT) treatment planning, robustness to marginal changes and equilibrium
stability etc.

Example 1.2 Let H1 = [0, 6], H2 = [0, 18], C = [2, 5] and Q = [6, 10]. Let A : H1 → H2 be
defined by Ax = 3x for all x ∈ H1. Let the mapping F1 : C × C →R be defined by

F1
(
x∗, x

)
= –

(
x∗ – 2

)2 + (x – 2)2, ∀x, y ∈ C,

and F2 : Q × Q →R be defined by

F2
(
y∗, y

)
= –

(
y∗ – 6

)2 + (y – 6)2, ∀x, y ∈ Q.
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Let the mapping f1 : C → H1 be defined by f1x = x–2
9 , ∀x ∈ C and the mapping f2 : Q → H2

be defined by f2x = x–6
7 , ∀x ∈ Q.

Then 2 ∈ 
. Therefore 2 is a solution of MSGEP.

In 2012, Tain and Jin [18] introduced iterative algorithms involving a quasi-nonexpansive
mapping. They generated the iterative as follows:

xn+1 = αnγ f (xn) + (I – αnA)Tωxn,

where A is a bounded linear operator on H , T is a quasi-nonexpansive mapping on H , f is
a contraction with coefficient a under suitable conditions of the parameters αn, γ and ω.
By assuming ω ∈ (0, 1

2 ), Tω := (1 – ω)I + ωT and T is demiclosed on H .
Motivated by SFP and SVIP, we introduced a new problem, the modified split general-

ized equilibrium problem, which extends the generalized equilibrium problem, the split
equilibrium problem and the split variational inequality problem. Many authors proved
strong convergence theorem involving a quasi-nonexpansive mapping T by assuming
Tω := (1 – ω)I + ωT and T is demiclosed on H ; a difficult proof. Motivated by [19], we in-
troduced Remark 2.5 and [11, 12] and [18], we introduce a new method of iterative scheme
{xn} for finding a common element of the set of solutions of variational inequality prob-
lems and the set of common fixed points of a finite family of quasi-nonexpansive mappings
and the set of solutions of the modified split generalized equilibrium problem without the
condition above in the framework of a Hilbert space.

2 Preliminaries
Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Throughout this
paper, we use the notations of weak and strong convergence by “⇀” and “→”, respectively.
Recall that H satisfies Opial’s condition [20], i.e., for any sequence {xn} with xn ⇀ x, the
inequality limn→∞ inf‖xn – x‖ < limn→∞ inf‖xn – y‖, holds for every y ∈ H with y �= x.

For solving the equilibrium problem, we assume that the bifunction F : C × C → R

satisfy the following conditions:
(A1) F(x, x) = 0 for all x ∈ C,
(A2) F is monotone, i.e., F(x, y) + F(y, x) ≤ 0 for all x, y ∈ C,
(A3) for each x, y, z ∈ C, limt↓0 F(tz + (1 – t)x, y) ≤ F(x, y),
(A4) for each x ∈ C, y �→ F(x, y) is convex and lower semicontinuous.

Lemma 2.1 ([4]) Let C be a nonempty closed convex subset of H and let F be a bifunction
of C × C into R satisfying (A1)–(A4). Let r > 0 and x ∈ H . Then there exists z ∈ C such that

F(z, y) +
1
r
〈y – z, z – x〉 ≥ 0, ∀y ∈ C.

Lemma 2.2 ([21]) Assume that F : C × C → R satisfies (A1)–(A4). For r > 0, define a
mapping Tr : H → C as follows:

Tr(x) =
{

z ∈ C : F(z, y) +
1
r
〈y – z, z – x〉 ≥ 0,∀y ∈ C

}

for all x ∈ H . Then the following hold:
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(1) Tr is single-valued,
(2) Tr is firmly nonexpansive, i.e., for any x, y ∈ H ,

∥∥Tr(x) – Tr(y)
∥∥2 ≤ 〈

Tr(x) – Tr(y), x – y
〉
,

(3) F(Tr) = EP(F),
(4) EP(F) is closed and convex.

Lemma 2.3 ([22]) Let H be a real Hilbert space, let C be a nonempty closed convex subset
of H and let A be a mapping of C into H . Let u ∈ C. Then, for λ > 0,

u = PC(I – λA)u ⇔ u ∈ VI(C, A),

where PC is the metric projection of H onto C.

Lemma 2.4 Let C be a nonempty closed convex subset of a real Hilbert space H . Let {Ti}N
i=1

be a finite family of quasi-nonexpansive mappings of C into H with
⋂N

i=1 F(Ti) �= ∅ and let
0 < ai < 1 with

∑N
i=1 ai = 1. Then

N⋂

i=1

F(Ti) = VI

(

C,
N∑

i=1

ai(I – Ti)

)

.

Proof In this lemma, we show that
⋂N

i=1 F(Ti) =
⋂N

i=1 VI(C, I – Ti) and
⋂N

i=1 VI(C, I – Ti) =
VI(C,

∑N
i=1 ai(I – Ti)). Lastly, we have

N⋂

i=1

F(Ti) = VI

(

C,
N∑

i=1

ai(I – Ti)

)

.

To start with, it is easy to see that
⋂N

i=1 F(Ti) ⊆ ⋂N
i=1 VI(C, I – Ti). Next, we show that

⋂N
i=1 VI(C, I – Ti) ⊆ ⋂N

i=1 F(Ti). Let u ∈ ⋂N
i=1 VI(C, I – Ti) and

⋂N
i=1 F(Ti) �= ∅. So, we get

u ∈ VI(C, I – Ti), ∀i = 1, 2, . . . , N . We may write

〈
u – v, (I – Ti)u

〉 ≤ 0, ∀v ∈ C. (2.1)

There exists v∗ ∈ C such that v∗ = Tiv∗, ∀i = 1, 2, . . . , N . Since Ti is a quasi-nonexpansive
mapping, ∀i = 1, 2, . . . , N , it follows that

∥∥Tiu – v∗∥∥2 =
∥∥(

u – v∗) – (I – Ti)u
∥∥2

=
∥∥u – v∗∥∥2 – 2

〈
u – v∗, (I – Ti)u

〉
+

∥∥(I – Ti)u
∥∥2

≤ ∥∥u – v∗∥∥2. (2.2)

By using (2.1) and (2.2), we conclude that

∥∥(I – Ti)u
∥∥2 ≤ 2

〈
u – v∗, (I – Ti)u

〉 ≤ 0.
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It implies that u ∈ ⋂N
i=1 F(Ti). Therefore

⋂N
i=1 VI(C, I – Ti) ⊆ ⋂N

i=1 F(Ti). Hence

N⋂

i=1

F(Ti) =
N⋂

i=1

VI(C, I – Ti).

After that, we show
⋂N

i=1 VI(C, I – Ti) = VI(C,
∑N

i=1 ai(I – Ti)) where 0 < ai < 1 and
∑N

i=1 ai = 1. Observe that

u ∈
N⋂

i=1

VI(C, I – Ti)

⇔ u ∈ VI(C, I – Ti), ∀i = 1, 2, . . . , N

⇔ 〈
(I – Ti)u, v – u

〉 ≥ 0, ∀v ∈ C and ∀i = 1, 2, . . . , N

⇔
N∑

i=1

ai
〈
(I – Ti)u, v – u

〉 ≥ 0, ∀v ∈ C

⇔
〈 N∑

i=1

ai(I – Ti)u, v – u

〉

≥ 0, ∀v ∈ C

⇔ u ∈ VI

(

C,
N∑

i=1

ai(I – Ti)

)

.

Therefore
⋂N

i=1 VI(C, I – Ti) = VI(C,
∑N

i=1 ai(I – Ti)). Hence
⋂N

i=1 F(Ti) = VI(C,
∑N

i=1 ai(I –
Ti)). �

Remark 2.5 From Lemma 2.3 and Lemma 2.4, we have

N⋂

i=1

F(Ti) = VI

(

C,
N∑

i=1

ai(I – Ti)

)

= F

(

PC

(

I – λ

( N∑

i=1

ai(I – Ti)

)))

,

for all λ > 0 and 0 < ai < 1 with
∑N

i=1 ai = 1.

Lemma 2.6 ([23]) Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 ≤ (1 – αn)sn + δn, ∀n ≥ 0,

where {αn} is a sequence in (0, 1) and {δn} is a sequence such that

(1)
∞∑

n=1

αn = ∞, (2) lim sup
n→∞

δn

αn
≤ 0 or

∞∑

n=1

|δn| < ∞.

Then limn→∞ sn = 0.

3 Main results
Lemma 3.1 Let C and Q be nonempty closed convex subsets of a real Hilbert spaces H1 and
H2, respectively. Let A : H1 → H2 be a bounded linear operator. Let F1 : C × C → R and
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F2 : Q × Q → R be the bifunctions satisfying (A1)–(A4). Let f1 : H1 → H1 be a ρ-inverse
strongly monotone mapping and f2 : H2 → H2 be a firmly nonexpansive mapping. Then

1. TF1
r (I – rf1) and TF2

s (I – sf2) are nonexpansive mapping,
2.

∥∥TF1
r (I – rf1)

(
p + γ A∗(TF2

s (I – sf2) – I
)
Ap

)

– TF1
r (I – rf1)

(
q + γ A∗(TF2

s (I – sf2) – I
)
Aq

)∥∥2

≤ ‖p – q‖2 + γ (γ L – 1)
∥∥(

TF2
s (I – sf2) – I

)
Ap –

(
TF2

s (I – sf2) – I
)
Aq

∥∥2,

for all p, q ∈ C, where r ∈ (0, 2ρ), s ∈ (0, 1), γ ∈ (0, 1/L), L is the spectral radius of the oper-
ator A∗A and A∗ is the adjoint of A, TF1

r : H1 → C defined by

TF1
r (x) =

{
z ∈ C : F1(z, y) +

1
r
〈y – z, z – x〉 ≥ 0,∀y ∈ C

}
,

for all x ∈ H1 and TF2
s : H2 → Q defined by

TF2
s (x) =

{
z ∈ Q : F2(z, y) +

1
s
〈y – z, z – x〉 ≥ 0,∀y ∈ Q

}
,

for all x ∈ H2.

Proof Let p, q ∈ C. First, we show 1 is true. Since f1 is a ρ-inverse strongly monotone
mapping and r ∈ (0, 2ρ), we obtain

∥∥TF1
r (I – rf1)p – TF1

r (I – rf1)q
∥∥2 ≤ ‖p – q‖2 – 2r〈p – q, f1p – f1q〉 + r2‖f1p – f1q‖2

≤ ‖p – q‖2 + r(r – 2ρ)‖f1p – f1q‖2

≤ ‖p – q‖2.

Thus TF1
r (I – rf1) is a nonexpansive mapping. Since f2 is a firmly nonexpansive mapping

and s ∈ (0, 1), we get

∥∥TF2
s (I – sf2)p – TF2

s (I – sf2)q
∥∥2 ≤ ‖p – q‖2 – 2s〈p – q, f2p – f2q〉 + s2‖f2p – f2q‖2

≤ ‖p – q‖2 – s(2 – s)‖f2p – f2q‖2

≤ ‖p – q‖2,

for all p, q ∈ Q. Therefore TF2
s (I – sf2) is a nonexpansive mapping.

Next, we show 2 is true. From Lemma 3.1(1), we have

∥∥TF1
r (I – rf1)

(
p + γ A∗(TF2

s (I – sf2) – I
)
Ap

)

– TF1
r (I – rf1)

(
q + γ A∗(TF2

s (I – sf2) – I
)
Aq

)∥∥2

≤ ∥∥(p – q) + γ
(
A∗(TF2

s (I – sf2) – I
)
Ap – A∗(TF2

s (I – sf2) – I
)
Aq

)∥∥2

≤ ‖p – q‖2 + 2γ
〈
Ap – Aq,

(
TF2

s (I – sf2) – I
)
Ap –

(
TF2

s (I – sf2) – I
)
Aq

〉

+ γ 2L
∥∥(

TF2
s (I – sf2) – I

)
Ap –

(
TF2

s (I – sf2) – I
)
Aq

∥∥2. (3.1)
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From the property of TF2
s , we get

∥∥(I – sf2)Ap – (I – sf2)Aq
∥∥2

≥ ∥∥TF2
s (I – sf2)Ap – TF2

s (I – sf2)Aq – (Ap – Aq) + (Ap – Aq)
∥∥2

=
∥∥(

TF2
s (I – sf2) – I

)
Ap –

(
TF2

s (I – sf2) – I
)
Aq

∥∥2

+ 2
〈(

TF2
s (I – sf2) – I

)
Ap –

(
TF2

s (I – sf2) – I
)
Aq, Ap – Aq

〉

+ ‖Ap – Aq‖2. (3.2)

We have

∥∥(I – sf2)Ap – (I – sf2)Aq
∥∥2

= ‖Ap – Aq‖2 – 2s〈Ap – Aq, f2Ap – f2Aq〉
+ s2‖f2Ap – f2Aq‖2. (3.3)

From (3.2), (3.3) and the property of firmly nonexpansive mapping, we get

2
〈(

TF2
s (I – sf2) – I

)
Ap –

(
TF2

s (I – sf2) – I
)
Aq, Ap – Aq

〉

≤ –
∥∥(

TF2
s (I – sf2) – I

)
Ap –

(
TF2

s (I – sf2) – I
)
Aq

∥∥2

– 2s〈Ap – Aq, f2Ap – f2Aq〉 + s2‖f2Ap – f2Aq‖2

≤ –
∥∥(

TF2
s (I – sf2) – I

)
Ap –

(
TF2

s (I – sf2) – I
)
Aq

∥∥2.

That is,

2γ
〈(

TF2
s (I – sf2) – I

)
Ap –

(
TF2

s (I – sf2) – I
)
Aq, Ap – Aq

〉

≤ –γ
∥∥(

TF2
s (I – sf2) – I

)
Ap –

(
TF2

s (I – sf2) – I
)
Aq

∥∥2. (3.4)

Substituting (3.4) in (3.1), we obtain

∥∥TF1
r (I – rf1)

(
p + γ A∗(TF2

s (I – sf2) – I
)
Ap

)

– TF1
r (I – rf1)

(
q + γ A∗(TF2

s (I – sf2) – I
)
Aq

)∥∥2

≤ ‖p – q‖2 – γ
∥∥(

TF2
s (I – sf2) – I

)
Ap –

(
TF2

s (I – sf2) – I
)
Aq

∥∥2

+ γ 2L
∥∥(

TF2
s (I – sf2) – I

)
Ap –

(
TF2

s (I – sf2) – I
)
Aq

∥∥2

= ‖p – q‖2 + γ (γ L – 1)
∥∥(

TF2
s (I – sf2) – I

)
Ap –

(
TF2

s (I – sf2) – I
)
Aq

∥∥2. �

Lemma 3.2 Let C be a nonempty closed convex subset of a real Hilbert space H and let
T : C → C be a quasi-nonexpansive mapping with F(T) �= ∅. Then

∥∥(I – T)x
∥∥2 ≤ 2

〈
x – z, (I – T)x

〉
, ∀x ∈ C.
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Proof Let x ∈ C and z ∈ F(T). Since T is a quasi-nonexpansive mapping, we get

‖Tx – z‖2 =
∥∥(x – z) – (I – T)x

∥∥2

= ‖x – z‖2 – 2
〈
x – z, (I – T)x

〉
+

∥∥(I – T)x
∥∥2

≤ ‖x – z‖2.

We can conclude that

∥∥(I – T)x
∥∥2 ≤ 2

〈
x – z, (I – T)x

〉
. �

Lemma 3.3 Let C be a nonempty closed convex subset of a real Hilbert space H . Let {Ti}N
i=1

be a finite family of quasi-nonexpansive mappings of C into itself with
⋂N

i=1 F(Ti) �= ∅. Then

∥∥∥∥∥
PC

(

I – λ

( N∑

i=1

ki(I – Ti)

))

x – z

∥∥∥∥∥

2

≤ ‖x – z‖2,

for all x ∈ C, where 0 < ki < 1 with
∑N

i=1 ki = 1 and 0 < λ < 1.

Proof Let x ∈ C and z ∈ ⋂N
i=1 F(Ti). From Remark 2.5 and z ∈ ⋂N

i=1 F(Ti), we have z ∈
F(PC(I –λ(

∑N
i=1 ki(I –Ti)))) and z = Tiz, ∀i = 1, 2, . . . , N . Since PC is nonexpansive mapping,

0 < λ < 1 and Lemma 3.2, we have

∥∥∥∥∥
PC

(

I – λ

( N∑

i=1

ki(I – Ti)

))

x – z

∥∥∥∥∥

2

=

∥∥∥∥∥
PC

(

I – λ

( N∑

i=1

ki(I – Ti)

))

x – PC

(

I – λ

( N∑

i=1

ki(I – Ti)

))

z

∥∥∥∥∥

2

≤ ‖x – z‖2 – 2λ

N∑

i=1

ki
〈
x – z, (I – Ti)x

〉
+ λ

2
N∑

i=1

ki
∥∥(I – Ti)x

∥∥2

≤ ‖x – z‖2 – λ

N∑

i=1

ki
∥∥(I – Ti)x

∥∥2 + λ
2

N∑

i=1

ki
∥∥(I – Ti)x

∥∥2

≤ ‖x – z‖2. (3.5)�

Next, we prove a strong convergence theorem for solving the modified split generalized
equilibrium problem (MSGEP).

Theorem 3.4 Let C and Q be nonempty closed convex subsets of a real Hilbert spaces H1

and H2, respectively. Let A : H1 → H2 be a bounded linear operator. Let D1, D2 : C → H1

be α, β-inverse strongly monotone mappings, respectively. Let F1 : C × C → R and F2 :
Q × Q → R be the bifunctions satisfying (A1)–(A4). Let {Ti}N

i=1 be a finite family of quasi-
nonexpansive mappings of C into itself with

⋂N
i=1 F(Ti) �= ∅. Let f1 : H1 → H1 be a ρ-inverse

strongly monotone mapping and f2 : H2 → H2 be a firmly nonexpansive mapping. Assume
F = VI(C, D1) ∩ VI(C, D2) ∩ ⋂N

i=1 F(Ti) ∩ 
 �= ∅. For given x1, u ∈ C and let {xn}, {un} and
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{yn} be sequences generated by

⎧
⎪⎪⎨

⎪⎪⎩

un = TF1
r (I – rf1)(xn + γ A∗(TF2

s (I – sf2) – I)Axn),

yn = PC(I – d1D1)(aun + (1 – a)PC(I – d2D2)un),

xn+1 = αnu + βnxn + γnPC(I – λn(
∑N

i=1 ki(I – Ti)))yn, ∀n ∈N,

(3.6)

where d1 ∈ (0, 2α), d2 ∈ (0, 2β), r ∈ (0, 2ρ), s ∈ (0, 1), a ∈ [0, 1], 0 < ki < 1 with
∑N

i=1 ki = 1,
γ ∈ (0, 1/L), L is the spectral radius of the operator A∗A and A∗ is the adjoint of A. Also {αn},
{βn}, {γn} are sequences in [0, 1] with αn + βn + γn = 1 for all n ∈ N. Suppose the following
conditions hold:

(i) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞,
(ii) 0 < c ≤ βn,γn ≤ d < 1 for some c, d > 0 for all n ≥ 1,

(iii)
∑∞

n=1 λn < ∞ and 0 < λn < 1,
(iv)

∑∞
n=1 |αn+1 – αn| < ∞,

∑∞
n=1 |βn+1 – βn| < ∞.

Then {xn}, {un} and {yn} converge strongly to z = PFu.

Proof Let x, y ∈ C and z ∈ F . First, we show that (I – d1D1) is a nonexpansive mapping.
Since D1 is an α-inverse strongly monotone mapping, we obtain

∥∥(I – d1D1)x – (I – d1D1)y
∥∥2 = ‖x – y‖2 – 2d1〈x – y, D1x – D1y〉 + d2

1‖D1x – D1y‖2

≤ ‖x – y‖2 + d1(d1 – 2α)‖D1x – D1y‖2 ≤ ‖x – y‖2.

Thus (I –d1D1) is a nonexpansive mapping. By using the same method as above, we see that
(I – d2D2) is a nonexpansive mapping. Since f1 is a ρ-inverse strongly monotone mapping
and f2 is a firmly nonexpansive mapping. From Lemma 3.1(1), we have (TF1

r (I – rf1)) and
(TF2

s (I – sf2)) are nonexpansive mappings. Since z ∈ ⋂N
i=1 F(Ti) and Lemma 3.3, we have

∥∥∥∥∥
PC

(

I – λn

( N∑

i=1

ki(I – Ti)

))

yn – z

∥∥∥∥∥

2

≤ ‖yn – z‖2. (3.7)

Since z ∈ VI(C, D1) and z ∈ VI(C, D2) and using the property of (I – d1D1) and (I – d2D2),
we get

‖yn – z‖2 =
∥∥PC(I – d1D1)

(
aun + (1 – a)PC(I – d2D2)un

)
– PC(I – d1D1)z

∥∥2

≤ a‖un – z‖2 + (1 – a)
∥∥PC(I – d2D2)un – z

∥∥2 (3.8)

≤ ‖un – z‖2. (3.9)

Since z ∈ 
, we have z = TF1
r (I – rf1)z and Az = TF2

s (I – sf2)Az. From Lemma 3.1(2) and
γ ∈ (0, 1/L), we obtain

‖un – z‖2 =
∥∥TF1

r (I – rf1)
(
xn + γ A∗(TF2

s (I – sf2) – I
)
Axn

)
– TF1

r (I – rf1)z
∥∥2

≤ ‖xn – z‖2 + γ (Lγ – 1)
∥∥(

TF2
s (I – sf2) – I

)
Axn

∥∥2 (3.10)

≤ ‖xn – z‖2. (3.11)
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Using the definition of xn, (3.7), (3.9) and (3.11), we get

‖xn+1 – z‖ =

∥∥∥∥∥
αn(u – z) + βn(xn – z)

+ γn

(

PC

(

I – λn

( N∑

i=1

ki(I – Ti)

))

yn – z

)∥∥∥∥∥

≤ αn‖u – z‖ + βn‖xn – z‖ + γn‖yn – z‖
≤ αn‖u – z‖ + βn‖xn – z‖ + γn‖un – z‖
≤ αn‖u – z‖ + (1 – αn)‖xn – z‖.

Using induction, we can conclude that

‖xn – z‖ ≤ max
{‖u – z‖,‖x1 – z‖}

for all n ≥ 1. This implies that the sequence {xn} is bounded and so are {yn} and {un}. From
Lemma 3.1 (2) and γ ∈ (0, 1/L), we obtain

‖un – un–1‖2

=
∥∥TF1

r (I – rf1)
(
xn + γ A∗(TF2

s (I – sf2) – I
)
Axn

)

– TF1
r (I – rf1)

(
xn–1 + γ A∗(TF2

s (I – sf2) – I
)
Axn–1

)∥∥2

≤ ‖xn – xn–1‖2 + γ (γ L – 1)
∥∥(

TF2
s (I – sf2) – I

)
Axn –

(
TF2

s (I – sf2) – I
)
Axn–1

∥∥2

≤ ‖xn – xn–1‖2. (3.12)

Next, we show that limn→∞ ‖xn+1 – xn‖ = 0. According to Eq. (3.12), we have

‖xn+1 – xn‖

=

∥∥∥∥∥

(

αnu + βnxn + γnPC

(

I – λn

( N∑

i=1

ki(I – Ti)

))

yn

)

–

(

αn–1u + βn–1xn–1 + γn–1PC

(

I – λn–1

( N∑

i=1

ki(I – Ti)

))

yn–1

)∥∥∥∥∥

≤ |αn – αn–1|‖u‖ + βn‖xn – xn–1‖ + |βn – βn–1|‖xn–1‖ + γn‖yn – yn–1‖

+ λn

∥∥∥∥∥

( N∑

i=1

ki(I – Ti)

)

yn –

( N∑

i=1

ki(I – Ti)

)

yn–1

∥∥∥∥∥

+ |λn – λn–1|
∥∥∥∥∥

( N∑

i=1

ki(I – Ti)

)

yn–1

∥∥∥∥∥

+ |γn – γn–1|
∥∥∥∥∥

PC

(

I – λn–1

( N∑

i=1

ki(I – Ti)

))

yn–1

∥∥∥∥∥

≤ (1 – αn)‖xn – xn–1‖ + |αn – αn–1|‖u‖ + |βn – βn–1|‖xn–1‖
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+ λn

∥∥∥∥∥

( N∑

i=1

ki(I – Ti)

)

yn –

( N∑

i=1

ki(I – Ti)

)

yn–1

∥∥∥∥∥

+ |λn – λn–1|
∥∥∥∥∥

( N∑

i=1

ki(I – Ti)

)

yn–1

∥∥∥∥∥

+ |γn – γn–1|
∥∥∥∥∥

PC

(

I – λn–1

( N∑

i=1

ki(I – Ti)

))

yn–1

∥∥∥∥∥

≤ (1 – αn)‖xn – xn–1‖ + |αn – αn–1|M + |βn – βn–1|M + λnM

+ |λn – λn–1|M + |γn – γn–1|M,

where

M := max
n∈N

{

‖u‖,‖xn‖,

∥∥∥∥∥

( N∑

i=1

ki(I – Ti)

)

yn+1 –

( N∑

i=1

ki(I – Ti)

)

yn

∥∥∥∥∥
,

∥∥∥∥∥

( N∑

i=1

ki(I – Ti)

)

yn

∥∥∥∥∥
,

∥∥∥∥∥
PC

(

I – λn

( N∑

i=1

ki(I – Ti)

))

yn

∥∥∥∥∥

}

.

From condition (i), (iii), (iv) and Lemma 2.6, we have

lim
n→∞‖xn+1 – xn‖ = 0. (3.13)

According to Eqs. (3.7), (3.9) and (3.10), we have

‖xn+1 – z‖2 ≤ αn‖u – z‖2 + γn

∥∥∥∥∥
PC

(

I – λn

( N∑

i=1

ki(I – Ti)

))

yn – z

∥∥∥∥∥

2

+ βn‖xn – z‖2 – βnγn

∥∥∥∥∥
xn – PC

(

I – λn

( N∑

i=1

ki(I – Ti)

))

yn

∥∥∥∥∥

2

≤ αn‖u – z‖2 + βn‖xn – z‖2 + γn‖yn – z‖2

– βnγn

∥∥∥∥∥
xn – PC

(

I – λn

( N∑

i=1

ki(I – Ti)

))

yn

∥∥∥∥∥

2

(3.14)

≤ αn‖u – z‖2 + βn‖xn – z‖2 + γn‖un – z‖2

– βnγn

∥∥∥∥∥
xn – PC

(

I – λn

( N∑

i=1

ki(I – Ti)

))

yn

∥∥∥∥∥

2

(3.15)

≤ αn‖u – z‖2 + (1 – αn)‖xn – z‖2 + γnγ (Lγ – 1)
∥∥(

TF2
s (I – sf2) – I

)
Axn

∥∥2

– βnγn

∥∥∥∥∥
xn – PC

(

I – λn

( N∑

i=1

ki(I – Ti)

))

yn

∥∥∥∥∥

2

.

This implies that

γnγ (1 – Lγ )
∥∥(

TF2
s (I – sf2) – I

)
Axn

∥∥2

≤ αn‖u – z‖2 + ‖xn – xn+1‖
(‖xn – z‖ + ‖xn+1 – z‖).
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By using condition (i) and (3.13), we have

lim
n→∞

∥∥(
TF2

s (I – sf2) – I
)
Axn

∥∥ = 0. (3.16)

By using the same method as (3.16), we have

lim
n→∞

∥∥∥∥∥
xn – PC

(

I – λn

( N∑

i=1

ki(I – Ti)

))

yn

∥∥∥∥∥
= 0. (3.17)

Let Mn = xn + γ A∗(TF2
s (I – sf2) – I)Axn. Applying the inequality (3.11), we have

‖Mn – z‖ ≤ ‖xn – z‖. (3.18)

Using the property of inverse strongly monotone operators and (3.18), we have

‖un – z‖2 =
∥∥TF1

r (I – rf1)Mn – TF1
r (I – rf1)z

∥∥2

≤ ∥∥(I – rf1)Mn – (I – rf1)z
∥∥2

= ‖Mn – z‖2 – 2r〈Mn – z, f1Mn – f1z〉 + r2‖f1Mn – f1z‖2

≤ ‖xn – z‖2 + r(r – 2ρ)‖f1Mn – f1z‖2. (3.19)

Substituting (3.19) in (3.15), we have

‖xn+1 – z‖2 ≤ αn‖u – z‖2 + βn‖xn – z‖2

+ γn
(‖xn – z‖2 + r(r – 2ρ)‖f1Mn – f1z‖2)

≤ αn‖u – z‖2 + (1 – αn)‖xn – z‖2 + γnr(r – 2ρ)‖f1Mn – f1z‖2.

That is,

γnr(2ρ – r)‖f1Mn – f1z‖2 ≤ αn‖u – z‖2 + ‖xn – xn+1‖
(‖xn – z‖ + ‖xn+1 – z‖).

According to condition (i) and (3.13), we get

lim
n→∞‖f1Mn – f1z‖ = 0. (3.20)

By the property of firmly nonexpansive mappings, we have

‖un – z‖2 =
∥∥TF1

r (I – rf1)Mn – TF1
r (I – rf1)z

∥∥2

≤ 〈
un – z, (I – rf1)Mn – (I – rf1)z

〉

=
1
2
(‖un – z‖2 +

∥∥(I – rf1)Mn – (I – rf1)z
∥∥2

–
∥∥(un – z) –

(
(I – rf1)Mn – (I – rf1)z

)∥∥2). (3.21)
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That is,

‖un – z‖2 ≤ ∥∥(I – rf1)Mn – (I – rf1)z
∥∥2 –

∥∥(un – Mn) + r(f1Mn – f1z)
∥∥2

≤ ‖Mn – z‖2 –
(‖un – Mn‖2 + 2r〈un – Mn, f1Mn – f1z〉

+ r2‖f1Mn – f1z‖2)

≤ ‖Mn – z‖2 – ‖un – Mn‖2 + 2r‖un – Mn‖‖f1Mn – f1z‖
– r2‖f1Mn – f1z‖2. (3.22)

Substituting (3.22) in (3.15), we get

‖xn+1 – z‖2 ≤ αn‖u – z‖2 + βn‖xn – z‖2 + γn
(‖Mn – z‖2 – ‖un – Mn‖2

+ 2r‖un – Mn‖‖f1Mn – f1z‖ – r2‖f1Mn – f1z‖2)

≤ αn‖u – z‖2 + (1 – αn)‖xn – z‖2 – γn‖un – Mn‖2

+ 2rγn‖un – Mn‖‖f1Mn – f1z‖.

It follows that

γn‖un – Mn‖2 ≤ αn‖u – z‖2 + ‖xn – xn+1‖
(‖xn – z‖ + ‖xn+1 – z‖)

+ 2rγn‖un – Mn‖‖f1Mn – f1z‖.

From condition (i), (3.13) and (3.20), we ensure that

lim
n→∞‖un – Mn‖ = 0. (3.23)

From (3.16) and (3.23), we also have

‖un – xn‖ ≤ ‖un – Mn‖ + ‖Mn – xn‖
= ‖un – Mn‖ +

∥∥xn + γ A∗(TF2
s (I – sf2) – I

)
Axn – xn

∥∥

≤ ‖un – Mn‖ + γ ‖A‖∥∥(
TF2

s (I – sf2) – I
)
Axn

∥∥.

Then we have

lim
n→∞‖un – xn‖ = 0. (3.24)

By using the same method as (3.19), we have

∥∥PC(I – d2D2)un – z
∥∥2 ≤ ‖xn – z‖2 + d2(d2 – 2β)‖D2un – D2z‖2. (3.25)

Substituting (3.8) and (3.25) in (3.14), we have

‖xn+1 – z‖2 ≤ αn‖u – z‖2 + βn‖xn – z‖2 + γn
(
a‖un – z‖2

+ (1 – a)
∥∥PC(I – d2D2)un – z

∥∥2)
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≤ αn‖u – z‖2 + (1 – αn)‖xn – z‖2

+ γn(1 – a)d2(d2 – 2β)‖D2un – D2z‖2.

We can conclude that

γn(1 – a)d2(2β – d2)‖D2un – D2z‖2

≤ αn‖u – z‖2 + ‖xn – xn+1‖
(‖xn – z‖ + ‖xn+1 – z‖).

According to condition (i) and (3.13), we get

lim
n→∞‖D2un – D2z‖ = 0. (3.26)

Since PC is a firmly nonexpansive mapping and using the same method as (3.21), we get

∥∥PC(I – d2D2)un – z
∥∥2

≤ 1
2
(∥∥PC(I – d2D2)un – z

∥∥2 +
∥∥(I – d2D2)un – (I – d2D2)z

∥∥2

–
∥∥PC(I – d2D2)un – z – (I – d2D2)un + (I – d2D2)z

∥∥2).

That is,

∥∥PC(I – d2D2)un – z
∥∥2 ≤ ‖un – z‖2 –

∥∥(
PC(I – d2D2)un – un

)
+ d2(D2un – D2z)

∥∥2

≤ ‖xn – z‖2 –
∥∥PC(I – d2D2)un – un

∥∥2

+ 2d2
∥∥PC(I – d2D2)un – un

∥∥‖D2un – D2z‖
– d2

2‖D2un – D2z‖2. (3.27)

Substituting (3.8) and (3.27) in (3.14), we have

‖xn+1 – z‖2

≤ αn‖u – z‖2 + βn‖xn – z‖2 + γn
(
a‖un – z‖2 + (1 – a)

∥∥PC(I – d2D2)un – z
∥∥2)

≤ αn‖u – z‖2 + βn‖xn – z‖2 + γn
(
a‖xn – z‖2 + (1 – a)

(‖xn – z‖2

–
∥∥PC(I – d2D2)un – un

∥∥2 + 2d2
∥∥PC(I – d2D2)un – un

∥∥‖D2un – D2z‖
– d2

2‖D2un – D2z‖2))

≤ αn‖u – z‖2 + (1 – αn)‖xn – z‖2 – γn(1 – a)
∥∥PC(I – d2D2)un – un

∥∥2

+ 2d2γn(1 – a)
∥∥PC(I – d2D2)un – un

∥∥‖D2un – D2z‖.

Therefore

γn(1 – a)
∥∥PC(I – d2D2)un – un

∥∥2

≤ αn‖u – z‖2 + ‖xn – xn+1‖
(‖xn – z‖ + ‖xn+1 – z‖)

+ 2d2γn(1 – a)
∥∥PC(I – d2D2)un – un

∥∥‖D2un – D2z‖.
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From condition (i), (3.13) and (3.26), we get

lim
n→∞

∥∥PC(I – d2D2)un – un
∥∥ = 0. (3.28)

Let kn = aun + (1 – a)PC(I – d2D2)un. By using the same method as (3.19), we have

‖yn – z‖2 ≤ ‖xn – z‖2 + d1(d1 – 2α)‖D1kn – D1z‖2. (3.29)

Substituting (3.29) in (3.14), we have

‖xn+1 – z‖2

≤ αn‖u – z‖2 + βn‖xn – z‖2 + γn
(‖xn – z‖2 + d1(d1 – 2α)‖D1kn – D1z‖2)

≤ αn‖u – z‖2 + (1 – αn)‖xn – z‖2 + d1(d1 – 2α)γn‖D1kn – D1z‖2.

This implies that

d1(2α – d1)γn‖D1kn – D1z‖2 ≤ αn‖u – z‖2 + ‖xn – xn+1‖
(‖xn – z‖ + ‖xn+1 – z‖).

According to condition (i) and (3.13), we have

lim
n→∞‖D1kn – D1z‖ = 0. (3.30)

By using the same method as (3.21), we have

‖yn – z‖2 ≤ 1
2
(‖yn – z‖2 +

∥∥(I – d1D1)kn – (I – d1D1)z
∥∥2

–
∥∥(yn – kn) + d1(D1kn – D1z)

∥∥2).

That is,

‖yn – z‖2 ≤ ‖kn – z‖2 –
(‖yn – kn‖2 + 2d1〈yn – kn, D1kn – D1z〉

+ d2
1‖D1kn – D1z‖2)

≤ ‖xn – z‖2 – ‖yn – kn‖2 + 2d1‖yn – kn‖‖D1kn – D1z‖
– d2

1‖D1kn – D1z‖2. (3.31)

Substituting (3.31) in (3.14), we have

‖xn+1 – z‖2 ≤ αn‖u – z‖2 + βn‖xn – z‖2 + γn
(‖xn – z‖2 – ‖yn – kn‖2

+ 2d1‖yn – kn‖‖D1kn – d1z‖ – d2
1‖D1kn – D1z‖2)

≤ αn‖u – z‖2 + (1 – αn)‖xn – z‖2 – γn‖yn – kn‖2

+ 2γnd1‖yn – kn‖‖D1kn – D1z‖. (3.32)
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This implies that

γn‖yn – kn‖2 ≤ αn‖u – z‖2 + ‖xn – xn+1‖
(‖xn – z‖ + ‖xn+1 – z‖)

+ 2γnd1‖yn – kn‖‖D1kn – D1z‖.

According to condition (i), (3.13) and (3.30), we get

lim
n→∞‖yn – kn‖ = 0. (3.33)

From (3.28) and (3.33)

‖yn – un‖ ≤ ‖yn – kn‖ + ‖kn – un‖
≤ ‖yn – kn‖ + (1 – a)

∥∥PC(I – d2D2)un – un
∥∥,

we conclude that

lim
n→∞‖yn – un‖ = 0. (3.34)

By (3.24) and (3.34), we also conclude that

lim
n→∞‖yn – xn‖ = 0. (3.35)

Afterward, we show that lim supn→∞〈u – z, xn – z〉 ≤ 0, where z = PFu.
To show this, choose a subsequence {xnj} of {xn} such that

lim sup
n→∞

〈u – z, xn – z〉 = lim
j→∞〈u – z, xnj – z〉. (3.36)

Without loss of generality, we may assume that xnj ⇀ ω as j → ∞. From (3.35), we obtain
ynj ⇀ ω as j → ∞. From Lemma 2.3, we have VI(C, D1) = F(PC(I – d1D1)). Assume that
ω /∈ VI(C, D1), we have ω �= PC(I – d1D1)ω. Using Opial’s condition, (3.33), we obtain

lim inf
j→∞ ‖ynj – ω‖ < lim inf

j→∞
∥∥ynj – PC(I – d1D1)ω

∥∥

≤ lim inf
j→∞

(∥∥PC(I – d1D1)knj – PC(I – d1D1)ynj

∥∥

+
∥∥PC(I – d1D1)ynj – PC(I – d1D1)ω

∥∥)

≤ lim inf
j→∞

(‖knj – ynj‖ + ‖ynj – ω‖)

≤ lim inf
j→∞ ‖ynj – ω‖.

This is a contradiction, so we have

ω ∈ VI(C, D1). (3.37)
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From (3.24), we have unj ⇀ ω as j → ∞. By (3.28) and using the same method as (3.37),
we obtain

ω ∈ VI(C, D2). (3.38)

Next, we show that ω ∈ ⋂N
i=1 F(Ti). From Lemma 2.5, we have

N⋂

i=1

F(Ti) = F

(

PC

(

I – λnj

( N∑

i=1

ki(I – Ti)

)))

.

Assume that ω /∈ ⋂N
i=1 F(Ti), and that ω �= PC(I – λnj (

∑N
i=1 ki(I – Ti)))ω. Using Opial’s con-

dition, (3.17) and (3.35), we obtain

lim inf
j→∞ ‖xnj – ω‖

< lim inf
j→∞

∥∥∥∥∥
xnj – PC

(

I – λnj

( N∑

i=1

ki(I – Ti)

))

ω

∥∥∥∥∥

≤ lim inf
j→∞

(∥∥∥∥∥
xnj – PC

(

I – λnj

( N∑

i=1

ki(I – Ti)

))

ynj

∥∥∥∥∥

+

∥∥∥∥∥
PC

(

I – λnj

( N∑

i=1

ki(I – Ti)

))

ynj – PC

(

I – λnj

( N∑

i=1

ki(I – Ti)

))

xnj

∥∥∥∥∥

+

∥∥∥∥∥
PC

(

I – λnj

( N∑

i=1

ki(I – Ti)

))

xnj – PC

(

I – λnj

( N∑

i=1

ki(I – Ti)

))

ω

∥∥∥∥∥

)

≤ lim inf
j→∞

(

‖ynj – xnj‖ + λnj

∥∥∥∥∥

( N∑

i=1

ki(I – Ti)

)

ynj –

( N∑

i=1

ki(I – Ti)

)

xnj

∥∥∥∥∥

+ ‖xnj – ω‖ + λnj

∥∥∥∥∥

( N∑

i=1

ki(I – Ti)

)

xnj –

( N∑

i=1

ki(I – Ti)

)

ω

∥∥∥∥∥

)

≤ lim inf
j→∞ ‖xnj – ω‖.

This is a contradiction, so we have

ω ∈
N⋂

i=1

F(Ti). (3.39)

After that, we show that ω ∈ 
. Assume ω /∈ EP(F1, f1). Since EP(F1, f1) = F(TF1
r (I – rf1)),

we obtain ω �= TF1
r (I – rf1)ω. Using Opial’s condition and (3.23), we get

lim inf
j→∞ ‖unj – ω‖ < lim inf

j→∞
∥∥unj – TF1

r (I – rf1)ω
∥∥

≤ lim inf
j→∞

(∥∥TF1
r (I – rf1)Mnj – TF1

r (I – rf1)unj

∥∥

+
∥∥TF1

r (I – rf1)unj – TF1
r (I – rf1)ω

∥∥)
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≤ lim inf
j→∞

(‖Mnj – unj‖ + ‖unj – ω‖)

≤ lim inf
j→∞ ‖unj – ω‖.

This is a contradiction, so we have

ω ∈ EP(F1, f1). (3.40)

Next, we show that Aω ∈ EP(F2, f2). Since A is bounded linear operator so that Axnj ⇀

Aω as j → ∞. Assume Aω /∈ EP(F2, f2). Since EP(F2, f2) = F(TF2
s (I – sf2)), we obtain Aω �=

TF2
s (I – sfs)Aω. Using Opial’s condition and (3.16), we have

Aω ∈ EP(F2, f2). (3.41)

We can conclude that ω ∈ 
. Therefore ω ∈F . Since xnj ⇀ ω as j → ∞, we have

lim sup
n→∞

〈u – z, xn – z〉 = lim
j→∞〈u – z, xnj – z〉

= 〈u – z,ω – z〉 ≤ 0. (3.42)

Finally, we show that the sequence {xn} converges strongly to z = PFu. By (3.7), (3.9) and
(3.11), we get

‖xn+1 – z‖2 =

∥∥∥∥∥
αn(u – z) + βn(xn – z) + γn

(

PC

(

I – λn

( N∑

i=1

ki(I – Ti)

))

yn – z

)∥∥∥∥∥

2

≤
∥∥∥∥∥
βn(xn – z) + γn

(

PC

(

I – λn

( N∑

i=1

ki(I – Ti)

))

yn – z

)∥∥∥∥∥

2

+ 2αn〈u – z, xn+1 – z〉
≤ (

βn‖xn – z‖ + γn‖un – z‖)2 + 2αn〈u – z, xn+1 – z〉
≤ (1 – αn)‖xn – z‖2 + 2αn〈u – z, xn+1 – z〉.

According to condition (i), (3.42) and Lemma 2.6, we can conclude that {xn} converges
strongly to z = PFu. By (3.24) and (3.35), we have {un} and {yn} converge strongly to z =
PFu. This completes the proof. �

These results are directly proved from Theorem 3.4. Therefore, we omit the proof.

Corollary 3.5 Let C and Q be nonempty closed convex subsets of a real Hilbert space H1

and H2, respectively. Let A : H1 → H2 be a bounded linear operator. Let D1, D2 : C → H1

be α, β-inverse strongly monotone mappings, respectively. Let F1 : C × C →R and F2 : Q ×
Q →R be the bifunctions satisfying (A1)–(A4). Let T be a quasi-nonexpansive mapping of
C into itself. Let f1 : H1 → H1 be a ρ-inverse strongly monotone mapping and f2 : H2 → H2

be a firmly nonexpansive mapping. Assume F = VI(C, D1) ∩ VI(C, D2) ∩ F(T) ∩ 
 �= ∅. For
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given x1, u ∈ C, and let {xn}, {un} and {yn} be sequences generated by

⎧
⎪⎪⎨

⎪⎪⎩

un = TF1
r (I – rf1)(xn + γ A∗(TF2

s (I – sf2) – I)Axn),

yn = PC(I – d1D1)(aun + (1 – a)PC(I – d2D2)un),

xn+1 = αnu + βnxn + γnPC(I – λn(I – T))yn, ∀n ∈N,

where d1 ∈ (0, 2α), d2 ∈ (0, 2β), r ∈ (0, 2ρ), s ∈ (0, 1), a ∈ [0, 1], γ ∈ (0, 1/L), L is the spectral
radius of the operator A∗A and A∗ is the adjoint of A. Also {αn}, {βn}, {γn} are sequences
in [0, 1] with αn + βn + γn = 1 for all n ∈ N. Suppose the conditions (i)–(iv) of Theorem 3.4
hold. Then {xn}, {un} and {yn} converge strongly to z = PFu.

Corollary 3.6 Let C be nonempty closed convex subset of a real Hilbert space H1. Let
D1, D2 : C → H1 be α, β-inverse strongly monotone mappings, respectively. Let F1 : C×C →
R be the bifunction satisfying (A1)–(A4). Let {Ti}N

i=1 be a finite family of quasi-nonexpansive
mappings of C into itself with

⋂N
i=1 F(Ti) �= ∅. Let f1 : H1 → H1 be a ρ-inverse strongly mono-

tone mapping. Assume F = VI(C, D1) ∩ VI(C, D2) ∩ ⋂N
i=1 F(Ti) ∩ EP(F1, f1) �= ∅. For given

x1, u ∈ C and let {xn}, {un} and {yn} be sequences generated by

⎧
⎪⎪⎨

⎪⎪⎩

un = TF1
r (I – rf1)xn,

yn = PC(I – d1D1)(aun + (1 – a)PC(I – d2D2)un),

xn+1 = αnu + βnxn + γnPC(I – λn(
∑N

i=1 ki(I – Ti)))yn, ∀n ∈N,

where d1 ∈ (0, 2α), d2 ∈ (0, 2β), r ∈ (0, 2ρ), a ∈ [0, 1], 0 < ki < 1 with
∑N

i=1 ki = 1. Also {αn},
{βn}, {γn} are sequences in [0, 1] with αn + βn + γn = 1 for all n ∈N. Suppose the conditions
(i)–(iv) of Theorem 3.4 hold. Then {xn}, {un} and {yn} converge strongly to z = PFu.

Corollary 3.7 Let C and Q be nonempty closed convex subsets of a real Hilbert space H1

and H2, respectively. Let A : H1 → H2 be a bounded linear operator. Let D1, D2 : C →
H1 be α, β-inverse strongly monotone mappings, respectively. Let F1 : C × C → R and
F2 : Q × Q → R be the bifunctions satisfying (A1)–(A4). Let {Ti}N

i=1 be a finite family of
quasi-nonexpansive mappings of C into itself with

⋂N
i=1 F(Ti) �= ∅. Assume F = VI(C, D1) ∩

VI(C, D2) ∩ ⋂N
i=1 F(Ti) ∩ � �= ∅. For given x1, u ∈ C and let {xn}, {un} and {yn} be sequences

generated by

⎧
⎪⎪⎨

⎪⎪⎩

un = TF1
r (xn + γ A∗(TF2

s – I)Axn),

yn = PC(I – d1D1)(aun + (1 – a)PC(I – d2D2)un),

xn+1 = αnu + βnxn + γnPC(I – λn(
∑N

i=1 ki(I – Ti)))yn, ∀n ∈N,

where d1 ∈ (0, 2α), d2 ∈ (0, 2β), a ∈ [0, 1], 0 < ki < 1 with
∑N

i=1 ki = 1, γ ∈ (0, 1/L), L is the
spectral radius of the operator A∗A and A∗ is the adjoint of A. Also {αn}, {βn}, {γn} are
sequences in [0, 1] with αn + βn + γn = 1 for all n ∈ N. Suppose the conditions (i)–(iv) of
Theorem 3.4 hold. Then {xn}, {un} and {yn} converge strongly to z = PFu.

Remark 3.8 If we take N = 1 in Theorem 3.4, we have a strong convergence for finding
a common element of the set of solutions of variational inequality problems and the set
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of fixed points of a quasi-nonexpansive mapping and the set of solutions of the modified
split generalized equilibrium problem. From previous result, we can apply by using the
same method as Theorem 4.5 in [24]. We have a strong convergence for finding a common
element of the set of solutions of variational inequality problems and the set of fixed points
of a finite family of nonspreading mappings and the set of solutions of the modified split
generalized equilibrium problem. By using our main result, Theorem 3.4 reduces to the
Corollary 3.6, the solution of the generalized equilibrium problem and Corollary 3.7, the
split equilibrium problem. All theorems are found as regards the solution of common fixed
points of a finite family of quasi-nonexpansive mappings without assuming Tω := (1–ω)I +
ωT and T is demiclosed; a difficult proof in a framework of Hilbert space.

4 Application
The following knowledge is used to prove Theorem 4.4. A mapping T : C → C is called
nonspreading if

2‖Tx – Ty‖2 ≤ ‖Tx – y‖2 + ‖Ty – x‖2, ∀x, y ∈ C. (4.1)

Such a mapping is defined by Kohsaka and Takahashi [25].
In 2009, Iemoto and Takahashi [26] proved that (4.1) is equivalent to

‖Tx – Ty‖2 ≤ ‖x – y‖2 + 2〈x – Tx, y – Ty〉, ∀x, y ∈ C. (4.2)

Remark 4.1 A nonspreading mapping T with F(T) �= ∅ is quasi-nonexpansive mapping T .

Lemma 4.2 ([25]) Let H be a Hilbert space, let C be a nonempty closed convex subset of
H , and let S be a nonspreading mapping of C into itself. Then F(S) is closed and convex.

In 2009, Kangtunyakarn and Suantai[27] introduced the S-mapping generated by
T1, T2, T3, . . . , TN and λ1,λ2, . . . ,λN as follows.

Definition 4.1 Let C be a nonempty convex subset of a real Banach space. Let {Ti}N
i=1 be

a finite family of (nonexpansive) mappings of C into itself. For each j = 1, 2, . . . , N , let αj =
(αj

1,αj
2,αj

3) ∈ I × I × I , where I ∈ [0, 1] and α
j
1 + α

j
2 + α

j
3 = 1. Define the mapping S : C → C

as follows:

U0 = I,

U1 = α1
1T1U0 + α1

2U0 + α1
3I,

U2 = α2
1T2U1 + α2

2U1 + α2
3I,

U3 = α3
1T3U2 + α3

2U2 + α3
3I,

...

UN–1 = αN–1
1 TN–1UN–2 + αN–1

2 UN–2 + αN–1
3 I,

S = UN = αN
1 TN UN–1 + αN

2 UN–1 + αN
3 I.

This mapping is called an S-mapping generated by T1, T2, . . . , TN and α1,α2, . . . ,αN .
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Lemma 4.3 ([28]) Let C be a nonempty closed convex subset of a real Hilbert space. Let
{Ti}N

i=1 be a finite family of nonspreading mappings of C into C with
⋂N

i=1 F(Ti) �= ∅, and let
αj = (αj

1,αj
2,αj

3) ∈ I × I × I , j = 1, 2, . . . , N , where I = [0, 1], αj
1 + α

j
2 + α

j
3 = 1, αj

1,αj
3 ∈ (0, 1) for

all j = 1, 2, . . . , N – 1 and αN
1 ∈ (0, 1], αN

3 ∈ [0, 1), αj
2 ∈ [0, 1) for all j = 1, 2, . . . , N . Let S be the

mapping generated by T1, T2, . . . , TN and α1,α2, . . . ,αN . Then F(S) =
⋂N

i=1 F(Ti) and S is a
quasi-nonexpansive mapping.

By using these results, we obtain the following theorems.

Theorem 4.4 Let C and Q be nonempty closed convex subsets of a real Hilbert space H1

and H2, respectively. Let A : H1 → H2 be a bounded linear operator. Let D1, D2 : C → H1

be α, β-inverse strongly monotone mappings, respectively. Let F1 : C × C →R and F2 : Q ×
Q →R be the bifunctions satisfying (A1)–(A4). Let {Ti}N

i=1 be a finite family of nonspreading
mappings of C into C with

⋂N
i=1 F(Ti) �= ∅, and let αj = (αj

1,αj
2,αj

3) ∈ I × I × I , j = 1, 2, . . . , N ,
where I = [0, 1],αj

1 + α
j
2 + α

j
3 = 1, αj

1,αj
3 ∈ (0, 1) for all j = 1, 2, . . . , N – 1 and αN

1 ∈ (0, 1], αN
3 ∈

[0, 1), αj
2 ∈ [0, 1) for all j = 1, 2, . . . , N . Let S be the mapping generated by T1, T2, . . . , TN and

α1,α2, . . . ,αN . Let f1 : H1 → H1 be a ρ-inverse strongly monotone mapping and f2 : H2 → H2

be a firmly nonexpansive mapping. AssumeF = VI(C, D1)∩VI(C, D2)∩⋂N
i=1 F(Ti)∩
 �= ∅.

For given x1, u ∈ C and let {xn}, {un} and {yn} be sequences generated by

⎧
⎪⎪⎨

⎪⎪⎩

un = TF1
r (I – rf1)(xn + γ A∗(TF2

s (I – sf2) – I)Axn),

yn = PC(I – d1D1)(aun + (1 – a)PC(I – d2D2)un),

xn+1 = αnu + βnxn + γnPC(I – λn(I – S))yn, ∀n ∈N,

where d1 ∈ (0, 2α), d2 ∈ (0, 2β), r ∈ (0, 2ρ), s ∈ (0, 1), a ∈ [0, 1], γ ∈ (0, 1/L), L is the spectral
radius of the operator A∗A and A∗ is the adjoint of A. Also {αn}, {βn}, {γn} are sequences
in [0, 1] with αn + βn + γn = 1 for all n ∈ N. Suppose the conditions (i)–(iv) of Theorem 3.4
hold. Then {xn}, {un} and {yn} converge strongly to z = PFu.

Proof By using Corollary 3.5 and Lemma 4.3, we obtain the conclusion. �

5 Example and numerical results
In this section, an example is given for supporting Theorem 3.4. In Example 5.1, we only
instance an example in infinite dimensional Hilbert space for supporting Theorem 3.4. We
omit the computer programming.

Example 5.1 Let H1 = H2 = C = Q = �2 be the linear space whose elements consist of all
2-summable sequences (x1, x2, . . . , xj, . . .) of scalars, i.e.,

�2 =

{

x : x = (x1, x2, . . . , xj, . . .) and
∞∑

j=1

|xj|2 < ∞
}

,

with an inner product 〈·, ·〉 : �2 × �2 → R defined by 〈x, y〉 =
∑∞

j=1 xjyj where x = {xj}∞j=1, y =
{yj}∞j=1 ∈ �2 and a norm ‖ · ‖ : �2 →R defined by ‖x‖2 = (

∑∞
j=1 |xj|2) 1

2 where x = {xj}∞j=1 ∈ �2.
Let the mapping A : �2 → �2 be defined by Ax = ( x1

3 , x2
3 , . . . , xj

3 , . . .) for all x = {xj}∞j=1 ∈ �2

and A∗ : �2 → �2 be defined by A∗z = ( z1
3 , z2

3 , . . . , zj
3 , . . .) for all z = {zj}∞j=1 ∈ �2. Let D1, D2 :
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�2 → �2 be defined by D1x = ( x1
6 , x2

6 , . . . , xj
6 , . . .) and D2x = ( x1

5 , x2
5 , . . . , xj

5 , . . .), ∀x = {xj}∞j=1 ∈
�2, respectively. Let the mapping Ti : �2 → �2 be defined by Tix = ( 3ix1

5i+1 , 3ix2
5i+1 , . . . , 3ixj

5i+1 , . . .),
∀x = {xj}∞j=1 ∈ �2 and ki = 6

7i + 1
N7N for every i = 1, 2, . . . , N . Let the mapping F1, F2 : R2 ×

R
2 →R be defined by

F1(x, y) = –x2 + y2, ∀x = {xj}∞j=1, y = {yj}∞j=1 ∈ �2,

and

F2(x, y) = –2x2 + xy + y2, ∀x = {xj}∞j=1, y = {yj}∞j=1 ∈ �2.

Let the mapping f1 : �2 → �2 be defined by f1x = ( x1
5 , x2

5 , . . . , xj
5 , . . .), ∀x = {xj}∞j=1 ∈ �2 and the

mapping f2 : �2 → �2 be defined by f2x = ( x1
7 , x2

7 , . . . , xj
7 , . . .), ∀x = {xj}∞j=1 ∈ �2. Let r = 1 and

s = 0.5. Since L = 1
9 , we choose γ = 0.5. Let x1 = (x1

1, x2
1, . . . , xj

1, . . .) and u = (u1, u2, . . . ,
uj, . . .) ∈ �2 and let the sequences {xn}, {yn} and {un} be generated by (3.6) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

un = TF1
1 (I – f1)(xn + 0.5A∗(TF2

0.5(I – 0.5f2) – I)Axn),

yn = (I – D1)(0.5un + 0.5(I – D2)un),

xn+1 = 1
2n u + 7n–4

12n xn + 5n–2
12n (yn – (( 1

2n2 )(
∑N

i=1( 6
7i + 1

N7N )(yn – Tiyn)))),

for all n ≥ 1, where xn = (x1
n, x2

n, . . . , xj
n, . . .), yn = (y1

n, y2
n, . . . , yj

n, . . .) and un = (u1
n, u2

n, . . . ,
uj

n, . . .). It easy to see that D1, D2, Ti, F1, F2, f1 and f2 satisfy Theorem 3.4. Moreover, we have
VI(C, D1) ∩ VI(C, D2) ∩ ⋂N

i=1 F(Ti) ∩ 
 = {0}, where ρ = d1 = d2 = 1. From Theorem 3.4,
we can conclude that the sequences {xn}, {yn} and {un} converge strongly to 0.

In Example 5.2, we give computer programming to support our main result.

Example 5.2 Let H1 = H2 = C = Q = R
2 be the two-dimensional Euclidean space of the real

number with an inner product 〈·, ·〉 : R2 ×R
2 →R be defined by 〈x, y〉 = x · y = x1y1 + x2y2

where x = (x1, x2) ∈ R
2 and y = (y1, y2) ∈ R

2 and a usual norm ‖ · ‖ : R2 → R be defined
by ‖x‖ =

√
x2

1 + x2
2 where x = (x1, x2) ∈ R

2. Let the mapping A : R2 → R
2 be defined by

Ax = (2x1 – x2, x1 + 2x2) for all x = (x1, x2) ∈R
2 and A∗ : R2 →R

2 be defined by A∗z = (2z1 –
z2, 2z2 – z1) for all z = (z1, z2) ∈ R

2. Let D1, D2 : R2 → R
2 be defined by D1x = ( x1

6 , x2
6 ) and

D2x = ( x1
2 , x2

3 ), ∀x = (x1, x2) ∈ R
2, respectively. Let the mapping Ti : R2 → R

2 be defined
by Tix = ( 3ix1

3i+1 , 3ix2
3i+2 ), ∀x = (x1, x2) ∈ R

2 and ki = 6
7i + 1

N7N for every i = 1, 2, . . . , N . Let the
mapping F1, F2 : R2 ×R

2 →R be defined by

F1(x, y) = –x2 + y2, ∀x = (x1, x2), y = (y1, y2) ∈R
2,

and

F2(x, y) = –2x2 + xy + y2, ∀x = (x1, x2), y = (y1, y2) ∈R
2.

Let the mapping f1 : R2 → R
2 be defined by f1x = ( x1

5 , x2
5 ), ∀x = (x1, x2) ∈ R

2 and the map-
ping f2 : R2 → R

2 be defined by f2x = ( x1
7 , x2

7 ), ∀x = (x1, x2) ∈ R
2. Let r = 1 and s = 0.5, the
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sequences zn = (z1
n, z2

n), xn = (x1
n, x2

n), un = (u1
n, u2

n), y = (y1, y2) ∈ R
2. By the definition of f1

and f2, we get

0 ≤ F1(zn, y) +
〈
f1(zn), y – zn

〉
+

1
r
〈y – zn, zn – xn〉

= –
(
z1

n
)2 –

(
z2

n
)2 + (y1)2 + (y2)2 +

1
5

z1
n
(
–z1

n + y1
)

+
1
5

z2
n
(
–z2

n + y2
)

+
(
y1 – z1

n
)(

z1
n – x1

n
)

+
(
y2 – z2

n
)(

z2
n – x2

n
)

=
(

(y1)2 +
(

–x1
n +

6
5

z1
n

)
y1 + x1

nz1
n –

11
5

(
z1

n
)2

)

+
(

(y2)2 +
(

–x2
n +

6
5

z2
n

)
y2 + x2

nz2
n –

11
5

(
z2

n
)2

)

= G1(y1) + G2(y2).

Let G1(y1) = (y1)2 + (–x1
n + 6

5 z1
n)y1 + x1

nz1
n – 11

5 (z1
n)2 and G2(y2) = (y2)2 + (–x2

n + 6
5 z2

n)y2 + x2
nz2

n –
11
5 (z2

n)2. G1(y1) and G2(y2) are quadratic functions with coefficients a1 = 1, b1 = –x1
n + 6

5 z1
n,

and c1 = x1
nz1

n – 11
5 (z1

n)2 of G1(y1) and coefficients a2 = 1, b2 = –x2
n + 6

5 z2
n, and c2 = x2

nz2
n –

11
5 (z2

n)2 of G2(y2), respectively. Determine the discriminant �1 of G1 as follows:

�1 = b2
1 – 4a1c1

=
(

–x1
n +

6
5

z1
n

)2

– 4(1)
(

x1
nz1

n –
11
5

(
z1

n
)2

)
=

1
25

(
5x1

n – 16z1
n
)2.

We know that G1(y1) ≥ 0, ∀y ∈ R. If it has most one solution in R, then �1 ≤ 0, so we
obtain z1

n = 5x1
n

16 . Next, we determine the discriminant �2 of G2 by using the same method as
above, we obtain z2

n = 5x2
n

16 . That is TF1
r (I – rf1)zn = ( 5x1

n
16 , 5x2

n
16 ). After that, we find the solution

of un = (u1
n, u2

n) in this inequality 0 ≤ F2(un, y) + 〈f2(un), y – un〉 + 1
s 〈y – un, un – xn〉. By using

the same method as zn = (z1
n, z2

n), we obtain

un =
(
u1

n, u2
n
)

=
(

7x1
n

51
,

7x2
n

51

)
. (5.1)

That is, TF2
s (I – sf2)un = ( 7x1

n
51 , 7x2

n
51 ).

Let x1 = (x1
1, x2

1) and u = (u1, u2) ∈R
2. The sequences {xn}, {yn} and {un} are generated by

(3.6), where ki = 6
7i + 1

N7N , d1 = 1, d2 = 1, a = 0.5, αn = 1
2n , βn = 7n–4

12n , γn = 5n–2
12n and λn = 1

2n2

for all n ∈ N. Since L = 5, we choose γ = 0.1. From the definition of D1, D2, Ti, F1, F2, f1

and f2, we have VI(C, D1) ∩ VI(C, D2) ∩ ⋂N
i=1 F(Ti) ∩ 
 = {0}. From Theorem 3.4, we can

conclude that the sequences {xn}, {yn} and {un} converge strongly to 0. We can rewrite
(3.6) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

un = TF1
1 (I – f1)(xn + 0.1A∗(TF2

0.5(I – 0.5f2) – I)Axn),

yn = (I – D1)(0.5un + 0.5(I – D2)un),

xn+1 = 1
2n u + 7n–4

12n xn + 5n–2
12n (yn – (( 1

2n2 )(
∑N

i=1( 6
7i + 1

N7N )(yn – Tiyn)))),

for all n ≥ 1, where xn = (x1
n, x2

n), yn = (y1
n, y2

n) and un = (u1
n, u2

n).
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Table 1 The values of {xn}, {yn} and {un} where u = (5, –5), x1 = (5, –5) and n = 30

N = 1 N = 20

n xn = (x1n , x
2
n) yn = (y1n , y

2
n) un = (u1n ,u

2
n) xn = (x1n , x

2
n) yn = (y1n , y

2
n) un = (u1n ,u

2
n)

1 (5.0000, –5.0000) (0.5553, –0.6170) (0.8885, –0.8885) (5.0000, –5.0000) (0.5553, –0.6170) (0.8885, –0.8885)
2 (3.8715, –3.8850) (0.4300, –0.4794) (0.6879, –0.6903) (3.8700, –3.8833) (0.4298, –0.4792) (0.6877, –0.6901)
...

...
...

...
...

...
...

15 (0.5189, –0.5274) (0.0576, –0.0651) (0.0922, –0.0937) (0.5189, –0.5274) (0.0576, –0.0651) (0.0922, –0.0937)
...

...
...

...
...

...
...

29 (0.2485, –0.2522) (0.0276, –0.0311) (0.0442, –0.0448) (0.2485, –0.2522) (0.0276, –0.0311) (0.0442, –0.0448)
30 (0.2397, –0.2432) (0.0266, –0.0300) (0.0426, –0.0432) (0.2397, –0.2432) (0.0266, –0.0300) (0.0426, –0.0432)

(a) N = 1 (b) N = 20

Figure 1 The convergence comparison with different values N

Table 1 shows the values of sequences {xn}, {yn} and {un} where u = (5, –5), x1 = (5, –5)
and n = 30.

6 Conclusion
1. Example 5.1 is an example in infinite dimensional Hilbert space for supporting

Theorem 3.4
2. Table 1 and Fig. 1 in Example 5.2 show that the sequences {xn}, {yn} and {un}

converge to 0, where {0} = VI(C, D1) ∩ VI(C, D2) ∩ ⋂N
i=1 F(Ti) ∩ 
.

3. Theorem 3.4 guarantees the convergence of {xn}, {yn} and {un} in Example 5.1 and
Example 5.2.

4. By using the concept of Picard iteration, Wang [13] defined the iterative scheme
{xn} for solving SCFPP as follows:

xn+1 = xn – ρn
(
(I – U)xn + A∗(I – T)Axn

)

=
(
I – ρn

(
(I – U) + A∗(I – T)A

))
xn, (6.1)
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where ρn is according to (1.4) and U and T are firmly quasi-nonexpansive
mappings. Then the sequence {xn} converges weakly to z, where z = limn→∞ P�xn.
In Theorem 3.4, we use the concept of Halpern iteration and suitable conditions of
the parameters d1, d2, r, s, a, γ , L, {αn}, {βn} and {γn}, the sequence {xn} defined by
(3.6) converges strongly to z = PFu, which is a different method from (6.1).
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