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Abstract
In this article, we show two fundamental features of the restriction of Möbius
operations to the real numbers, that is, a Cauchy type inequality and a criterion for
convergence of series.

MSC: Primary 26D15; secondary 40A05

Keywords: Cauchy inequality; Convergence of series; Möbius addition; Möbius
scalar multiplication

1 Introduction and preliminaries
Möbius addition is defined on the complex open unit disk D = {z ∈C; |z| < 1} by

a ⊕ b =
a + b

1 + ab
(a, b ∈D),

which appears in a wide variety of fields of mathematics. In particular, although Möbius
addition is known in the literature as a hyperbolic translation, its group-like structure had
gone unnoticed until it was uncovered by A.A. Ungar in 1988 [1], in the context of Ein-
stein’s special theory of relativity. Furthermore, Ungar extended Möbius addition, intro-
duced Möbius scalar multiplication to open balls of arbitrary real inner product spaces and
established the concept of gyrovector spaces, which have a vector space-like structure (see
[2–4]).

In this article, we show two fundamental features of the restriction of Möbius operations
to the real numbers, that is, a Cauchy type inequality and a criterion for convergence of
series.

Definition 1.1 ([5]) Let s > 0 be a fixed number. The addition ⊕s and scalar multiplication
⊗s on the open interval (–s, s) in the real line are defined by the equations

a ⊕s b =
a + b

1 + 1
s2 ab

,

r ⊗s a = s tanh

(
r tanh–1 a

s

)

for any –s < a, b < s, r ∈ R. These operations appear in one of the axioms (VV ) of the real
inner product gyrovector spaces defined by Ungar (see [2, Definition 6.2, Definition 6.83]).
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Note that, on the interval (–s, s), ⊕s is commutative, associative, and the operations
⊕s,⊗s together with the ordinary addition and multiplication have the following prop-
erties:

(r1r2) ⊗s a = r1 ⊗s (r2 ⊗s a),

(r1 + r2) ⊗s a = r1 ⊗s a ⊕s r2 ⊗s a,

r ⊗s (a ⊕s b) = r ⊗s a ⊕s r ⊗s b

for any –s < a, b < s, r1, r2, r ∈R.

Proposition 1.2 (see [2, after Remark 3.41], [3, p. 1054]) The Möbius addition (resp.
Möbius scalar multiplication) reduces to the ordinary addition (resp. scalar multiplica-
tion) as s → ∞, that is,

a ⊕s b → a + b (s → ∞),

r ⊗s a → ra (s → ∞)

for any a, b, r ∈ R.

We simply denote ⊕1, ⊗1 by ⊕, ⊗, respectively. It is easy to see the following lemma,
and we omit the proof.

Lemma 1.3 ([3, Theorem 4.2])
(i) If 0 < a, b < 1, then a ⊕ b < a + b.

(ii) If –1 < a < a′ < 1 and 0 < b < 1, then a ⊕ b < a′ ⊕ b.

2 Results and discussion
2.1 A Cauchy type inequality
The classical Cauchy inequality for real numbers

x1y1 + · · · + xnyn ≤ (
x2

1 + · · · + x2
n
) 1

2
(
y2

1 + · · · + y2
n
) 1

2

is one of the most fundamental inequalities in mathematics. In this section, we show an
inequality of Cauchy type for Möbius operations.

Although some of the following lemmas might be well known, we present each proof
for the sake of completeness and the convenience of readers.

Lemma 2.1 If a, b are real numbers and c = (a2 + b2) 1
2 , then we have

cosh c ≤ cosh a · cosh b.

The equality holds if and only if a = 0 or b = 0.
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Proof It is straightforward to see

cosh a · cosh b =
(

1 +
a2

2!
+

a4

4!
+ · · · +

a2k

(2k)!
+ · · ·

)

×
(

1 +
b2

2!
+

b4

4!
+ · · · +

b2k

(2k)!
+ · · ·

)

= 1 +
a2 + b2

2!
+

a4 + 6a2b2 + b4

4!
+ · · ·

+
a2k + · · · + cja2(k–j)b2j + · · · + b2k

(2k)!
+ · · · ,

where the coefficient of the term cja2(k–j)b2j in the numerator is

cj =
(2k)!

(2k – 2j)!(2j)!
≥ k!

(k – j)!j!
=

(
k
j

)
.

So we obtain

cosh a · cosh b ≥ 1 +
a2 + b2

2!
+

a4 + 2a2b2 + b4

4!
+ · · ·

+
a2k + · · · +

(k
j
)
a2(k–j)b2j + · · · + b2k

(2k)!
+ · · ·

= 1 +
c2

2!
+

c4

4!
+ · · · +

c2k

(2k)!
+ · · ·

= cosh c.

It is obvious that a = 0 or b = 0 implies the equality in the formula above. Conversely, if
the equality holds, then we must have

a4 + 6a2b2 + b4

4!
=

a4 + 2a2b2 + b4

4!
,

which implies that a = 0 or b = 0. This completes the proof. �

Lemma 2.2 If a, b are real numbers and c = (a2 + b2) 1
2 , then we have

(tanh c)2 ≤ (tanh a)2 ⊕ (tanh b)2.

The equality holds if and only if a = 0 or b = 0.

Proof We have to show

(
ec – e–c

ec + e–c

)2

≤ ( ea–e–a

ea+e–a )2 + ( eb–e–b

eb+e–b )2

1 + ( ea–e–a
ea+e–a )2( eb–e–b

eb+e–b )2
,
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which is equivalent to

e2c – 2 + e–2c

e2c + 2 + e–2c ≤ (ea – e–a)2(eb + e–b)2 + (eb – e–b)2(ea + e–a)2

(ea + e–a)2(eb + e–b)2 + (ea – e–a)2(eb – e–b)2

=
(e2a – 2 + e–2a)(e2b + 2 + e–2b) + (e2b – 2 + e–2b)(e2a + 2 + e–2a)
(e2a + 2 + e–2a)(e2b + 2 + e–2b) + (e2a – 2 + e–2a)(e2b – 2 + e–2b)

. (1)

It is straightforward to see that the numerator and denominator of the right-hand side in
the formula (1) are respectively

2
(
e2a+2b + e2a–2b – 4 + e–2a+2b + e–2a–2b)

and

2
(
e2a+2b + e2a–2b + 4 + e–2a+2b + e–2a–2b).

Hence, to prove inequality (1), it is sufficient to show the following inequality:

e2c – 2 + e–2c

e2c + 2 + e–2c ≤ e2a+2b + e2a–2b – 4 + e–2a+2b + e–2a–2b

e2a+2b + e2a–2b + 4 + e–2a+2b + e–2a–2b ,

which is equivalent to

(
e2c – 2 + e–2c)(e2a+2b + e2a–2b + 4 + e–2a+2b + e–2a–2b)

≤ (
e2c + 2 + e–2c)(e2a+2b + e2a–2b – 4 + e–2a+2b + e–2a–2b). (2)

It is easy to see that (2) is equivalent to

e2c + e–2c

2
≤ e2a + e–2a

2
· e2b + e–2b

2
,

which actually holds by Lemma 2.1, because if c = (a2 + b2) 1
2 , then we have

{
(2a)2 + (2b)2} 1

2 =
(
4a2 + 4b2) 1

2 = 2
(
a2 + b2) 1

2 = 2c.

The equality condition also follows from the previous lemma. This completes the proof. �

Lemma 2.3 If a1, . . . , an are real numbers, then we have

tanh
{(

a2
1 + · · · + a2

n
) 1

2
} ≤ {

(tanh a1)2 ⊕ · · · ⊕ (tanh an)2} 1
2 . (3)

The equality holds if and only if aj = 0 except at most one j.

Proof For n = 2, the lemma is just Lemma 2.2. Suppose that the lemma is valid up to n.
Put a = (a2

1 + · · · + a2
n) 1

2 . Then Lemma 2.2 implies that

tanh
{(

a2 + a2
n+1

) 1
2
} ≤ {

(tanh a)2 ⊕ (tanh an+1)2} 1
2 . (4)
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By the assumption of our induction, we also have

tanh a = tanh
{(

a2
1 + · · · + a2

n
) 1

2
} ≤ {

(tanh a1)2 ⊕ · · · ⊕ (tanh an)2} 1
2 . (5)

As an immediate consequence of (4) and (5), we obtain (3) for n + 1.
The equality condition follows from Lemma 2.2 easily. This completes the proof. �

The following lemma is an immediate consequence of the additional formula of tanh,
and we omit the proof.

Lemma 2.4 If a1, . . . , an are real numbers, then we have

tanh a1 ⊕ · · · ⊕ tanh an = tanh(a1 + · · · + an).

For Möbius operations restricted to the open interval (–1, 1), the following inequality is
a counterpart to the celebrated Cauchy inequality.

Theorem 2.5 If r1, . . . , rn ≥ 0 and 0 ≤ x1, . . . , xn < 1, then we have

r1 ⊗ x1 ⊕ · · · ⊕ rn ⊗ xn ≤ (
r2

1 + · · · + r2
n
) 1

2 ⊗ (
x2

1 ⊕ · · · ⊕ x2
n
) 1

2 . (6)

The equality holds if and only if one of the following conditions is satisfied:
(i) rj = 0 (j = 1, . . . , n);

(ii) xj = 0 (j = 1, . . . , n);
(iii) rj = xj = 0 except for precisely one j.

Proof Put aj = tanh–1 xj (j = 1, . . . , n).

r1 ⊗ x1 ⊕ · · · ⊕ rn ⊗ xn

= tanh
(
r1 tanh–1 x1

) ⊕ · · · ⊕ tanh
(
rn tanh–1 xn

)
= tanh

(
r1 tanh–1 x1 + · · · + rn tanh–1 xn

)

≤ tanh
{(

r2
1 + · · · + r2

n
) 1

2
(
a2

1 + · · · + a2
n
) 1

2
}

≤ tanh
[(

r2
1 + · · · + r2

n
) 1

2 tanh–1{(x2
1 ⊕ · · · ⊕ x2

n
) 1

2
}]

=
(
r2

1 + · · · + r2
n
) 1

2 ⊗ (
x2

1 ⊕ · · · ⊕ x2
n
) 1

2 ,

because of the definition of the operation ⊗, Lemma 2.4, the ordinary Cauchy inequality,
Lemma 2.3, and the definition of ⊗ again.

Finally, it is obvious that the equality holds in (6) if one of the conditions (i)–(iii) is sat-
isfied. Conversely, if the equality holds in (6), then, from the equality conditions of the
ordinary Cauchy inequality and Lemma 2.3, one has (r1, . . . , rn) and (a1, . . . , an) are linearly
dependent, and aj = 0 except at most one j. It yields the condition stated above. This com-
pletes the proof. �
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Remark 2.6 Let s > 0. It is immediate to see that

a
s

⊕ b
s

=
a ⊕s b

s
and r ⊗ a

s
=

r ⊗s a
s

for any –s < a, b < s, r ∈R.
If r1, . . . , rn ≥ 0 and x1, . . . , xn ≥ 0, then, for sufficiently large s > 0, we have

r1 ⊗s x1 ⊕s · · · ⊕s rn ⊗s xn ≤ (
r2

1 + · · · + r2
n
) 1

2 ⊗s
(
x2

1 ⊕s2 · · · ⊕s2 x2
n
) 1

2 . (7)

Moreover, by letting s → ∞ in inequality (7), we can get the classical Cauchy inequality.

2.2 A criterion for convergence of series
In this section, we show a criterion for convergence of series in Möbius addition.

Definition 2.7

Te(2m – 1) =
∑
(0)

xj +
∑
(2)

xj1 xj2 + · · · +
∑
(2l)

2l∏
k=1

xjk + · · · +
∑

(2m–2)

2m–2∏
k=1

xjk ,

To(2m – 1) =
∑
(1)

xj +
∑
(3)

xj1 xj2 xj3 + · · · +
∑

(2l+1)

2l+1∏
k=1

xjk + · · · +
∑

(2m–1)

2m–1∏
k=1

xjk ,

Te(2m) =
∑
(0)

xj +
∑
(2)

xj1 xj2 + · · · +
∑
(2l)

2l∏
k=1

xjk + · · · +
∑
(2m)

2m∏
k=1

xjk ,

To(2m) =
∑
(1)

xj +
∑
(3)

xj1 xj2 xj3 + · · · +
∑

(2l+1)

2l+1∏
k=1

xjk + · · · +
∑

(2m–1)

2m–1∏
k=1

xjk .

Here, each
∑

(q) appearing in Te(p) or To(p) indicates the sum of all combinations which
choose q items from x1, . . . , xp. Exceptionally, we define

∑
(0) xj = 1. For example, m = 2

Te(3) =
∑
(0)

xj +
∑
(2)

xj1 xj2 = 1 + x1x2 + x1x3 + x2x3,

To(3) =
∑
(1)

xj +
∑
(3)

xj1 xj2 xj3 = x1 + x2 + x3 + x1x2x3,

Te(4) =
∑
(0)

xj +
∑
(2)

xj1 xj2 +
∑
(4)

4∏
k=1

xjk

= 1 + x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 + x1x2x3x4,

To(4) =
∑
(1)

xj +
∑
(3)

xj1 xj2 xj3

= x1 + x2 + x3 + x4 + x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4.

Lemma 2.8 The following identities hold:

To(2m) + Te(2m)x2m+1 = To(2m + 1), (8)
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Te(2m) + To(2m)x2m+1 = Te(2m + 1), (9)

To(2m + 1) + Te(2m + 1)x2m+2 = To(2m + 2), (10)

Te(2m + 1) + To(2m + 1)x2m+2 = Te(2m + 2). (11)

Proof For the first identity (8), it is immediate to see that

To(2m) + Te(2m)x2m+1

=

{∑
(1)

xj +
∑
(3)

xj1 xj2 xj3 + · · · +
∑

(2l+1)

2l+1∏
k=1

xjk + · · · +
∑

(2m–1)

2m–1∏
k=1

xjk

}

+

{∑
(0)

xj +
∑
(2)

xj1 xj2 + · · · +
∑
(2l)

2l∏
k=1

xjk + · · · +
∑
(2m)

2m∏
k=1

xjk

}
x2m+1

= To(2m + 1).

Other three identities (9), (10), and (11) can be obtained in the same manner. This com-
pletes the proof. �

Definition 2.9 Let s > 0 be a fixed number. For any sequence {xn}n in the open interval
(–s, s), we say that a series

x1 ⊕s x2 ⊕s · · · ⊕s xn ⊕s · · ·

converges if there exists S ∈ (–s, s) such that Sn → S, where the sequence {Sn}n is defined
recursively by S1 = x1 and Sn = Sn–1 ⊕s xn. In this case, we say the series converges to S and
denote

S = x1 ⊕s x2 ⊕s · · · ⊕s xn ⊕s · · · .

Lemma 2.10 If s = 1, then the equality To(n)
Te(n) = Sn holds for all n = 1, 2, . . . .

Proof Recall the definition Sn = x1 ⊕ · · · ⊕ xn. For n = 1, 2, we trivially have

S1 = x1 =
To(1)
Te(1)

,

S2 = x1 ⊕ x2 =
x1 + x2

1 + x1x2
=

To(2)
Te(2)

.

Suppose that the lemma is valid up to n ≥ 2. Then, if n = 2m,

S2m+1 = S2m ⊕ x2m+1 =
S2m + x2m+1

1 + S2mx2m+1
=

To(2m)
Te(2m) + x2m+1

1 + To(2m)
Te(2m) x2m+1

=
To(2m) + Te(2m)x2m+1

Te(2m) + To(2m)x2m+1

=
To(2m + 1)
Te(2m + 1)

(12)
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by identities (8) and (9). Moreover, if n = 2m + 1, then identity (12), which has just been
established, identities (10) and (11) yield that

S2m+2 = S2m+1 ⊕ x2m+2 =
S2m+1 + x2m+2

1 + S2m+1x2m+2
=

To(2m+1)
Te(2m+1) + x2m+2

1 + To(2m+1)
Te(2m+1) x2m+2

=
To(2m + 1) + Te(2m + 1)x2m+2

Te(2m + 1) + To(2m + 1)x2m+2

=
To(2m + 2)
Te(2m + 2)

.

This completes the proof. �

The following theorem is a criterion for convergence of series in Möbius addition, which
subsumes [6, Example 34].

Theorem 2.11 Let {xn}∞n=1 be a sequence satisfying 0 ≤ xn < 1 (n = 1, 2, . . .). Then the se-
ries x1 ⊕ x2 ⊕ · · · ⊕ xn ⊕ · · · converges in the open interval (–1, 1) if and only if the series∑∞

n=1 xn < ∞ in the ordinary sense.

Proof (⇒) Suppose that x1 ⊕ x2 ⊕· · ·⊕xn ⊕· · · = S < 1. It is trivial that Sn ≤ S and that the
sequence of ordinary partial sums {x1 + · · · + xn} is non-decreasing. Moreover, it follows
from Lemma 2.10 that

x1 + · · · + xn ≤ x1 + · · · + xn∏n
j=1(1 – xj)

≤ To(n)∏n
j=1(1 – xj)

=
To(n)

Te(n) – To(n)
=

To(n)
Te(n)

1 – To(n)
Te(n)

=
Sn

1 – Sn
≤ S

1 – S
.

Thus the sequence {x1 + · · · + xn} is bounded above, so that
∑∞

n=1 xn < ∞ in the ordinary
sense.

(⇐) Suppose that
∑∞

n=1 xn < ∞. Then

dM(Sn, Sm) = |Sn ⊕ (–Sm)|
= (x1 ⊕ · · · ⊕ xm ⊕ xm+1 ⊕ · · · ⊕ xn) ⊕ {

–(x1 ⊕ · · · ⊕ xm)
}

= xm+1 ⊕ · · · ⊕ xn

≤ xm+1 + · · · + xn → 0 (n > m → ∞),

by the definition of the function dM (see [2, (6.288), p. 216]), the definition of the par-
tial sum Sn in the Möbius addition, commutativity and associativity of ⊕ on the interval
(–1, 1), xn ≥ 0, and the assumption

∑∞
n=1 xn < ∞. Since the space ((–1, 1), dM) is complete

(see [6, Lemma 20 and Theorem 26]), there exists a value 0 ≤ S < 1 such that dM(Sn, S) → 0,
which implies that S = x1 ⊕ x2 ⊕ · · · ⊕ xn ⊕ · · · . This completes the proof. �

Remark 2.12 Let {xn}∞n=1 be a sequence satisfying 0 ≤ xn < s (n = 1, 2, . . .). Then the series
x1 ⊕s x2 ⊕s · · · ⊕s xn ⊕s · · · converges in the open interval (–s, s) if and only if the series∑∞

n=1 xn < ∞ in the ordinary sense.
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Corollary 2.13 If 0 ≤ x < 1, then the series x ⊕ x2 ⊕· · ·⊕ xn ⊕· · · converges in the interval
(–1, 1).

3 Conclusions
We proved two fundamental theorems, that is, a Cauchy type inequality and a criterion for
convergence of series for the restriction of Möbius operations to the open interval. They
have certain importance such as the classical Cauchy inequality and convergence of se-
ries have importance for the ordinary addition and multiplication in the real and complex
numbers.
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