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Abstract
In this paper, we concern stability of numerical methods applied to stochastic delay
integro-differential equations. For linear stochastic delay integro-differential
equations, it is shown that the mean-square stability is derived by the split-step
backward Euler method without any restriction on step-size, while the
Euler–Maruyama method could reproduce the mean-square stability under a
step-size constraint. We also confirm the mean-square stability of the split-step
backward Euler method for nonlinear stochastic delay integro-differential equations.
The numerical experiments further verify the theoretical results.
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1 Introduction
Stochastic delay integro-differential equations, as the mathematical model, widely apply
in biology, physics, economics and finance [1, 2]. Because of the stochastic delay integro-
differential equations themselves, it is not easy to obtain an explicit solution for these kinds
of equations, so it is necessary to research the numerical methods for numerical solution
of stochastic delay integro-differential equations [3, 4]. Stability is the basic and important
property of numerical methods for stochastic systems.

There are few results on the numerical methods to stochastic delay integro-differential
equations. Ding et al. [5] dealt with the stability of the semi-implicit Euler method for
linear stochastic delay integro-differential equations. Rathinasamy and Balachandran [6]
proved mean-square stability of the Milstein method for linear stochastic delay integro-
differential equations with Markovian switching under suitable conditions on the inte-
gral term. The condition under which the split-step backward Euler method was mean-
square stable has been obtained by Tan and Wang [7, 8]. Rathinasamy and Balachan-
dran [9] also analyzed T-stability of the split-step-θ -methods for linear stochastic delay
integro-differential equations. Wu [10] investigated the mean-square stability for stochas-
tic delay integro-differential equations by the strong balanced methods and the weak bal-
anced methods with sufficiently small step-size. Numerical researches for stochastic delay
integro-differential equations are not perfect enough. Therefore, it is extremely essential
to develop the stability of the numerical methods to stochastic equations.

The paper is organized as follows. In Sect. 2 we will introduce related symbols and defini-
tions. Some suitable conditions will be given to guarantee stability of the Euler–Maruyama
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method for stochastic delay integro-differential equations in Sect. 3. In Sect. 4, the split-
step backward Euler method will be used to prove general mean-square stability of nu-
merical solutions. In Sect. 5, we will discuss stability of nonlinear stochastic delay integro-
differential equations. Furthermore, numerical experiments are provided in Sect. 6.

2 Preliminaries
Throughout this paper, unless otherwise specified, let (�,F , P) be a complete probability
space with a filtration (Ft)t≥0, which satisfies the usual conditions (i.e., it is increasing and
right continuous while F0 contains all P-null sets). Let | · | be the Euclidean norm, W (t)
is Wiener process defined on the probability space, which be Ft-adapted and indepen-
dent of F0. Let τ > 0 and C([–τ , 0];R) denote the family of all continuous R-valued func-
tions on [–τ , 0], C([–τ , 0];Rd) denote the family of all continuous functions ξ from [–τ , 0]
to R

d , ‖ξ‖ is defined by ‖ξ‖ = sup–τ≤t≤0 |ξ (t)|. We assume ξ (t), t ∈ [–τ , 0] is the initial
function, which is F0-measurable and right continuous, E‖ξ‖2 < ∞. Let Cb

F0
([–τ , 0];R) be

the family of all F0-measurable bounded C([–τ , 0];R)-valued random variables ξ = {ξ (θ ) :
–τ ≤ θ ≤ 0}.

As a matter of convenience, we first consider the following form of linear stochastic
delay integro-differential equations:

⎧
⎪⎨

⎪⎩

dx(t) = [αx(t) + βx(t – τ ) + γ
∫ t

t–τ
x(s) ds] dt

+ [λx(t) + μx(t – τ ) + η
∫ t

t–τ
x(s) ds] dW (t), t ≥ 0,

x(t) = ξ (t), t ∈ [–τ , 0],
(1)

where ξ (t) is initial function, and ξ (t) ∈ C([–τ , 0];R), α,β ,γ ,λ,μ,η ∈R, W (t) is a standard
one-dimensional Wiener process and τ is the delay term.

Under the above assumptions, Eq. (1) has a unique solution x(t). In order to analyze
mean-square stability of two numerical methods, we introduce the following lemma [11].

Lemma 2.1 If

α + |β| + |γ |τ +
1
2
(|λ| + |μ| + |η|τ)2 < 0 (2)

the solution of Eq. (1) is said to be mean-square stable, that is,

lim
t→∞ E

∣
∣x(t)

∣
∣2 = 0. (3)

3 Mean-square stability of the Euler–Maruyama method
Now, the Euler–Maruyama method applied to Eq. (1) one gets

Xn+1 = Xn + (αXn + βXn–m + γ X̄n)h + (λXn + μXn–m + ηX̄n)�Wn, (4)

where ξ = X0, Xn is an approximation to the analytical solution x(tn),n which is Ftn -
measurable, h > 0 is the given step-size, which satisfies h = τ

m for a positive integer m,
tn = nh, n = –m, . . . , 0, and we get Xn = ξ (tn) when tn ≤ 0, �Wn = W (tn+1) – W (tn) are in-
dependent N(0, h) distributed stochastic variables. X̄n approaches the integral term, this
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paper will choose a composite trapezoidal rule as the tool of the disperse integral to solve
this case. We have

X̄n =
h
2

Xn–m + h
m–1∑

k=1

Xn–k +
h
2

Xn.

Definition 3.1 If there exists a h0 > 0, for every step-size h ∈ (0, h0] with h = τ
m , such that

the numerical approximation {Xn} produced by the Euler–Maruyama method satisfies

lim
n→∞ E|Xn|2 = 0 (5)

then the numerical method applied to Eq. (1) is said to be mean-square stable.

Theorem 3.1 Under the condition (2), let h0 = max{h1, h2}, for step-size h ∈ (0, h0], we have

lim
n→∞ E|Xn|2 = 0

then the Euler–Maruyama method applied to Eq. (1) is mean-square stable, where

h1 = –
2α + 2|β| + 2|γ |τ + (|λ| + |μ| + |η|τ )2

(|α| + |β| + |γ |τ )2 ,

h2 = min

{

–
1
α

, –
2α + 2|β| + 2|γ |τ + (|λ| + |μ| + |η|τ )2

(α + |β| + |γ |τ )2

}

.

Proof From Eq. (4), we obtain

Xn+1 = (1 + αh + η�Wn)Xn + (βh + μ�Wn)Xn–m

+ (γ h + η�Wn)X̄n. (6)

Squaring both sides of Eq. (6), we have

X2
n+1 = (1 + αh + η�Wn)2X2

n + (βh + μ�Wn)2X2
n–m + (γ h

+ η�Wn)2X̄2
n + 2(1 + αh + η�Wn)(βh + μ�Wn)XnXn–m

+ 2(1 + αh + η�Wn)(γ h + η�Wn)XnX̄n

+ 2(βh + μ�Wn)(γ h + η�Wn)Xn–mX̄n

=
(
1 + α2h2 + λ2�W 2

n + 2αh + 2λ�Wn + 2αλh�Wn
)
X2

n

+
(
β2h2 + 2βμh�Wn + μ2�W 2

n
)
X2

n–m +
(
γ 2h2

+ 2γ ηh�Wn + η2�W 2
n
)
X̄2

n + 2
[
βh(1 + αh + η�Wn)

+ μ�Wn(1 + αh + η�Wn)
]
XnXn–m + 2

[
γ h(1 + αh + η�Wn)

+ η�Wn(1 + αh + η�Wn)
]
XnX̄n

+ 2(βh + μ�Wn)(γ h + η�Wn)Xn–mX̄n.
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It follows from 2ab ≤ |ab|(x2 + y2), where a, b ∈R, τ = mh, that

2Xn–mX̄n = 2Xn–m

(
h
2

Xn–m + h
m–1∑

k=1

Xn–k +
h
2

Xn

)

= hX2
n–m + 2hXn–m

m–1∑

k=1

Xn–k + hXnXn–m

≤ hX2
n–m + h(m – 1)X2

n–m + h
m–1∑

k=1

X2
n–k +

h
2
(
X2

n + X2
n–m

)

≤ τX2
n–m +

h
2

X2
n–m + h

m–1∑

k=1

X2
n–k +

h
2

X2
n . (7)

According to the inequality (a1 + a2 + · · · + an)2 ≤ n(a2
1 + a2

2 + · · · + a2
n),

X̄2
n = h2

(
1
2

Xn–m +
m–1∑

k=1

Xn–k +
1
2

Xn

)2

≤ h2

(
1
4

X2
n–m + (m – 1)

m–1∑

k=1

X2
n–k +

1
4

X2
n +

1
2

[

(m – 1)X2
n–m

+
m–1∑

k=1

X2
n–k

]

+
1
2
(
X2

n + X2
n–m

)
+

1
2

[

(m – 1)X2
n +

m–1∑

k=1

X2
n–k

])

≤ τ

(
h
2

X2
n–m + h

m–1∑

k=1

X2
n–k +

h
2

X2
n

)

. (8)

In a similar way

2XnX̄n = τX2
n +

h
2

X2
n–m + h

m–1∑

k=1

X2
n–k +

h
2

X2
n . (9)

We note that E(�Wn) = 0, E[(�Wn)2] = h, and Xn, Xn–1, . . . , Xn–m are Ftn -measurable. Sub-
stituting (7), (8), (9) into the above equation and taking expectations,

EX2
n+1 ≤ (

1 + α2h2 + λ2h + 2αh
)
EX2

n +
(
β2h2 + μ2h

)
EX2

n–m

+
(
γ 2h2 + η2h

)
τE

(
h
2

X2
n–m + h

m–1∑

k=1

X2
n–k +

h
2

X2
n

)

+
[∣
∣(1 + αh)βh

∣
∣ + |λμ|h](

EX2
n + EX2

n–m
)

+
[∣
∣(1 + αh)γ h

∣
∣ + |λη|h]

E

(

τX2
n +

h
2

X2
n–m

+ h
m–1∑

k=1

X2
n–k +

h
2

X2
n

)

+
(|βγ |h2 + |μη|h)

× E

(

τX2
n–m +

h
2

X2
n–m + h

m–1∑

k=1

X2
n–k +

h
2

X2
n

)

.
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Let Yn = E|X2
n|, we have

Yn+1 ≤ PYn + QYn–m + R max
n–m≤i≤n

(Yi),

where

P = 1 + α2h2 + λ2h + 2αh +
∣
∣(1 + αh)βh

∣
∣ + |λμ|h + |λη|τh

+
∣
∣(1 + αh)γ τh

∣
∣,

Q = β2h2 + μ2h +
∣
∣(1 + αh)βh

∣
∣ + |λμ|h + |βγ |τh2 + |μη|τh,

R =
(
γ 2h2 + η2h

)
τ 2 +

∣
∣(1 + αh)γ τh

∣
∣ + |λη|τh + |βγ |τh2 + |μη|τh.

So

Yn+1 ≤ (P + Q + R) max
{

Yn, Yn–m, max
n–m≤i≤n

(Yi)
}

.

It is clear that Yn → 0 (n → ∞) if P + Q + R < 1, namely

1 + α2h2 + λ2h + 2αh + 2
∣
∣(1 + αh)βh

∣
∣ + 2|λμ|h + 2|λη|τh + β2h2 + μ2h

+ 2
∣
∣(1 + αh)γ τh

∣
∣ + 2|βγ |τh2 + 2|μη|τh + γ 2h2 + η2h < 1.

Hence let

h1 = –
2α + 2|β| + 2|γ |τ + (|λ| + |μ| + |η|τ )2

(|α| + |β| + |γ |τ )2 ,

h2 = min

{

–
1
α

, –
2α + 2|β| + 2|γ |τ + (|λ| + |μ| + |η|τ )2

(α + |β| + |γ |τ )2

}

.

By the condition (2), we know that h1 > 0, h2 > 0. If h0 ∈ (0, h1), we have

(
α2 + 2|αβ| + 2|αγ |τ + β2 + 2|βγ |τ + γ 2τ 2)h2

+
(
2α + 2|β| + 2|γ |τ +

(|λ| + |μ| + |η|τ)2)h < 0.

On the other side, we address the case 1 + αh > 0. If h0 ∈ (0, h2), we get

(
α2 + 2α|β| + 2α|γ |τ + β2 + 2|βγ |τ + γ 2τ 2)h2

+
(
2α + 2|β| + 2|γ |τ +

(|λ| + |μ| + |η|τ)2)h < 0.

Let h0 ∈ max{h1, h2}; when h ∈ (0, h0], P + Q + R < 1 always holds, then

lim
n→∞ Yn = lim

n→∞ E|Xn|2 = 0

then the Euler–Maruyama method applied to Eq. (1) is mean-square stable. The theorem
is completed. �
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4 General mean-square stability of the split-step backward Euler method
Using the split-step backward Euler method applied to Eq. (1), we construct the numerical
scheme as follows:

{
X∗

n = Xn + (αX∗
n + βXn–m + γ X̄n)h,

Xn+1 = X∗
n + (λX∗

n + μXn–m + ηX̄n)�Wn;
(10)

the relevant definitions are in Sect. 3, if 1 – αh 
= 0, we can get the sequences{X∗
n , n ≥ 0}

and {Xn, n ≥ 1} via (10), when given Xn = ξ (nh) for n ∈ {–m, –m + 1, . . . , 0}.

Definition 4.1 For every step-size h = τ
m , if any application of the split-step backward

Euler method to Eq. (1) generates a numerical approximation {Xn} that satisfies

lim
n→∞ E|Xn|2 = 0 (11)

then the numerical method applied to Eq. (1) is said to be general mean-square stable.

Theorem 4.1 Under the condition (2), assume 1 – αh 
= 0, the split-step backward Euler
method applied to Eq. (1) is generally mean-square stable.

Proof Assume 1 – αh 
= 0 and implying α < 0; we can see from (10) that

Xn+1 =
1 + λ�Wn

1 – αh
(Xn + βhXn–m + γ hX̄n) + (μXn–m + ηX̄n)�Wn. (12)

Squaring both sides of Eq. (12),

X2
n+1 =

(
1 + λ�Wn

1 – αh

)2(
X2

n + β2h2X2
n–m + γ 2h2X̄2

n + 2βhXnXn–m + 2γ hXnX̄n

+ 2βγ h2Xn–mX̄n
)

+
(
μ2X2

n–m + η2X̄2
n + 2μηXn–mX̄n

)�W 2
n

+ 2
1 + λ�Wn

1 – αh
(Xn + βhXn–m + γ hX̄n)(μXn–m + ηX̄n)�Wn.

According to 2abxy ≤ |ab|(x2 + y2) and E(�Wn) = 0, E[(�Wn)2] = h, substituting (7), (8),
(9) into the above equation and taking expectations

EX2
n+1 ≤ 1 + λ2h

(1 – αh)2

[

EX2
n + β2h2EX2

n–m + γ 2h2τE

(
h
2

X2
n–m

+ h
m–1∑

k=1

X2
n–k +

h
2

X2
n

)

+ |β|h(
EX2

n + EX2
n–m

)

+ |γ |hE

(

τXn +
h
2

X2
n–m + h

m–1∑

k=1

X2
n–k +

h
2

X2
n

)

+ |βγ |h2E

(

τXn–m +
h
2

X2
n–m + h

m–1∑

k=1

X2
n–k +

h
2

X2
n

)]

+ μ2hEX2
n–m + η2τhE

(
h
2

X2
n–m + h

m–1∑

k=1

X2
n–k +

h
2

X2
n

)
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+ |μη|hE

(

τXn–m +
h
2

X2
n–m + h

m–1∑

k=1

X2
n–k +

h
2

X2
n

)

+
|λμ|h
1 – αh

(
EX2

n + EX2
n–m

)
+

2|βλμ|h2

1 – αh
EX2

n–m

+
|γ λμ|h2

1 – αh
E

(

τXn–m +
h
2

X2
n–m + h

m–1∑

k=1

X2
n–k +

h
2

X2
n

)

+
|λη|h
1 – αh

E

(

τXn +
h
2

X2
n–m + h

m–1∑

k=1

X2
n–k +

h
2

X2
n

)

+
|βλη|h2

1 – αh
E

(

τXn–m +
h
2

X2
n–m + h

m–1∑

k=1

X2
n–k +

h
2

X2
n

)

+
2|γ λη|h2

1 – αh
τE

(
h
2

X2
n–m + h

m–1∑

k=1

X2
n–k +

h
2

X2
n

)

,

in particular

EX2
n+1 ≤ PEX2

n + QEX2
n–m + R max

n–m≤i≤n
E
(
X2

i
)
,

where

P =
1 + λ2h

(1 – αh)2

(
1 + |β|h + |γ |hτ

)
+

|λη|hτ

1 – αh
+

|λμ|h
1 – αh

,

Q =
1 + λ2h

(1 – αh)2

(
β2h2 + |β|h + |βγ |τh2) + μ2h + |μη|τh

+
|λμ|h
1 – αh

+
|βλη|τh2

1 – αh
+

|γ λμ|τh2

1 – αh
+

2|βλμ|h2

1 – αh
,

R =
1 + λ2h

(1 – αh)2

(
γ 2h2τ 2 + |γ |τh + |βγ |τh2) + η2τ 2h + |μη|τh

+
|γ λμ|τh2

1 – αh
+

|λη|τh
1 – αh

+
|βλη|τh2

1 – αh
+

2|γ λη|h2

1 – αh
τ 2.

Let Yn = E|X2
n|, the above inequality turns into

Yn+1 ≤ (P + Q + R) max
{

Yn, Yn–m, max
n–m≤i≤n

Yi

}
.

We conclude that Yn → 0 (n → ∞), if P + Q + R < 1, that is,

1 + λ2h
(1 – αh)2

(
1 + |β|h + 2|γ |hτ

)2 +
2|λμ|h
1 – αh

+
2|λη|τh
1 – αh

+
2|βλμ|h2

1 – αh

+
2|γ λμ|τh2

1 – αh
+

2|βλη|τh2

1 – αh
+

2|γ λη|τ 2h2

1 – αh
+

(|μ| + |η|τ)2h < 1.
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Hence, we have

[(|βλ| + |γ λ|τ)
– α

(|μ| + |η|τ)]2h2 +
[(|β| + |γ |τ)2 – α2

+
(
2|λ| + 2|μ| + 2|η|τ)(|βλ| + |γ λ|τ – α

(|μ| + |η|τ))]
h

+ 2α + 2|β| + 2|γ |τ +
(|λ| + |μ| + |η|τ)2 < 0.

Let

F(h) = Ah2 + Bh + 2α + 2|β| + 2|γ |τ +
(|λ| + |μ| + |η|τ)2,

where

A =
[(|βλ| + |γ λ|τ)

– α
(|μ| + |η|τ)]2,

B =
(|β| + |γ |τ)2 – α2 +

(
2|λ| + 2|μ| + 2|η|τ)(|βλ| + |γ λ|τ – α

(|μ| + |η|τ))
,

� =
[(|β| + |γ |τ)2 – α2 +

(
2|λ| + 2|μ| + 2|η|τ)(|βλ| + |γ λ|τ –

(|μ| + |η|τ))]2

– 4
[(|βλ| + |γ λ|τ)

– α
(|μ| + |η|τ)]2[2α + 2|β| + 2|γ |τ +

(|λ| + |μ| + |η|τ)2].

It is easy to see A > 0, Because of the nature of a quadratic function, we can see that F(h) < 0
holds for any 0 < h < 1, when –B+

√�
2A ≥ 1, and the split-step backward method Euler is

general mean-square stable. This proves the theorem. �

5 Mean-square stability of the split-step backward Euler method for nonlinear
stochastic systems

In this section, we will discuss the mean-square stability of the split-step backward Eu-
ler method for nonlinear stochastic delay integro-differential equations. Considering the
following nonlinear stochastic equation:

⎧
⎪⎨

⎪⎩

dx(t) = f (x(t), x(t – τ ),
∫ t

t–τ
x(s) ds) dt

+ g(x(t), x(t – τ ),
∫ t

t–τ
x(s) ds) dW (t), t ≥ 0,

x(t) = ξ (t), t ∈ [–τ , 0],
(13)

f : Rd × R
d × R

d → R
d , g : Rd × R

d × R
d → R

d×m, ξ (t) ∈ C([–τ , 0];Rd), W (t) is an m-
dimensional Wiener process and τ is a delay term. If f and g are sufficiently smooth and sat-
isfy the Lipschitz condition and the linear growth condition, Eq. (13) has a unique strong
solution x(t), t ∈ [–τ ,∞) and x(t) is a measurable, sample-continuous and Ft adapted
process [12, 13].

The split-step backward Euler method applied to Eq. (13) yields

{
X∗

n = Xn + f (X∗
n , Xn–m, X̄n)h,

Xn+1 = X∗
n + g(X∗

n , Xn–m, X̄n)�Wn;
(14)

Xn, X∗
n , X̄n, h, �Wn are defined in Sects. 3 and 4.

Lemma 5.1 ([14]) If there exist constant a1, a2, a3, b1, b2, b3, for all x, u, v ∈ R
d , we have

〈
x, f (x, 0, 0)

〉 ≤ –a1|x|2, (15)
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∣
∣f (x, u, v) – f (x, 0, 0)

∣
∣ ≤ a2|u| + a3|v|, (16)

∣
∣g(x, u, v)

∣
∣2 ≤ b1|x|2 + b2|u|2 + b3|v|2. (17)

Theorem 5.1 Suppose that Lemma 5.1 holds and let

–a1 + a2 + a3τ +
1
2
(
b1 + b2 + b3τ

2) < 0. (18)

If there exists a h0 > 0, for every step-size h ∈ (0, h0], we have

lim
n→∞ E|Xn|2 = 0.

Then the numerical solution of Eq. (13) is mean-square stable, where

h0 = –
–2a1 + 2a2 + 2a3τ + (b1 + b2 + b3τ

2)
b1(a2 + a3τ ) + (b2 + b3τ 2)(2a1 – a2 – a3τ )

.

Proof From the second equation of (14), we obtain

|Xn+1|2 =
∣
∣X∗

n
∣
∣2 +

∣
∣g

(
X∗

n , Xn–m, X̄n
)∣
∣2�W 2

n + 2
〈
X∗

n , g
(
X∗

n , Xn–m, X̄n
)�Wn

〉
.

Note that E(�Wn) = 0, E[(�Wn)2] = h, and Xn, Xn–m, X̄ are Ftn -measurable, hence

E
〈
X∗

n , g
(
X∗

n , Xn–m, X̄n
)�Wn

〉
= 0,

E
∣
∣g

(
X∗

n , Xn–m, X̄n
)∣
∣2�W 2

n =
∣
∣g

(
X∗

n , Xn–m, X̄n
)∣
∣2h.

Combining condition (17) and taking expectations on both sides of the above equation,

E|Xn+1|2 ≤ E
∣
∣X∗

n
∣
∣2 +

(
b1E

∣
∣X∗

n
∣
∣2 + b2E|Xn–m|2 + b3E|X̄n|2

)
h

≤ (1 + b1h)E
∣
∣X∗

n
∣
∣2 + b2hE|Xn–m|2 + b3hE|X̄n|2.

Next, we should derive the E|X∗
n |2 by the first equation of (14),

X∗
n – f

(
X∗

n , Xn–m, X̄n
)
h = Xn. (19)

Squaring both sides of Eq. (19), one gets

∣
∣X∗

n
∣
∣2 ≤ |Xn|2 + 2h

〈
X∗

nf
(
X∗

n , Xn–m, X̄n
)〉

. (20)

Through the conditions (15), (16), we have

2
〈
X∗

n , f
(
X∗

n , Xn–m, X̄n
)〉

= 2
〈
X∗

n , f
(
X∗

n , 0, 0
)〉

+ 2
〈
X∗

n ,
(
f
(
X∗

n , Xn–m, X̄n
)

– f
(
X∗

n , 0, 0
))〉

≤ –2a1
∣
∣X∗

n
∣
∣2 + a2

(∣
∣X∗

n
∣
∣2 + |Xn–m|2) + 2a3

∣
∣X∗

nX̄n
∣
∣.
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It is easily to see that for X∗
nX̄n from Sect. 3

2X∗
nX̄n = τX∗

n +
h
2

X2
n–m + h

m–1∑

k=1

X2
n–k +

h
2

X2
n .

Substituting these into Eq. (20) and taking expectations

E
∣
∣X∗

n
∣
∣2 ≤ E|Xn|2 – 2a1hE

∣
∣X∗

n
∣
∣2 + a2hE

(∣
∣X∗

n
∣
∣2 + |Xn–m|2)

+ a3h

(

τX∗
n +

h
2

X2
n–m + h

m–1∑

k=1

X2
n–k +

h
2

X2
n

)

≤ (–2a1h + a2h + a3hτ )E
∣
∣X∗

n
∣
∣2 + E|Xn|2 + a2hE|Xn–m|2

+ a3hτ max
n–m≤i≤n

E|Xi|2.

In particular

E
∣
∣X∗

n
∣
∣2 ≤ 1

1 + 2a1h – a2h – a3hτ
E|Xn|2 +

a2h
1 + 2a1h – a2h – a3hτ

E|Xn–m|2

+
a3hτ

1 + 2a1h – a2h – a3hτ
max

n–m≤i≤n
E|Xi|2.

Hence

E|Xn+1|2 ≤ (1 + b1h)E
∣
∣X∗

n
∣
∣2 + b2hE|Xn–m|2 + b3hE|X̄n|2

≤ 1 + b1h
1 + 2a1h – a2h – a3hτ

E|Xn|2 +
(

a2h(1 + b1h)
1 + 2a1h – a2h – a3hτ

+ b2h
)

× E|Xn–m|2 +
(

a3hτ (1 + b1h)
1 + 2a1h – a2h – a3hτ

+ b3hτ 2
)

max
n–m≤i≤n

E|Xi|2.

We can write

E|Xn+1|2 ≤ PE|Xn|2 + QE|Xn–m|2 + R max
n–m≤i≤n

E|Xi|2,

where

P =
1 + b1h

1 + 2a1h – a2h – a3hτ
, Q =

a2h(1 + b1h)
1 + 2a1h – a2h – a3hτ

+ b2h,

R =
a3hτ (1 + b1h)

1 + 2a1h – a2h – a3hτ
+ b3hτ 2.

So

E|Xn+1|2 ≤ (P + Q + R)
{

E|Xn|2, E|Xn–m|2, max
n–m≤i≤n

E|Xi|2
}

.



Zhang and Li Journal of Inequalities and Applications  (2018) 2018:114 Page 11 of 13

If P + Q + R < 1, it is easily to see that E|Xn|2 → 0 when n → ∞. By the condition (18), we
have

[
b1(a2 + a3τ ) +

(
b2 + b3τ

2)(2a1 – a2 – a3τ )
]
h2 +

(
–2a1 + 2a2 + 2a3τ

+
(
b1 + b2 + b3τ

2))h < 0.

Namely

a2h + a3hτ + b1h + a2b1h2 + a3b1τh2 + b3hτ 2 + b3τ
2(2a1 – a2 – a3τ )h2

+ b2h + b2(2a1 – a2 – a3τ )h2 – 2a1h + a2h + a3hτ < 0.

Therefore, for every step-size h ∈ (0, h0], limn→∞ E|Xn|2 = 0 holds, the split-step backward
Euler method for nonlinear stochastic equations is mean-square stable. The proof is com-
plete. �

6 Numerical experiments
In this section, we will discuss the example to verify the theoretical results, considering
the following testified equation:

⎧
⎪⎨

⎪⎩

dx(t) = [αx(t) + βx(t – 1) + γ
∫ t

t–1 x(s) ds] dt
+ [λx(t) + μx(t – 1) + η

∫ t
t–1 x(s) ds] dW (t), t ≥ 0,

x(t) = ξ (t), t ∈ [–1, 0].
(21)

Taking the parameters α = –10, β = 2, γ = 1, λ = 0.5, μ = 0.2, η = 0.5, the condition (2) is
satisfied.

Case 1. We can easily see that h1 = 12.56
169 , h2 = min{ 1

10 , 12.56
49 }. By Theorem 3.1, h0 =

max{h1, h2} = 1
10 . When the step-size h ∈ (0, 1

10 ], the Euler–Maruyama method applied to
Eq. (21) is mean-square stable. However, the Euler–Maruyama method is unstable when
the step-size h = 1

5 > 1
10 , which is shown in Fig. 1(a) and (b).

Case 2. We can know A = [(|βλ| + |γ λ|τ ) – α(|μ| + |η|τ )]2 > 0, –B+
√�

2A ≈ 1.13 > 1, and the
conditions satisfy Theorem 4.1. Hence for any 0 < h < 1, the split-step backward method

Figure 1 The Euler–Maruyama method with (a) h = 1/15; (b) h = 1/5
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Figure 2 The split-step backward Euler method with (a) h = 1/15; (b) h = 1/5

Figure 3 The split-step backward Euler method with (a) h = 1/100; (b) h = 1/10

Euler has general mean-square stability. From Fig. 2, it is easy to confirm general mean-
square stability of a numerical solution under the same step-size as Case 1. The results
indicate that the split-step backward Euler method achieves superiority over the Euler–
Maruyama method in terms of mean-square stability.

Case 3. We will address the following nonlinear stochastic delay integro-differential
equation:

⎧
⎪⎨

⎪⎩

dx(t) = [–80x(t) + 10x(t – 1) + 10
∫ t

t–1 x(s) ds] dt
+ [0.4x(t) + 0.4x(t – 1) + 4

∫ t
t–1 x(s) ds] dW (t), t ≥ 0,

x(t) = 1, t ∈ [–1, 0].
(22)

It is easy to ascertain that Eq. (22) satisfies the conditions of Lemma 5.1. So

a1 = 80, a2 = 10, a3 = 10, b1 = 2, b2 = 2, b3 = 20, τ = 1.

Therefore

–a1 + a2 + a3τ +
1
2
(
b1 + b2 + b3τ

2) = –96 < 0. (23)
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We should calculate the step-size h0 ≈ 0.03 from Theorem 5.1, the data used in all figures
are plotted by 200 trajectories. It is proved that the split-step backward Euler method has
mean-square stability when h = 0.01, while h dissatisfied (0, h0], that is, h = 0.1 > h0, the
split-step backward Euler method is unstable. This is shown in Fig. 3.

7 Conclusion
In this paper, we investigate the mean-square stability and general mean-square stability
of two numerical methods for a class of linear stochastic delay equations. By comparison,
we know that the split-step backward Euler method achieves superiority over the Euler–
Maruyama method in terms of mean-square stability. The mean-square stability of nu-
merical method for nonlinear stochastic delay integro-differential equations is eventually
confirmed by us.
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