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Abstract
This paper is concerned with an explicit value of the embedding constant from
W1,q(�) to Lp(�) for a domain � ⊂ R

N (N ∈N), where 1≤ q≤ p ≤ ∞. We previously
proposed a formula for estimating the embedding constant on bounded and
unbounded Lipschitz domains by estimating the norm of Stein’s extension operator.
Although this formula can be applied to a domain � that can be divided into a finite
number of Lipschitz domains, there was room for improvement in terms of accuracy.
In this paper, we report that the accuracy of the embedding constant is significantly
improved by restricting � to a domain dividable into bounded convex domains.

MSC: 46E35

Keywords: Sobolev embedding constant; Hardy-Littlewood-Sobolev inequality;
Young inequality

1 Introduction
We consider the Sobolev type embedding constant Cp(�) from W ,q(�) ( ≤ q ≤ p ≤ ∞)
to Lp(�). The constant Cp(�) satisfies

(∫
�

∣∣u(x)
∣∣p dx

) 
p

≤ Cp(�)
(∫

�

∣∣u(x)
∣∣q dx +

∫
�

∣∣∇u(x)
∣∣q dx

) 
q

()

for all u ∈ W ,q(�), where � ⊂ R
N (N ∈ N) is a bounded domain and |x| =

√∑N
j= x

j for
x = (x, . . . , xN ) ∈ R

N . Here, Lp(�) ( ≤ p < ∞) is the functional space of the pth power
Lebesgue integrable functions over � endowed with the norm ‖f ‖Lp(�) := (

∫
�

|f (x)|p dx)/p

for f ∈ Lp(�), and L∞(�) is the functional space of Lebesgue measurable functions over �

endowed with the norm ‖f ‖L∞(�) = ess supx∈� |f (x)| for f ∈ L∞(�). Moreover, W k,p(�) is
the kth order Lp-Sobolev space on � endowed with the norm ‖f ‖W ,p(�) = (

∫
�

|f (x)|p dx +∫
�

|∇f (x)|p dx)/p for f ∈ W ,p(�) if  ≤ p < ∞ and ‖f ‖W ,∞(�) = ess supx∈� |f (x)| +
ess supx∈� |∇f (x)| for f ∈ W ,∞(�) if p = ∞.

Since inequality () has significance for studies on partial differential equations, many
researchers studied this type of Sobolev inequality and an explicit value of Cp(�) (see,
e.g., [–]) following the pioneering work by Sobolev []. In particular, our interest is in
the applicability of this constant to verified numerical computation methods for PDEs

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13660-017-1571-0
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-017-1571-0&domain=pdf
mailto:makoto.math@aoni.waseda.jp


Mizuguchi et al. Journal of Inequalities and Applications  (2017) 2017:299 Page 2 of 18

which originate from Nakao’s [] and Plum’s work []. These methods have been further
developed by many researchers (see, e.g., [–] and the references therein).

The existence of Cp(�) for various domains � (e.g., domains with the cone condition,
domains with the Lipschitz boundary, and the (ε, δ)-domains) has been proven by con-
structing suitable extension operators from W k,p(�) to W k,p(RN ) (see, e.g., [–]).

Several formulas for computing explicit values of Cp(�) have been proposed under suit-
able conditions. For example, the best constant in the classical Sobolev inequality on R

N

was independently shown by Aubin [] and Talenti []. For the case in which N =  and
p = ∞, the best constant of Cp(�) was proposed under some boundary conditions, e.g., the
Dirichlet, the Neumann, and the periodic condition [–]. For a square domain � ⊂R

,
a tight estimate of Cp(�) was provided in []. Moreover, the best constant for the embed-
ding W ,

 (�) ↪→ Lp(�) (p = , , , , ) with a square domain � ⊂R
 was very sharply es-

timated in [], where W ,
 (�) denotes the closure of C∞

 (�) in W ,(�). Furthermore, we
have previously proposed a formula for computing an explicit value of Cp(�) for (bounded
and unbounded) Lipschitz domains � ⊂ R

N (N ≥ ) by estimating the norm of Stein’s ex-
tension operator []. This formula can be applied to a domain � that can be divided into
a finite number of Lipschitz domains �i (i = , , , . . . , n) such that

� =
⋃

≤i≤n

�i ()

and

�i ∩ �j = φ (i �= j), ()

where φ is the empty set and � denotes the closure of � (see Theorem .). Although this
formula is applicable to such general domains, the values computed by this formula are
very large; see Section  for concrete values.

In this paper, we report that the accuracy of the estimation of Cp(�) is significantly im-
proved by restricting each �i to bounded convex domain. Since any bounded convex do-
main is a Lipschitz domain (see, e.g., []), the present class of � is somewhat special
compared with the class treated in []. Nevertheless, the formulas presented in this pa-
per still have applicability to various domains. To obtain a sharper estimation of Cp(�),
we focus on the constants Dp(�) such that

(∫
�

∣∣u(x) – u�(x)
∣∣p dx

) 
p

≤ Dp(�)
(∫

�

∣∣∇u(x)
∣∣q dx

) 
q

for all u ∈ W ,q(�). ()

Here, |�| is the measure of � and u� : � → R is a constant function defined by � � x →
u�(x) = |�|– ∫

�
u(y) dy. Inequality () is called the Sobolev-Poincaré inequality, and Dp(�)

in () leads to the explicit value of Cp(�) (see Theorem .). Inequality () has also been
studied by many researchers (see, e.g., [–]). For example, for a John domain �, the
existence of Dp(�) was shown while assuming that  ≤ q < N , p = Nq/(N – q) []. It was
also shown that, when p �= Nq/(N – q), Dp(�) exists if and only if W ,q(�) is continuously
embedded into Lp(�) []. Moreover, there are several formulas for obtaining an explicit
value of Dp(�) for one-dimensional domains � [–]. In the higher-dimensional cases,
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Table 1 The assumptions of p, q, and N imposed on Theorems 3.1, 3.2, 3.3, and 3.4

Theorem p q N

3.1 2 < p ≤ 2N
N–1 (N > 1), 2 < p <∞ (N = 1) q ≥ p

p–1 N ≥ 1

3.2 2 < p ≤ 2N
N–2 (N > 2), 2 < p <∞ (N = 2) q = 2 N ≥ 2

3.3 q ≤ p < qN
N–q (N > q), q ≤ p <∞ (N = q) q ≥ 1 N ≥ q

3.4 p =∞ q ≥ 1 N < q

however, little is known about explicit values of Dp(�), except for some special cases (see,
e.g., [] and [] for the cases in which p = q =  and p = q = , respectively).

We propose four theorems (Theorem . to .) for obtaining explicit values of Dp(�)
on a bounded convex domain �. Each theorem can be used under the corresponding con-
ditions listed in Table .

Theorems . and . are derived from the best constant in the Hardy-Littlewood-
Sobolev inequality on R

N . Theorems . and . are derived from the best constant in
Young’s inequality on R

N . The values of Dp(�) calculated by these theorems yield the ex-
plicit values of Cp(�) combined with Theorem ..

The remainder of this paper is organized as follows. In Section , we propose Theo-
rem . in which a formula for deriving an explicit value of Cp(�) from known Dp(�) is
provided. In Section , we prove the four formulas (Theorems . to .) for obtaining the
explicit values of Dp(�). In Section , we present examples where explicit values of Cp(�)
are estimated for certain domains.

2 Estimation of embedding constant Cp(�)
The following notation is used throughout this paper. For any bounded domain S ⊂ R

N

(N ∈N), we define dS :=supx,y∈S |x – y|. The closed ball centered around z ∈R
N with radius

ρ >  is denoted by B(z,ρ) := {x ∈ R
N | |x – z| ≤ ρ}. For m ≥ , let m′ be Hölder’s conjugate

of m, that is, m′ is defined by

⎧⎪⎪⎨
⎪⎪⎩

m′ = ∞, if m = ,

m′ = m
m– , if  < m < ∞,

m′ = , if m = ∞.

For two domains � ⊆R
N and �′ ⊆ R

N such that � ⊆ �′, we define the operator E�,�′ :
Lp(�) → Lp(�′) ( ≤ p ≤ ∞) by

(E�,�′ f )(x) =

⎧⎨
⎩

f (x), x ∈ �,

, x ∈ �′ \ �

for f ∈ Lp(�). Note that E�,�′ f ∈ Lp(�′) satisfies

‖E�,�′ f ‖Lp(�′) = ‖f ‖Lp(�).

In the following theorem, we provide a formula for obtaining an explicit value of Cp(�)
from known Dp(�).
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Theorem . Let � ⊂ R
N (N ∈ N) be a bounded domain, and let p and q satisfy  ≤ q ≤

p ≤ ∞. Suppose that there exists a finite number of bounded domains �i (i = , , , . . . , n)
satisfying () and (). Moreover, suppose that, for every �i (i = , , , . . . , n), there exist
constants Dp(�i) such that

‖u – u�i‖Lp(�i) ≤ Dp(�i)‖∇u‖Lq(�i) for all u ∈ W ,q(�i). ()

Then () holds valid for

Cp(�) =

⎧⎪⎨
⎪⎩

max
(

, max
≤i≤n

D∞(�i)
)

(p = q = ∞),

– 
q max

(
max
≤i≤n

|�i|

p – 

q , max
≤i≤n

Dp(�i)
)

(otherwise),
()

where this formula is understood with /∞ =  when p = ∞ and/or q = ∞.

Proof Let u ∈ W ,q(�). Since every �i is bounded, Hölder’s inequality states that

‖u�i‖Lp(�i) =
∣∣∣∣
∫

�i

|�i|–u(y) dy
∣∣∣∣‖‖Lp(�i)

≤ |�i|–+ 
q′ ‖u‖Lq(�i)|�i|


p

= |�i|

p – 

q ‖u‖Lq(�i). ()

We describe the following proof separately for the case of p = ∞ and p < ∞.
When p = ∞, we have

‖u‖L∞(�) = max
≤i≤n

‖u‖L∞(�i)

≤ max
≤i≤n

(‖u�i‖L∞(�i) + ‖u – u�i‖L∞(�i)
)
.

From () and (), it follows that

‖u‖L∞(�)

≤ max
≤i≤n

(|�i|–

q ‖u‖Lq(�i) + D∞(�i)‖∇u‖Lq(�i)

)

≤ max
{

max
≤i≤n

|�i|–

q , max

≤i≤n
D∞(�i)

}
max
≤i≤n

(‖u‖Lq(�i) + ‖∇u‖Lq(�i)
)
.

This implies that Theorem . holds for the case of p = ∞ and q = ∞.
For q < ∞, we have

‖u‖L∞(�)

≤ max
{

max
≤i≤n

|�i|–

q , max

≤i≤n
D∞(�i)

}( ∑
≤i≤n

(‖u‖Lq(�i) + ‖∇u‖Lq(�i)
)q

) 
q

≤ – 
q max

{
max
≤i≤n

|�i|–

q , max

≤i≤n
D∞(�i)

}
‖u‖W ,q(�),

where the last inequality follows from (s + t)q ≤ q–(sq + tq) for s, t ≥ .
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When p < ∞, we have

‖u‖Lp(�) =
( ∑

≤i≤n

∫
�i

∣∣u(y)
∣∣p dy

) 
p

=
( ∑

≤i≤n

‖u‖p
Lp(�i)

) 
p

≤
( ∑

≤i≤n

(‖u�i‖Lp(�i) + ‖u – u�i‖Lp(�i)
)p

) 
p

.

From () and (), it follows that

‖u‖Lp(�) ≤
( ∑

≤i≤n

(|�i|

p – 

q ‖u‖Lq(�i) + Dp(�i)‖∇u‖Lq(�i)
)p

) 
p

≤
( ∑

≤i≤n

(|�i|

p – 

q ‖u‖Lq(�i) + Dp(�i)‖∇u‖Lq(�i)
)q

) 
q

≤ – 
q

( ∑
≤i≤n

(|�i|
q
p –‖u‖q

Lq(�i) + Dp(�i)q‖∇u‖q
Lq(�i)

)) 
q

.

Therefore, we obtain

‖u‖Lp(�) ≤ – 
q max

{
max
≤i≤n

|�i|

p – 

q , max
≤i≤n

Di(�i)
}
‖u‖W ,q(�). �

3 Estimation of Dp(�i)
Let � be the gamma function, that is, �(x) =

∫ ∞
 tx–e–t dt for x > . For f ∈ Lr(RN ) and

g ∈ Ls(RN ) ( ≤ r, s ≤ ∞), let f ∗ g : RN →R be the convolution of f and g defined by

(f ∗ g)(x) :=
∫
RN

f (x – y)g(y) dy
(

=
∫
RN

f (x)g(x – y) dy
)

.

In the following three lemmas, we recall some known results required to obtain explicit
values of Dp(�i) in () for bounded convex domains �i.

Lemma . (see, e.g., [, ]) Let � ⊂ R
N (N ∈ N) be a bounded convex domain. For

u ∈ W ,(�) and any point x ∈ �, we have

∣∣u(x) – u�(x)
∣∣ ≤ dN

�

N |�|
∫

�

|x – y|–N ∣∣∇u(y)
∣∣dy.

A proof of Lemma . is provided in Appendix  because Lemma . plays an especially
important role in obtaining the explicit values of Dp(�i).

Lemma . (Hardy-Littlewood-Sobolev’s inequality []) For λ > , we put hλ(x) := |x|–λ.
If  < λ < N ,

‖hλ ∗ g‖
L

N
λ (RN )

≤ Cλ,N‖g‖
L

N
N–λ (RN )

for all g ∈ L
N

N–λ
(
R

N)
()
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holds valid for

Cλ,N = π
λ

�( N

 – λ
 )

�(N – λ
 )

(
�( N

 )
�(N)

)–+ λ
N

, ()

where this is the best constant in ().
Moreover, if N < λ < N ,

‖hλ ∗ g‖
L

N
λ–N (RN )

≤ C̃λ,N‖g‖L(RN ) for all g ∈ L(
R

N)
()

holds valid for

C̃λ,N = π
λ

�( N

 – λ
 )

�( λ
 )

√
�(λ – N

 )
�( N

 – λ)

(
�( N

 )
�(N)

)–+ λ
N

, ()

where this is the best constant in ().

Lemma . (Young’s inequality []) Suppose that  ≤ t, r, s ≤ ∞ and /t = /r + /s –  ≥
. For f ∈ Lr(RN ) and g ∈ Ls(RN ), we have

‖f ∗ g‖Lt (RN ) ≤ (ArAsAt′ )N‖f ‖Lr (RN )‖g‖Ls(RN ) ()

with

Am =

⎧⎨
⎩

√
m 

m –(m – )– 
m ( < m < ∞),

 (m = ,∞).

The constant (ArAsAt′ )N is the best constant in ().

The following Theorems ., ., ., and . provide estimations of Dp(�) for a bounded
convex domain �, where p, q, and N are imposed on the assumptions listed in Table .

Theorem . Let � ⊂ R
N (N ∈ N) be a bounded convex domain. Assume that p ∈ R sat-

isfies  < p ≤ N/(N – ) if N ≥  and  < p < ∞ if N = . For q ∈R such that q ≥ p/(p – ),
we have

‖u – u�‖Lp(�) ≤ Dp(�)‖∇u‖Lq(�) for all u ∈ W ,q(�)

with

Dp(�) =
d

+ N
p

� π
N
p

N |�| 
p + 

q

�( p–
p N)

�( p–
p N)

(
�(N)
�( N

 )

) p–
p

.
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Proof Let u ∈ W ,q(�). Since p ≤ N/(N – ) and  – N + (N/p) ≥ , it follows that

|x – z|–N+ N
p ≤ d

–N+ N
p

� for x, z ∈ �. Lemma . implies that, for a fixed x ∈ �,

∣∣u(x) – u�(x)
∣∣ ≤ dN

�

N |�|
∫

�

|x – z|–N+ N
p |x – z|– N

p
∣∣∇u(z)

∣∣dz

≤ d
+ N

p
�

N |�|
∫

�

|x – z|– N
p

∣∣∇u(z)
∣∣dz

≤ d
+ N

p
�

N |�|
∫
RN

|x – z|– N
p

(
E�,RN |∇u|)(z) dz.

Therefore,

‖u – u�‖Lp(�) ≤ d
+ N

p
�

N |�|
(∫

�

(∫
RN

|x – z|– N
p

(
E�,RN |∇u|)(z) dz

)p

dx
) 

p

≤ d
+ N

p
�

N |�|
(∫

RN

(∫
RN

|x – z|– N
p

(
E�,RN |∇u|)(z) dz

)p

dx
) 

p
.

Since q ≥ p/(p – ) and � is bounded, we have |∇u| ∈ Lp/(p–)(�). Therefore, Lemma .
ensures

‖u – u�‖Lp(�) ≤ d
+ N

p
�

N |�| C N
p ,N

∥∥E�,RN |∇u|∥∥
L

p
p– (RN )

=
d

+ N
p

�

N |�| C N
p ,N‖∇u‖

L
p

p– (�)
,

where C N
p ,N is defined in () with λ = N/p. Since q ≥ p/(p – ), Hölder’s inequality more-

over implies

‖u – u�‖Lp(�) ≤ d
+ N

p
�

N |�| 
p + 

q
C N

p ,N‖∇u‖Lq(�). �

Theorem . Let � ⊂ R
N (N ≥ ) be a bounded convex domain. Assume that  < p ≤

N/(N – ) if N ≥  and  < p < ∞ if N = . For all u ∈ W ,(�), we have

‖u – u�‖Lp(�) ≤ Dp(�)‖∇u‖L(�)

with

Dp(�) =
d

+ p+
p N

� π
p+
p N

N |�|
�( p–

p N)

�( p+
p N)

√√√√ �( N
p )

�( p–
p N)

(
�(N)
�( N

 )

) p–
p

.
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Proof Let u ∈ W ,(�). Since p ≤ N/(N – ), it follows that |x – z|–N+(p+)N/(p) ≤
d–N+(p+)N/(p)

� for x, z ∈ �. Lemma . leads to

∣∣u(x) – u�(x)
∣∣ ≤ dN

�

N |�|
∫

�

|x – z|–N+ p+
p N |x – z|– p+

p N ∣∣∇u(z)
∣∣dz

≤ d
+ p+

p N
�

N |�|
∫

�

|x – z|– p+
p N ∣∣∇u(z)

∣∣dz

≤ d
+ p+

p N
�

N |�|
∫
RN

|x – z|– p+
p N(

E�,RN |∇u|)(z) dz.

Therefore,

‖u – u�‖Lp(�) ≤ d
+ p+

p N
�

N |�|
(∫

�

(∫
RN

|x – z|– p+
p N(

E�,RN |∇u|)(z) dz
)p

dx
) 

p

≤ d
+ p+

p N
�

N |�|
(∫

RN

(∫
RN

|x – z|– p+
p N(

E�,RN |∇u|)(z) dz
)p

dx
) 

p
.

From (), it follows that

‖u – u�‖Lp(�) ≤ d
+ p+

p N
�

N |�| C̃ p+
p N ,N

∥∥E�,RN |∇u|∥∥L(RN )

=
d

+ p+
p N

�

N |�| C̃ p+
p N ,N‖∇u‖L(�),

where C̃ p+
p N ,N is defined in () with λ = (p + )N/(p). �

Theorem . Let � ⊂ R
N (N ∈ N) be a bounded convex domain. Suppose that  ≤ q ≤

p < qN/(N – q) if N > q, and  ≤ q ≤ p < ∞ if N = q. Then we have

‖u – u�‖Lp(�) ≤ Dp(�)‖∇u‖Lq(�) for all u ∈ W ,q(�) ()

with

Dp(�) =
dN

�

N |�| (ArAqAp′ )N∥∥|x|–N∥∥
Lr(V ),

where �x := {x – y | y ∈ �} for x ∈ �, V :=
⋃

x∈� �x, and r = qp/((q – )p + q).

Proof First, we prove I := ‖|x|–N‖r
Lr(V ) < ∞. Let ρ = d� so that V ⊂ B(,ρ). We have

pq( – N)
(q – )p + q

+ N –  =
pq( – N) + Np(q – ) + Nq

(q – )p + q
– 

=
Nq – (N – q)p

(q – )p + q
–  > –.
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Therefore,

I =
∫

V
|x| pq(–N)

(q–)p+q dx ≤
∫

B(,ρ)
|x| pq(–N)

(q–)p+q dx = J
∫ ρ


ρ

pq(–N)
(q–)p+q +N– dρ < ∞,

where J is defined by

J =

⎧⎪⎪⎨
⎪⎪⎩

 (N = ),

π (N = ),

π
∫

[,π ]N–
∏N–

i= (sin θi)N–i– dθ · · · dθN– (N ≥ ).

Next, we show (). For x ∈ �, it follows from Lemma . that

∣∣u(x) – u�(x)
∣∣ ≤ dN

�

N |�|
∫

�

|x – y|–N ∣∣∇u(y)
∣∣dy

=
dN

�

N |�|
∫

�x

|y|–N ∣∣∇u(x – y)
∣∣dy

≤ dN
�

N |�|
∫

V
|y|–N(

E�,V |∇u|)(x – y) dy.

Since EV ,RN E�,V = E�,RN ,

∣∣u(x) – u�(x)
∣∣ ≤ dN

�

N |�|
∫
RN

(EV ,RN ψ)(y)
(
E�,RN |∇u|)(x – y) dy, ()

where ψ(y) = |y|–N for y ∈ V . We denote f (x) = (EV ,RN ψ)(x) and g(x) = (E�,RN |∇u|)(x).
Lemma . and () give

‖u – u�‖Lp(�) ≤ dN
�

N |�| ‖f ∗ g‖Lp(�)

≤ dN
�

N |�| ‖f ∗ g‖Lp(RN )

≤ dN
�

N |�| (ArAqAp′ )N‖f ‖Lr (RN )‖g‖Lq(RN )

=
dN

�

N |�| (ArAqAp′ )N I

r ‖∇u‖Lq(�). �

Theorem . Let � ⊂ R
N (N ∈ N) be a bounded convex domain, and let q > N . Then we

have

‖u – u�‖L∞(�) ≤ D∞(�)‖∇u‖Lq(�) for all u ∈ W ,q(�) ()

with

D∞(�) =
dN

�

N |�|
∥∥|x|–N∥∥

Lq′ (V ),

where V is defined in Theorem ..
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Proof First, we show I := ‖|x|–N‖q′
Lq′ (V )

< ∞. Let ρ = d� so that V ⊂ B(,ρ). We have

q′( – N) + N –  =
q( – N) + N(q – )

q – 
–  =

q – N
q – 

–  > –.

Therefore,

I =
∫

V
|x|q′(–N) dx ≤

∫
B(,ρ)

|x|q′(–N) dx = J
∫ ρ


ρq′(–N)+N– dρ < ∞,

where J is defined in the proof of Theorem ..
Next, we prove (). Let r = q

q– (≥ ), f (x) = (EV ,RN ψ)(x), and g(x) = (E�,RN |∇u|)(x),
where ψ is denoted in the proof of Theorem .. From Lemma . and (), for u ∈
W ,q(�), it follows that

‖u – u�‖L∞(�) ≤ dN
�

N |�| ‖f ∗ g‖L∞(�) ≤ dN
�

N |�| ‖f ∗ g‖L∞(RN )

≤ dN
�

N |�| ‖f ‖Lq′ (RN )‖g‖Lq(RN ) =
dN

�

N |�| I

q′ ‖∇u‖Lq(�). �

4 Explicit values of Cp(�) for certain domains
In this section, we present numerical examples where explicit values of Cp(�) on a square
and a triangle domain are computed using Theorems ., ., ., ., and .. All compu-
tations were performed on a computer with Intel Xeon E-W @ . GHz,  GB
RAM, CentOS , and MATLAB a. All rounding errors were strictly estimated using
the interval toolbox INTLAB version . []. Therefore, all values in the following tables
are mathematically guaranteed to be upper bounds of the corresponding Cp(�)’s.

First, we select domains �i ( ≤ i ≤ n) satisfying () and (). For all domains �i ( ≤
i ≤ n), we then compute the values of Dp(�i) using Theorems ., ., ., and .. Next,
explicit values of Cp(�) are computed through Theorem ..

4.1 Estimation on a square domain
For the first example, we select the case in which � = (, ). For n = , , , , . . . , we
define each �i ( ≤ i ≤ n) as a square with side length /

√
n; see Figure  for the cases in

Figure 1 �i for the cases in which n = 4 (the left-hand side) and n = 16 (the right-hand side).
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Figure 2 The domain V in Theorems 3.3 and 3.4.

Table 2 Computed values of Cp(�) for � = (0, 1)2 and q = 2. The numbers of division n are
shown in the corresponding parentheses. Theorem 3.1 cannot be used for p > 4 when N = 2

p Theorem 3.1 Theorem 3.2 Theorem 3.3 [10, Lemma 2.3] [19, Corollary D.1]

3 2.553767 (16) 4.423506 (256) 2.647076 (16) 1.272533 1.291703× 104

4 2.506629 (4) 5.656855 (256) 3.098954 (16) 1.553774 1.809271× 104

5 - 5.721912 (64) 3.527578 (16) 1.841950 2.275458× 104

6 - 5.802230 (64) 3.922709 (16) 2.135792 2.701890× 104

7 - 6.245674 (64) 4.288114 (16) 2.434362 3.096661× 104

8 - 6.727172 (64) 4.628497 (16) 2.736941 3.465528× 104

9 - 7.127190 (64) 4.947849 (16) 3.042967 3.812726× 104

10 - 7.464264 (64) 5.249352 (16) 3.351991 4.141471× 104

20 - 9.162396 (16) 7.659208 (16) 6.549949 6.789009× 104

30 - 10.202188 (64) 9.485455 (16) 9.856546 8.800592× 104

40 - 11.632217 (64) 10.640059 (64) 13.218367 1.048141× 105

50 - 12.907885 (64) 12.020066 (64) 16.613831 1.195208× 105

60 - 14.069728 (64) 13.258962 (64) 20.031993 1.327453× 105

70 - 15.143396 (64) 14.392550 (64) 23.466517 1.448540× 105

80 - 16.146231 (64) 15.443710 (64) 26.913400 1.560849× 105

which n =  and n = . For this division of �, Theorem . states that

Cp(�) = – 
q max

(
n–( 

p – 
q ), max

≤i≤n
Dp(�i)

)
.

In this case, V (in Theorems . and .) becomes a square with side length /
√

n (see
Figure ). Note that ‖|x|–N‖Lr (V ) =

∫
V |x|β dx, where β = qp( – N)/((q – )p + q) if p < ∞

and β = q′( – N) if p = ∞.
Table  compares upper bounds for Cp(�) computed by Theorems ., ., ., [,

Lemma .], and [, Corollary D.] with q = ; the numbers of division n are shown in the
corresponding parentheses. Moreover, these values are plotted in Figure , except for the
values derived from [, Corollary D.].

Theorems ., ., ., and [, Lemma .] provide sharper estimates of Cp(�) than
[, Corollary D.] for all p’s. The estimates derived by Theorem . and Theorem . for
 ≤ p ≤  are sharper than the estimates obtained by [, Lemma .].

We also show the values of C∞(�) computed by Theorem . for  ≤ q ≤  in Table .
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Table 3 Computed values of C∞(�) for a square domain � and 3 ≤ q ≤ 10. The numbers of
division n are shown in the corresponding parentheses

q Theorem 3.4

3 5.611920 (16)
4 4.756829 (64)
5 4.000001 (64)
6 3.563595 (64)
7 3.281342 (64)
8 3.084422 (64)
9 2.939469 (64)
10 2.828428 (64)

Figure 3 Computed values of Cp(�) for � = (0, 1)2 and 3 ≤ p ≤ 80.

Figure 4 �i when n = 4 (the left-hand side) and n = 16 (the right-hand side).

4.2 Estimation on a triangle domain
For the second example, we select the case in which � is a regular triangle with the ver-
tices (, ), (, ), and (/,

√
/). For n = , , , , . . . , we define each �i ( ≤ i ≤ n) as a

regular triangle with side length /
√

n; see Figure  for the case in which n =  and n = .
For this division of �, Theorem . states that

Cp(�) = – 
q max

((
n√



)–( 
p – 

q )

, max
≤i≤n

Dp(�i)
)

.

In this case, V is the regular hexagon displayed in Figure .
Table  compares upper bounds of Cp(�) computed by Theorems ., ., ., and [,

Corollary D.] with q = ; the numbers of division n are shown in the corresponding paren-
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Figure 5 The domain V in Theorems 3.3 and 3.4.

Table 4 Computed values of Cp(�) for a regular triangle domain � and q = 2. The numbers of
division n are shown in the corresponding parentheses. Theorem 3.1 cannot be used for p > 4
when N = 2

p Theorem 3.1 Theorem 3.2 Theorem 3.3 [19, Corollary D.1]

3 2.580982 (16) 4.097053 (256) 2.366856 (4) 2.538335× 104

4 2.465500 (4) 5.700515 (64) 2.709475 (4) 3.553398× 104

5 - 6.330220 (64) 3.042818 (4) 4.464990× 104

6 - 7.477243 (64) 3.353176 (4) 5.297547× 104

7 - 7.601403 (16) 3.641844 (4) 6.067602× 104

8 - 7.750471 (16) 3.911816 (4) 6.786738× 104

9 - 7.933346 (16) 4.165864 (4) 7.463399× 104

10 - 8.133664 (16) 4.406282 (4) 8.103954× 104

20 - 10.219436 (16) 6.341217 (4) 1.326097× 105

30 - 12.055827 (16) 7.622031 (16) 1.717928× 105

40 - 13.666509 (16) 8.748299 (16) 2.045371× 105

50 - 15.112804 (16) 9.869218 (16) 2.331904× 105

60 - 16.059718 (64) 10.876336 (16) 2.589578× 105

70 - 17.313793 (64) 11.798394 (16) 2.825529× 105

80 - 18.483221 (64) 12.653794 (16) 3.044383× 105

Figure 6 Computed values of Cp(�) for a regular triangle domain � and 3 ≤ p ≤ 80.

theses. Moreover, these values are plotted in Figure . The estimate computed by Theo-
rem . is sharpest when p = . However, for the other p satisfying  ≤ p ≤ , Theorem .
provides the sharpest estimates.

We also show the values of C∞(�) computed by Theorem . for  ≤ q ≤  in Table .
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Table 5 Computed values of C∞(�) for a regular triangle domain � and 3 ≤ q ≤ 10. The
numbers of division n are shown in the corresponding parentheses

q Theorem 3.4

3 4.797133 (4)
4 4.146459 (16)
5 3.583834 (16)
6 3.251833 (16)
7 3.033691 (16)
8 2.879743 (16)
9 2.765427 (16)
10 2.677251 (16)

Figure 7 Some examples of domains � that are composed of unit squares and triangles with side
length 1.

Remark . The values of Cp(�) derived from Theorem . to . (provided in Tables 
to ) can be directly used for any domain that is composed of unit squares and triangles
with side length  (see Figure  for some examples).

4.3 Estimation on a cube domain
For the third example, we select the case in which � = (, ). For n = , , , , . . . , we
define each �i ( ≤ i ≤ n) as a cube with side length / √n. For this division of �, Theo-
rem . states that

Cp(�) = – 
q max

(
n–( 

p – 
q ), max

≤i≤n
Dp(�i)

)
.

In this case, V is also a cube with the side length / √n.
Table  compares upper bounds of Cp(�) computed by Theorems ., ., ., and [,

Corollary D.] with q = ; the numbers of division n are shown in the corresponding paren-
theses. The minimum value for each p is written in bold. We also show the values of C∞(�)
computed by Theorem . for  ≤ q ≤  in Table .
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Table 6 Computed values of Cp(�) for a cube domain � and q = 2. The numbers of division n
are shown in the corresponding parentheses. Theorem 3.1 for p > 3 cannot be used when
N = 3. Theorem 3.2 can be used for p = 6 only when N = 3

p Theorem 3.1 Theorem 3.2 Theorem 3.3 [19, Corollary D.1]

3 4.000001 (512) 10.919242 (32,768) 5.947133 (4096) 3.115606× 104

4 - 16.340789 (4096) 13.241245 (4096) 4.219101× 104

5 - 18.436348 (4096) 29.676745 (4096) 5.239741× 104

6 - 20.658471 (1) – -

Table 7 Computed values of C∞(�) for a cube domain � and 4 ≤ q ≤ 10. The numbers of
division n are shown in the corresponding parentheses

q Theorem 3.4

4 22.627417 (32,768)
5 13.928810 (32,768)
6 10.079369 (32,768)
7 8.000001 (32,768)
8 6.727172 (32,768)
9 5.878938 (32,768)
10 5.278032 (32,768)

5 Conclusion
We proposed several theorems that provide explicit values of Sobolev type embedding
constant Cp(�) satisfying () for a domain � that can be divided into a finite number
of bounded convex domains. These theorems give sharper estimates of Cp(�) than the
previous estimates derived by the method in []. This accuracy improvement leads to
much applicability of the estimates of Cp(�) to verified numerical computations for PDEs.

Appendix 1: Embedding constant Cp(�) on dividable domains
Theorem . provides an estimation of the embedding constant Cp(�) for a domain � that
can be divided into domains �i (such as convex domains and Lipschitz domains) satisfying
() and ().

Theorem . Let � ⊂ R
N (N ∈ N) be a domain that can be divided into a finite num-

ber of domains �i (i = , , , . . . , n) satisfying () and (). Assume that, for every �i (i =
, , , . . . , n), there exists a constant Cp(�i) such that ‖u‖Lp(�i) ≤ Cp(�i)‖u‖W ,q(�i) for all
u ∈ W ,q(�i). Then () holds valid for

Cp(�) = Mp,q max
≤i≤n

Cp(�i),

where

Mp,q =

⎧⎨
⎩

 (p ≥ q),

n

p – 

q (p < q).

Proof We consider both the cases in which p < ∞ and p = ∞.
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When p < ∞, it follows that

‖u‖Lp(�) =
( ∑

≤i≤n

‖u‖p
Lp(�i)

)/p

≤
( ∑

≤i≤n

Cp(�i)p‖u‖p
W ,q(�i)

)/p

≤ max
≤i≤n

Cp(�i)
( ∑

≤i≤n

‖u‖p
W ,q(�i)

)/p

≤ Mp,q max
≤i≤n

Cp(�i)‖u‖W ,q(�).

Note that |x|p ≤ Mp,q|x|q holds for x = (x, x, . . . , xn) ∈ R
n (see [, Lemma A.] for a de-

tailed proof ), where we denote

|x|p =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( ∑
≤i≤n

|xi|p
) 

p
( ≤ p < ∞),

max
≤i≤n

|xi| (p = ∞).

When p = ∞,

‖u‖L∞(�) = max
≤i≤n

‖u‖L∞(�i)

≤ max
≤i≤n

Cp(�i)‖u‖W ,q(�i)

≤ max
≤i≤n

Cp(�i) max
≤i≤n

‖u‖W ,q(�i).

Since M∞,q = , we have

‖u‖L∞(�) ≤ max
≤i≤n

Cp(�i)‖u‖W ,q(�). �

Appendix 2: A proof of Lemma 3.1
This section provides a proof of Lemma . based on [, Lemma .].

Proof of Lemma . Since C∞(�) ∩ W ,(�) is densely defined in W ,(�), it suffices to
prove Lemma . for u ∈ C(�). Since � is convex, we have, for x, y ∈ �,

u(x) – u(y) = –
∫ |x–y|


∂ru(x + rω) dr,

where ω = (y – x)/|y – x| and ∂ru(x + rω) = ∂
∂r u(x + rω). Integrating with respect to y over

�, we obtain

∣∣u(x) – u�(x)
∣∣ = |�|–

∣∣∣∣
∫

�

∫ |x–y|


∂ru(x + rω) dr dy

∣∣∣∣
≤ |�|–

∫
�

∫ |x–y|



∣∣∂ru(x + rω)
∣∣dr dy
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≤ |�|–
∫

�

∫ ∞



∣∣(E�,RN ∂ru)(x + rω)
∣∣dr dy

≤ |�|–
∫

B(x,d�)

∫ ∞



∣∣(E�,RN ∂ru)(x + rω)
∣∣dr dy

= |�|–
∫ d�



∫
|ω|=

∫ ∞



∣∣(E�,RN ∂ru)(x + rω)
∣∣ρN– dr dω dρ

= |�|–
∫ ∞



∫
|ω|=

∫ d�



∣∣(E�,RN ∂ru)(x + rω)
∣∣ρN– dρ dω dr

=
dN

�

N |�|
∫ ∞



∫
|ω|=

∣∣(E�,RN ∂ru)(x + rω)
∣∣dω dr

=
dN

�

N |�|
∫

|ω|=

∫ ∞



∣∣(E�,RN ∂ru)(x + rω)
∣∣r–N rN–drdω

=
dN

�

N |�|
∫
RN

∣∣(E�,RN ∂ru)(y)
∣∣|x – y|–N dy

=
dN

�

N |�|
∫

�

∣∣∂ru(y)
∣∣|x – y|–N dy.

Therefore, a proof of Lemma . is completed. �
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