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1 Introduction
Let (A0, A1) be a compatible couple of quasi-normed spaces, that is, we assume that both
A0 and A1 are continuously embedded in the same Hausdorff topological vector space.
Peetre’s K-functional K(t, f ) = K(t, f ; A0, A1) is defined, for each f ∈ A0 + A1 and t > 0, by

K(t, f ) = inf
{‖f0‖A0 + t‖f1‖A1 : f0 ∈ A0, f1 ∈ A1, f = f0 + f1

}
.

Let 0 < θ < 1 and 0 < q ≤ ∞. The classical K-interpolation space Āθ ,q = (A0, A1)θ ,q is formed
by all those f ∈ A0 + A1 for which the quasi-norm

‖f ‖Āθ ,q
=

(∫ ∞

0
t–θqKq(t, f )

dt
t

)1/q

is finite (here and in the sequel, the integral should be replaced by the supremum when
q = ∞). We refer to [1–3] for the properties of the scale Āθ ,q.

The classical reiteration theorem states that (see [4])

(Āθ0,q0 , Āθ1,q1 )θ ,q = Āη,q, (1.1)

where 0 < θ0 < θ1 < 1, 0 < θ < 1, 0 < q0, q1, q ≤ ∞, and η = (1 – θ )θ0 + θθ1. Moreover, for
extreme cases, we have

(Āθ0,q0 , A1)θ ,q = Āδ,q (1.2)
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and

(A0, Āθ1,q1 )θ ,q = Āθθ1,q, (1.3)

where δ = (1 – θ )θ0 + θ .
It is not hard to verify that the scale Āθ ,q does not make sense if θ = 0, 1 and q < ∞.

Let b be a slowly varying function (see, for instance, [5]), then the K-interpolation space
Āθ ,q;b = (A0, A1)θ ,q;b consists of those f ∈ A0 + A1 for which the quasi-norm

‖f ‖Āθ ,q;b
=

(∫ ∞

0
t–θqbq(t)Kq(t, f )

dt
t

)1/q

is finite. Note that Āθ ,q;b = Āθ ,q when b ≡ 1. An important feature of this extended scale
Āθ ,q;b is that it is well defined for limiting values θ = 0, 1, under certain appropriate condi-
tions on b (see [5, Proposition 2.5]). See [5–7] for different reiteration theorems for this
extended scale in limiting cases. The results in these papers generalize the earlier results
in [8] and [9], where the case when b is a broken logarithmic function was treated. In
the papers [10–12], similar reiteration theorems have been derived for the more extended
scale Āθ ,b,E , which is obtained by replacing the Lebesgue space Lq (q ≥ 1) by an arbitrary
rearrangement invariant normed space E.

Recently, Cobos et al. [13] have defined two new scales of limiting K-interpolation spaces
Ā0,q;K = (A0, A1)0,q;K and Ā0,q;K = (A0, A1)1,q;K , corresponding to the limiting values θ = 0, 1,
without using the extra function b. Namely, Ā0,q;K and Ā1,q;K consist of elements f ∈ A0 +A1

with the following finite quasi-norms:

‖f ‖Ā0,q;K
=

(∫ 1

0
Kq(t, f )

dt
t

)1/q

+ sup
t≥1

K(t, f )

and

‖f ‖Ā1,q;K
= sup

0<t≤1

K(t, f )
t

+
(∫ ∞

1

(
K(t, f )

t

)q dt
t

)1/q

,

respectively. The main purpose in the paper [13] was to investigate the connection be-
tween these limiting K-interpolation methods and the interpolation over the unit square.
Let us mention that these limiting K-interpolation methods were earlier considered in
[14] and [15] in the case when the underlying couple (A0, A1) is ordered, meaning that A0

(or A1) is continuously embedded in A1 (or A0). Henceforth, for the sake of simplicity, we
denote Ā0,q:K by Ā{0},q and Ā1,q:K by Ā{1},q.

The main goal of the present paper is to obtain limiting variants of the classical reitera-
tion formula (1.1) by characterizing the following limiting reiteration spaces:

(Āθ0,q0 , Āθ1,q1 ){0},q

and

(Āθ0,q0 , Āθ1,q1 ){1},q.
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In addition, we establish similar limiting variants of the reiteration formulae (1.2) and (1.3).
In particular, Theorem 3.6 (see below) extends the assertion of [14, Theorem 4.1].

The key ingredients of our proofs will be the two-sided Hardy-type inequalities involv-
ing power-type weights. These inequalities are derived in Section 2. The main results are
contained in Section 3, whereas an application to the Fourier transform is given in Sec-
tion 4.

Throughout the paper, we will write A � B or B � A for two non-negative quantities A
and B to mean that A ≤ cB for some positive constant c which is independent of appro-
priate parameters involved in A and B. We put A ≈ B if A � B and A � B.

2 Weighted Hardy-type inequalities
To prove our main results, we shall need suitable two-sided Hardy-type inequalities in-
volving power-type weights. We derive them from the following general weighted Hardy-
type inequalities.

Theorem 2.1 ([6], Lemma 3.2) Let 0 < s < ∞, and assume that w and φ are non-negative
functions on (0,∞). Put

v(t) =
(
w(t)

)1–s
(

φ(t)
∫ ∞

t
w(u) du

)s

.

Then

∫ ∞

0

(∫ t

0
φ(u)h(u) du

)s

w(t) dt �
∫ ∞

0
hs(t)v(t) dt if 0 < s < 1 (2.1)

and

∫ ∞

0

(∫ t

0
φ(u)h(u) du

)s

w(t) dt �
∫ ∞

0
hs(t)v(t) dt if 1 ≤ s < ∞ (2.2)

hold for all non-negative functions h on (0,∞).

The next assertion deals with the general weighted Hardy-type inequality restricted to
non-increasing functions.

Theorem 2.2 ([6], Lemma 3.3) Let 0 < s < 1 and 0 ≤ a < ∞, and assume that w and φ are
non-negative functions on (0,∞). Put

v0(t) = φ(t)
(∫ t

0
φ(u) du

)s–1 ∫ ∞

t
w(u) du.

Then

∫ ∞

a

(∫ t

0
φ(u)h(u) du

)s

w(t) dt �
∫ ∞

a
hs(t)v0(t) dt (2.3)

holds for all non-negative and non-increasing functions h on (a,∞).
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Remark 2.3 The previous assertion is proved in [6] for a = 0, but the same proof also works
for all 0 < a < ∞.

Next, using the previous two theorems, we obtain the needed two-sided Hardy-type
inequalities.

Corollary 2.4 Let 0 < s,α,β < ∞, then

∫ ∞

1
t–α

(∫ t

0
uβh(u)

du
u

)s dt
t

≈
∫ ∞

1
tβs–αhs(t)

dt
t

holds for all non-negative and non-increasing functions h on (1,∞).

Proof The estimate “�” is a simple consequence of the fact that h is non-increasing. For
1 ≤ s < ∞, the converse estimate “�” follows from Theorem 2.1, applied with w(t) =
t–α–1χ(1,∞)(t) and φ(t) = tβ–1 so that v(t) ≈ tβs–α–1χ(1,∞)(t). When 0 < s < 1, the desired con-
verse estimate results from Theorem 2.2, applied with a = 1, w(t) = t–α–1, and φ(t) = tβ–1,
so that v0(t) ≈ tβs–α–1. The proof is complete. �

Corollary 2.5 Let 0 < s,α,β < ∞, then

∫ 1

0
tα

(∫ ∞

t
u–βg(u)

du
u

)s dt
t

≈
∫ 1

0
tα–βsgs(t)

dt
t

holds for all non-negative and non-decreasing functions g on (0, 1).

Proof The proof follows by applying Corollary 2.4 to the non-increasing function h(t) =
g(1/t) on (1,∞). �

3 Limiting reiteration theorems
In this section, we establish our main results. First we need to introduce K-interpolation
spaces of type L and R. Namely, let v and w be non-negative and locally integrable
functions on (0,∞), and let 0 < p, q ≤ ∞. Then the K-interpolation spaces ĀL

w,p;v,q =
(A0, A1)Lw,p;v,q and ĀR

w,p;v,q = (A0, A1)Rw,p;v,q consist of elements f ∈ A0 + A1 with the following
finite quasi-norms:

‖f ‖ĀL
w,p;v,q

=
(∫ ∞

0
vq(t)

(∫ t

0
wp(u)Kp(u, f )

du
u

)q/p dt
t

)1/q

and

‖f ‖ĀR
w,p;v,q

=
(∫ ∞

0
vq(t)

(∫ ∞

t
wp(u)Kp(u, f )

du
u

)q/p dt
t

)1/q

,

respectively. For details on ĀL
w,p;v,q and ĀR

w,p;v,q, the reader is referred to [6] where slightly
different notations are used for these spaces. The spaces L and R, with weights involving
logarithmic functions or, more generally, slowly varying functions, have also appeared in
[5, 8, 16]. It is also worthy of mention that the spaces L and R have been considered in
[10–12] in the more general framework of rearrangement invariant spaces.
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Recall that the quasi-norm on the intersection X ∩Y of two quasi-normed spaces X and
Y is given by

‖f ‖X∩Y = max
(‖f ‖X ,‖f ‖Y

)
.

The next assertion gives a limiting variant of the reiteration formula (1.1) corresponding
to the limiting value θ = 0.

Theorem 3.1 Let 0 < q0, q1, q < ∞, and 0 < θ0 < θ1 < 1. Then

(Āθ0,q0 , Āθ1,q1 ){0},q = Āθ0,q0 ∩ ĀL
w,q0;v,q,

where w(t) = t–θ0 and v(t) = χ(0,1)(t).

Proof Let Ā = (Āθ0,q0 , Āθ1,q1 ){0},q, and take f ∈ A0 + A1. According to [4, Theorem 2.1], we
have the following formula for the classical K-interpolation method:

K
(
tθ1–θ0 , f ; Āθ0,q0 , Āθ1,q1

) ≈
(∫ t

0
u–θ0q0 Kq0 (u, f )

du
u

)1/q0

+ tθ1–θ0

(∫ ∞

t
u–θ1q1 Kq1 (u, f )

du
u

)1/q1

.

Therefore, it turns out that

‖f ‖Ā ≈ I1 + I2 + I3 + I4, (3.1)

where

I1 =
(∫ 1

0

(∫ t

0
u–θ0q0 Kq0 (u, f )

du
u

)q/q0 dt
t

)1/q

,

I2 =
(∫ 1

0
t(θ1–θ0)q

(∫ ∞

t
u–θ1q1 Kq1 (u, f )

du
u

)q/q1 dt
t

)1/q

,

I3 = sup
t≥1

(∫ t

0
u–θ0q0 Kq0 (u, f )

du
u

)1/q0

and

I4 = sup
t≥1

tθ1–θ0

(∫ ∞

t
u–θ1q1 Kq1 (u, f )

du
u

)1/q1

.

Clearly,

I3 =
(∫ ∞

0
u–θ0q0 Kq0 (u, f )

du
u

)1/q0

. (3.2)

Next, let us estimate each of I2 and I4. We observe the simple fact that t 
→ K(t, f ) is non-
decreasing and apply Corollary 2.5, with s = q/q1, α = θ1 – θ0, β = θ1q1, and g(t) = Kq1 (t, f ),
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to get

I2 ≈
(∫ 1

0
t–θ0qKq(t, f )

dt
t

)1/q

. (3.3)

Moreover, noting the fact that t 
→ t–1K(t, f ) is non-increasing, we have

I1 ≥
(∫ 1

0
t–qKq(t, f )

(∫ t

0
u(1–θ0)q0

du
u

)q/q0 dt
t

)1/q

≈
(∫ 1

0
t–θ0qKq(t, f )

dt
t

)1/q

whence, in view of (3.3), we get I1 � I2. Therefore,

I1 + I2 ≈ I1. (3.4)

Now we estimate I4. Observe that

I4 ≤ sup
t≥1

tθ1–θ0

(∫ ∞

t
u(θ0–θ1)q1

du
u

)1/q1

· sup
t≥1

t–θ0 K(t, f )

≈ sup
t≥1

t–θ0 K(t, f ).

In addition, we have

(∫ ∞

t
u–θ0q0 Kq0 (u, f )

du
u

)1/q0

� t–θ0 K(t, f ), t > 0,

as t 
→ K(t, f ) is non-decreasing. Combining the previous two estimates, we arrive at

I4 �
(∫ ∞

1
u–θ0q0 Kq0 (u, f )

du
u

)1/q0

.

This, along with (3.2), leads us to

I3 + I4 ≈
(∫ ∞

0
u–θ0q0 Kq0 (u, f )

du
u

)1/q0

. (3.5)

Now inserting estimates (3.4) and (3.5) in (3.1) yields

‖f ‖Ā ≈
(∫ 1

0

(∫ t

0
u–θ0q0 Kq0 (u, f )

du
u

)q/q0 dt
t

)1/q

+
(∫ ∞

0
t–θ0q0 Kq0 (t, f )

dt
t

)1/q0

= ‖f ‖ĀL
w,q0;v,q

+ ‖f ‖Āθ0,q0
,

which finishes the proof. �

Next we establish a limiting version of the reiteration formula (1.1) corresponding to the
limiting value θ = 1.
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Theorem 3.2 Let 0 < q0, q1, q < ∞, and 0 < θ0 < θ1 < 1. Then

(Āθ0,q0 , Āθ1,q1 ){1},q = Āθ1,q1 ∩ ĀR
w,q1;v,q,

where w(t) = t–θ1 and v(t) = χ(1,∞)(t).

Proof In view of the following elementary identity:

K(t, f ; A0, A1) = tK
(
t–1, f ; A1, A0

)
, t > 0, (3.6)

the symmetry property (A0, A1){0},q = (A1, A0){1},q holds. Together with the well-known
symmetry property for the scale Āθ ,q, this gives

(Āθ0,q0 , Āθ1,q){1},q =
(
(A1, A0)1–θ1,q, (A1, A0)1–θ0,q0

)
{0},q.

Now applying Theorem 3.1 yields

‖f ‖(Āθ0,q0 ,Āθ1,q1 ){1},q

≈
(∫ 1

0

(∫ t

0
u(θ1–1)q1 Kq0 (u, f ; A1, A0)

du
u

)q/q1 dt
t

)1/q

+
(∫ ∞

0
t(θ1–1)q1 Kq1 (t, f ; A1, A0)

dt
t

)1/q1

=
(∫ 1

0

(∫ t

0
uθ1q1 Kq1

(
u–1, f

)du
u

)q/q1 dt
t

)1/q

+
(∫ ∞

0
tθ1q1 Kq0

(
t–1, f

)dt
t

)1/q1

=
(∫ ∞

1

(∫ ∞

t
u–θ1q1 Kq1 (u, f )

du
u

)q/q1 dt
t

)1/q

+
(∫ ∞

0
t–θ1q1 Kq1 (t, f )

dt
t

)1/q1

= ‖f ‖ĀR
w,q1;v,q

+ ‖f ‖Āθ1,q1
,

which completes the proof. �

The next two results provide limiting variants of the reiteration formula (1.2) corre-
sponding to the limiting values θ = 0, 1.

Theorem 3.3 Let 0 < q0, q < ∞, and 0 < θ0 < 1. Then

(Āθ0,q0 , A1){0},q = Āθ0,q0 ∩ ĀL
w,q0;v,q,

where w(t) = t–θ0 and v(t) = χ(0,1)(t).
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Proof Let Ā = (Āθ0,q0 , A1){0},q, and take f ∈ A0 + A1. Applying the following formula (see [4,
Remark 2.1]):

K
(
t1–θ0 , f ; Āθ0,q0 , A1

) ≈
(∫ t

0
u–θ0q0 Kq0 (u, f )

du
u

)1/q0

, (3.7)

we immediately have

‖f ‖Ā ≈ ‖f ‖ĀL
w,q0;v,q

+ ‖f ‖Āθ0,q0
,

which completes the proof. �

Theorem 3.4 Let 0 < q0, q < ∞, and 0 < θ0 < 1. Then

(Āθ0,q0 , A1){1},q = Ā{1},q.

Proof Let Ā = (Āθ0,q0 , A1){1},q, and take f ∈ A0 + A1. Then, making use of formula (3.7), we
have

‖f ‖Ā = I1 + I2, (3.8)

where

I1 = sup
0<t≤1

tθ0–1
(∫ t

0
u–θ0q0 Kq0 (s, f )

du
u

)1/q0

and

I2 =
(∫ ∞

1
t(θ0–1)q

(∫ t

0
u–θ0q0 Kq0 (u, f )

du
u

)q/q0 dt
t

)1/q

.

Applying Corollary 2.4, with s = q/q0, β = (1 – θ0)q0, α = (1 – θ0)q, and h(t) = t–q0 Kq0 (t, f ),
gives

I2 ≈
(∫ ∞

1

(
K(t, f )

t

)q dt
t

)1/q

. (3.9)

Next we estimate I1. We have

I1 ≤ sup
0<t≤1

tθ0–1
(∫ t

0
u(1–θ0)q0

du
u

)1/q0

· sup
0<t≤1

K(t, f )
t

≈ sup
0<t≤1

K(t, f )
t

.

Also, since t 
→ t–1K(t, f ) is non-increasing, we have

I1 ≥ sup
0<t≤1

tθ0–2K(t, f )
(∫ t

0
u(1–θ0)q0

du
u

)1/q0

≈ sup
0<t≤1

K(t, f )
t

.
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Thus,

I1 ≈ sup
0<t≤1

K(t, f )
t

. (3.10)

Inserting estimates (3.9) and (3.10) in (3.8) completes the proof. �

Using the same symmetry argument as in the proof of Theorem 3.2, we can derive the
following limiting variants of the reiteration formula (1.3) from the previous two theorems.

Theorem 3.5 Let 0 < q1, q < ∞, and 0 < θ1 < 1. Then

(A0, Āθ1,q1 ){1},q = Āθ1,q1 ∩ ĀR
w,q1;v,q,

where w(t) = t–θ1 and v(t) = χ(1,∞)(t).

Theorem 3.6 Let 0 < q1, q < ∞, and 0 < θ1 < 1. Then

(A0, Āθ1,q1 ){0},q = Ā{0},q.

Remark 3.7 If A1 is continuously embedded in A0, then Theorem 3.6 gives back [14, The-
orem 4.1].

4 An application
The Fourier transform F of a function f ∈ L1(Rn) is defined as

F [f ](ξ ) =
∫

Rn
f (x)e–iξ ·x dx, ξ ∈ R

n.

The next result provides an application of Theorem 3.4 to the mapping properties of the
Fourier transform. For related results, the reader is referred to the papers [17, 18], and [5]
and a recent PhD dissertation [19]. As usual, let f ∗ denote the non-increasing rearrange-
ment (see, for instance, [3]) of f . Put f ∗∗(t) =

∫ t
0 f ∗(u) du, t > 0.

Theorem 4.1 Let 0 < q < ∞, and set

E =
{

f ∈ L1(
R

n) + L∞(
R

n) : ‖f ‖E = ‖f ‖L1(Rn) +
(∫ 1

0
tqf ∗∗(t)q dt

t

)1/q

< ∞
}

and

F =
{

f ∈ L1(
R

n) + L∞(
R

n) : ‖f ‖F = ‖f ‖L∞(Rn) +
(∫ ∞

1
f ∗(t)q dt

t

)1/q

< ∞
}

.

Then F is bounded as a map from E to F .

Proof We simply put L1 = L1(Rn) and L∞ = L∞(Rn). It is well known that F is bounded as
a map from L1 to L∞ and also as a map from L2 to L2. Therefore, by the interpolation prop-
erty of the K-interpolation method Ā{1},q (see [13, Proposition 3.2]),F is bounded as a map
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from (L2, L1){1},q to (L2, L∞){1},q. Thus, the proof is complete if we show that (L2, L1){1},q = E
and (L2, L∞){1},q = F . To this end, we observe that (L1, L∞)1/2,2 = L2 and (L∞, L1)1/2,2 = L2,
and apply Theorem 3.4 to obtain that

(
L2, L1)

{1},q =
((

L∞, L1)
1/2,2, L1)

{1},q

=
(
L∞, L1)

{1},q

=
(
L1, L∞)

{0},q

and

(
L2, L∞)

{1},q =
((

L1, L∞)
1/2,2, L1)

{1},q

=
(
L1, L∞)

{1},q.

It remains to show that (L1, L∞){0},q = E and (L1, L∞){1},q = F . Let f ∈ L1 + L∞, then (see [1,
Theorem 5.2.1])

K
(
t, f ; L1, L∞)

=
∫ t

0
f ∗(u) du, t > 0.

Thus,

‖f ‖(L1,L∞){0},q =
(∫ 1

0

(∫ t

0
f ∗(u) du

)q dt
t

)1/q

+ sup
t≥1

∫ t

0
f ∗(u) du

=
(∫ 1

0
tqf ∗∗(t)q dt

t

)1/q

+
∫ ∞

0
f ∗(u) du

= ‖f ‖E

and

‖f ‖(L1,L∞){1},q = sup
0<t≤1

1
t

∫ t

0
f ∗(u) du +

(∫ ∞

1
t–q

(∫ t

0
f ∗(u) du

)q dt
t

)1/q

= f ∗(0) +
(∫ ∞

1
t–q

(∫ t

0
f ∗(u) du

)q dt
t

)1/q

≈ f ∗(0) +
(∫ ∞

1
f ∗(t)q dt

t

)1/q

,

where the last equivalence follows from Corollary 2.4, applied with s = q, β = 1, α = q, and
h = f ∗. Hence, ‖f ‖(L1,L∞){1},q ≈ ‖f ‖F . The proof is complete. �
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