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Abstract
In this paper, we study the split-feasibility problem in Hilbert spaces by using the
projected reflected gradient algorithm. As applications, we study the convex linear
inverse problem and the split-equality problem in Hilbert spaces, and we give new
algorithms for these problems. Finally, numerical results are given for our main results.
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1 Introduction
The split-feasibility problem was first introduced by Censor et al. []:

(SFP) Find x̄ ∈ H such that x̄ ∈ C and Ax̄ ∈ Q,

where C is a nonempty closed convex subset of a real Hilbert space H, Q is a nonempty
closed convex subset of a real Hilbert space H, and A : H → H is a linear and bounded
operator. The split-feasibility problem was originally introduced by Censor and Elfving []
for modeling phase retrieval problems, and it later was studied extensively as an extremely
powerful tool for the treatment of a wide range of inverse problems, such as medical image
reconstruction and intensity-modulated radiation therapy problems. For examples, one
may refer to [–].

In , Byrne [] proposed the CQ algorithm to study the split-feasibility problem:

(CQ algorithm)

⎧
⎨

⎩

x is chosen arbitrarily in R
n,

xn+ = PC(xn – ρnA�(I – PQ)Axn), n ∈N,
(.)

where C is a nonempty closed convex subset of R�, Q is a nonempty closed convex subset
of Rm, {ρn}n∈N is a sequence in the interval (, /‖A‖), PC is the metric projection from
R

� onto C, PQ is the metric projection from R
m onto Q, A is an m × � matrix, and A� is

the transpose of A.
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In , Qu and Xiu [] presented modifications of the CQ algorithm in the setting of
finite dimensional spaces by adopting the Armijo-like searches, which need not compute
the matrix inverses and the largest eigenvalue of the matrix A�A. In , Censor, Motova,
and Segal [] studied the multiple-sets split-feasibility problem that requires one to find
a point closest to a family of closed convex sets in one space such that its image under a
linear transformation will be closest to another family of closed convex sets in the image
space by using a perturbed projection method.

In , Xu [] gave the following modified CQ algorithm and gave a weak convergence
theorem for the split-feasibility problem in infinite dimensional Hilbert spaces:

⎧
⎨

⎩

x is chosen arbitrarily in R
n,

xn+ := PC(xn – ρn(A∗(I – PQ)Axn)), n ∈N,
(.)

where {ρn}n∈N is chosen in the interval (, /‖A‖), C is a nonempty closed convex subset
of a real Hilbert space H, Q is a nonempty closed convex subset of a real Hilbert space
H, and A : H → H is a linear and bounded operator, and let A∗ be the adjoint of A.

Besides, Xu [] also gave a regularized algorithm for the split-feasibility problem and
proposed a strong convergence theorem under suitable conditions:

⎧
⎨

⎩

x is chosen arbitrarily in R
n,

xn+ := PC(( – anρn)xn – ρn(A∗(I – PQ)Axn)), n ∈N,
(.)

where C is a nonempty closed convex subset of a real Hilbert space H, Q is a nonempty
closed convex subset of a real Hilbert space H, and A : H → H is a linear and bounded
operator, and A∗ is the adjoint of A.

In , Qu, Liu, and Zheng [] gave the following modified CQ algorithm to study the
split-feasibility problem:

(CQ-like algorithm)

⎧
⎨

⎩

x is chosen arbitrarily in H,

xn+ = PC(xn + wnrnA�(PQ – I)Axn),

where  < w ≤ wn ≤ w < , and rn = ‖(PQ–I)Axn‖

‖A�(PQ–I)Axn‖ . Indeed, Qu et al. [] thought that the
CQ-like algorithm not only need not compute the largest eigenvalue of the related matrix
but also need not use any line search scheme.

For more details as regards various algorithms for the split-feasibility problems and re-
lated problems, one may refer to [–] and related references.

Motivated by the above work, in this paper, we study the split-feasibility problem in
Hilbert spaces by using the projected reflected gradient algorithm. As applications, we
study the convex linear inverse problem and the split-equality problem in Hilbert spaces,
and give new algorithms for these problems. Final, numerical results are given for our
main results.

2 Preliminaries
Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. We denote the strong
convergence and weak convergence {xn}n∈N to x ∈ H by xn → x and xn ⇀ x, respectively.
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From [], for each x, y, u, v ∈ H and λ ∈R, we have

‖x + y‖ = ‖x‖ + 〈x, y〉 + ‖y‖, (.)
∥
∥λx + ( – λ)y

∥
∥ = λ‖x‖ + ( – λ)‖y‖ – λ( – λ)‖x – y‖, (.)

〈x – y, u – v〉 = ‖x – v‖ + ‖y – u‖ – ‖x – u‖ – ‖y – v‖. (.)

Definition . Let C be a nonempty closed convex subset of a real Hilbert space H , and
T : C → H be a mapping, and set Fix(T) := {x ∈ C : Tx = x}. Thus,

(i) T is a nonexpansive mapping if ‖Tx – Ty‖ ≤ ‖x – y‖ for every x, y ∈ C.
(ii) T is a firmly nonexpansive mapping if ‖Tx – Ty‖ ≤ 〈x – y, Tx – Ty〉 for every

x, y ∈ C, that is, ‖Tx – Ty‖ ≤ ‖x – y‖ – ‖(I – T)x – (I – T)y‖ for every x, y ∈ C.
(iii) T is a quasi-nonexpansive mapping if Fix(T) 
= ∅ and ‖Tx – y‖ ≤ ‖x – y‖ for every

x ∈ C and y ∈ Fix(T).

Remark . If T is a firmly nonexpansive mapping, then T is a nonexpansive mapping.

Lemma . ([]) Let C be a nonempty closed convex subset of a real Hilbert space H . Let
T : C → H be a nonexpansive mapping, and {xn}n∈N be a sequence in C. If xn ⇀ w and
limn→∞ ‖xn – Txn‖ = , then Tw = w.

Let C be a nonempty closed convex subset of a real Hilbert space H . For each x ∈ H ,
there is a unique element x̄ ∈ C such that

‖x – x̄‖ = min
y∈C

‖x – y‖.

In this study, we set PCx = x̄, and PC is called the metric projection from H onto C.

Lemma . ([]) Let C be a nonempty closed convex subset of a real Hilbert space H , and
let PC be the metric projection from H onto C. Then the following are satisfied:

(i) 〈x – PCx, PCx – y〉 ≥  for all x ∈ H and y ∈ C;
(ii) ‖x – PCx‖ + ‖PCx – y‖ ≤ ‖x – y‖ for all x ∈ H and y ∈ C;

(iii) PC is a firmly nonexpansive mapping.

Lemma . ([]) Let H and H be two real Hilbert spaces, A : H → H be a linear
mapping, and A∗ be the adjoint of A. Let C be a nonempty closed convex subset of H. Let
T := A∗(I – PC)A. Then T is a monotone mapping. In fact, we have

∥
∥(I – PQ)Ax – (I – PQ)Ay

∥
∥ ≤ 〈

x – y, A∗(I – PQ)Ax – A∗(I – PQ)Ay
〉

for all x, y ∈ H.

3 Projected reflected gradient algorithm
Theorem . Let H and H be real Hilbert spaces, C and Q be nonempty closed convex
subsets of H and H, respectively, and A : H → H be a linear and bounded operator with
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adjoint operator A∗. Let � be the solution set of the split-feasibility problem and assume
that � 
= ∅. For k > , suppose ρ satisfies

 < ρ < min

{ √
k

( +
√

k) · ‖A‖
,

k
(k

√
k +

√
k + ) · ‖A‖

}

.

Let {xn}n∈N be defined by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x is chosen arbitrarily in H,

y = x,

xn+ := PC(xn – ρA∗(I – PQ)Ayn),

yn+ := xn+ – xn, n ∈N.

(.)

Then there exists x̄ ∈ � such that {xn}n∈N converges weakly to x̄.

Proof Let v ∈ C, w ∈ �, and n ∈ N be fixed. Then, by Lemma ., we have

‖xn+ – v‖

=
∥
∥PC

(
xn – ρA∗(I – PQ)Ayn

)
– PCv

∥
∥

≤ ∥
∥xn – ρA∗(I – PQ)Ayn) – v

∥
∥ –

∥
∥xn+ – xn + ρA∗(I – PQ)Ayn

∥
∥

= ‖xn – v‖ + ρ∥∥A∗(I – PQ)Ayn
∥
∥ – ρ

〈
xn – v, A∗(I – PQ)Ayn

〉

– ‖xn+ – xn‖ – ρ∥∥A∗(I – PQ)Ayn
∥
∥ – ρ

〈
xn+ – xn, A∗(I – PQ)Ayn

〉

= ‖xn – v‖ – ‖xn+ – xn‖ – ρ
〈
xn+ – v, A∗(I – PQ)Ayn

〉
. (.)

By Lemma ., we know that

〈
yn – v, A∗(I – PQ)Ayn – A∗(I – PQ)Av

〉 ≥ ∥
∥(I – PQ)Ayn – (I – PQ)Av

∥
∥. (.)

Then, by (.) and (.),

‖xn+ – v‖ + ρ
∥
∥(I – PQ)Ayn – (I – PQ)Av

∥
∥

≤ ‖xn – v‖ – ‖xn+ – xn‖ – ρ
〈
xn+ – v, A∗(I – PQ)Ayn

〉

+ ρ
〈
yn – v, A∗(I – PQ)Ayn – A∗(I – PQ)Av

〉

= ‖xn – v‖ – ‖xn+ – xn‖ – ρ
〈
xn+ – yn, A∗(I – PQ)Ayn

〉

– ρ
〈
yn – v, A∗(I – PQ)Av

〉

= ‖xn – v‖ – ‖xn+ – xn‖

– ρ
〈
xn+ – yn, A∗(I – PQ)Ayn – A∗(I – PQ)Ayn–

〉

– ρ
〈
xn+ – yn, A∗(I – PQ)Ayn–

〉
– ρ

〈
yn – v, A∗(I – PQ)Av

〉
. (.)

By Lemma ., we know that

〈
xn– – ρA∗(I – PQ)Ayn– – xn, xn – v

〉 ≥ , (.)
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and this implies that

⎧
⎨

⎩

〈xn– – ρA∗(I – PQ)Ayn– – xn, xn – xn+〉 ≥ ,

〈xn– – ρA∗(I – PQ)Ayn– – xn, xn – xn–〉 ≥ .
(.)

Therefore, by (.),

〈
xn– – ρA∗(I – PQ)Ayn– – xn, xn – xn– – xn+

〉 ≥ . (.)

That is,

〈
xn– – ρA∗(I – PQ)Ayn– – xn, yn – xn+

〉 ≥ . (.)

This implies that

ρ
〈
A∗(I – PQ)Ayn–, yn – xn+

〉

≤ 〈xn– – xn, yn – xn+〉
= 〈xn – yn, yn – xn+〉
= ‖xn – xn+‖ – ‖xn – yn‖ – ‖xn+ – yn‖. (.)

Also, we have

ρ
〈
yn – xn+, A∗(I – PQ)Ayn – A∗(I – PQ)Ayn–

〉

≤ ρ‖A‖ · ‖yn – xn+‖ · ‖yn – yn–‖

≤ ρ‖A‖ ·
(√

k‖yn – xn+‖ +
‖yn – yn–‖

√
k

)

≤ √
kρ‖A‖ · ‖yn – xn+‖ +

ρ‖A‖
√

k
· ‖yn – yn–‖

≤ √
kρ‖A‖ · ‖yn – xn+‖ +

ρ‖A‖
√

k
· (‖yn – xn‖ + ‖xn – yn–‖

)

=
√

kρ‖A‖ · ‖yn – xn+‖

+
ρ‖A‖
√

k
· (‖yn – xn‖ + ‖xn – yn–‖ + ‖yn – xn‖ · ‖xn – yn–‖

)

≤ √
kρ‖A‖ · ‖yn – xn+‖

+
ρ‖A‖
√

k
·
(

‖yn – xn‖ + ‖xn – yn–‖ +
√

k‖yn – xn‖ +
√
k
‖xn – yn–‖

)

=
√

kρ‖A‖ · ‖yn – xn+‖ + ρ‖A‖ ·  +
√

k√
k

‖yn – xn‖

+ ρ‖A‖ ·  +
√

k
k

‖xn – yn–‖. (.)
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By (.), (.), (.), and set v = w, we have

‖xn+ – w‖ + ρ
∥
∥(I – PQ)Ayn

∥
∥

≤ ‖xn – w‖ – ‖xn+ – xn‖

– ρ
〈
xn+ – yn, A∗(I – PQ)Ayn – A∗(I – PQ)Ayn–

〉

– ρ
〈
xn+ – yn, A∗(I – PQ)Ayn–

〉
– ρ

〈
yn – w, A∗(I – PQ)Aw

〉

≤ ‖xn – w‖ – ‖xn+ – xn‖ +
√

kρ‖A‖ · ‖yn – xn+‖

+ ρ‖A‖ ·  +
√

k√
k

‖yn – xn‖ + ρ‖A‖ ·  +
√

k
k

‖xn – yn–‖

+ ‖xn – xn+‖ – ‖xn – yn‖ – ‖xn+ – yn‖

= ‖xn – w‖ –
(
 –

√
kρ‖A‖)‖xn+ – yn‖ + ρ‖A‖ ·  +

√
k

k
‖xn – yn–‖

–
(

 – ρ‖A‖ ·  +
√

k√
k

)

‖xn – yn‖. (.)

By (.), we have

‖xn+ – w‖ + ρ‖A‖ ·  +
√

k
k

· ‖xn+ – yn‖

≤ ‖xn+ – w‖ + ρ‖A‖ ·  +
√

k
k

· ‖xn+ – yn‖ + ρ
∥
∥(I – PQ)Ayn

∥
∥

≤ ‖xn – w‖ –
(

 –
√

kρ‖A‖ – ρ‖A‖ ·  +
√

k
k

)

‖xn+ – yn‖

+ ρ‖A‖ ·  +
√

k
k

‖xn – yn–‖ –
(

 – ρ‖A‖ ·  +
√

k√
k

)

‖xn – yn‖

≤ ‖xn – w‖ + ρ‖A‖ ·  +
√

k
k

‖xn – yn–‖. (.)

Hence, limn→∞ ‖xn – w‖ + ρ‖A‖ · +
√

k
k · ‖xn – yn–‖ exists, and then

lim
n→∞‖yn – xn+‖ = lim

n→∞‖yn – xn‖ = lim
n→∞

∥
∥(I – PQ)Ayn

∥
∥ = . (.)

Further, this implies that

lim
n→∞‖xn – w‖ = lim

n→∞

(

‖xn – w‖ + ρ‖A‖ ·  +
√

k
k

· ‖xn – yn–‖
)

. (.)

So, {xn}n∈N is a bounded sequence, and then there exist x̄ ∈ C and a subsequence {xnk }k∈N
of {xn}n∈N such that xnk ⇀ x̄. By (.), we determine that ynk ⇀ x̄ and Aynk ⇀ Ax̄. By
Lemma ., we know that Ax̄ = PQAx̄ and Ax̄ ∈ Q. So, x̄ ∈ �. Final, by Opial’s condition,
we know that xn ⇀ x̄. Therefore, the proof is completed. �
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Remark . The algorithm in Theorem . are different from those in the references. For
examples, one may refer to [], Theorem ., [], Theorem ., [], Theorem ., [],
Theorem ., Theorem ., and [], Theorem ..

4 Applications
4.1 Convex linear inverse problem
In this section, we consider the following convex linear inverse problem:

(CLIP) Find x̄ ∈ C such that Ax̄ = b,

where C is a nonempty closed convex subset of a real Hilbert space H, b is given in a real
Hilbert space H, and A : H → H is a linear and bounded operator.

Theorem . Let H and H be real Hilbert spaces, C be a nonempty closed convex subset
of H, b ∈ H, and A : H → H be a linear and bounded operator with adjoint operator A∗.
Let � be the solution set of the convex linear inverse problem and assume that � 
= ∅. For
k > , suppose ρ satisfies

 < ρ < min

{ √
k

( +
√

k) · ‖A‖
,

k
(k

√
k +

√
k + ) · ‖A‖

}

.

Let {xn}n∈N be defined by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x is chosen arbitrarily in H,

y = x,

xn+ := PC(xn – ρA∗(Ayn – b)),

yn+ := xn+ – xn, n ∈N.

(.)

Then there exists x̄ ∈ � such that {xn}n∈N converges weakly to x̄.

Proof Let Q = {b}. Then PQ(y) = b for all y ∈ H. Hence, we get the conclusion of Theo-
rem . by using Theorem .. �

4.2 Split equality problem
Let H, H, and H be real Hilbert spaces. Let C and Q be nonempty closed convex sub-
sets of H and H, respectively. Let A : H → H and B : H → H be linear and bounded
operators with adjoint operators A∗ and B∗, respectively. The following problem is the
split-equality problem, which was studied by Moudafi [, ]:

(SEP) Find x̄ ∈ C and ȳ ∈ Q such that Ax̄ = Bȳ.

Let � := {(x, y) ∈ C × Q : Ax = By} be the solution set of problem (SEP). Further, we ob-
served that (x, y) is a solution of the split-equality problem if and only if

⎧
⎨

⎩

x = PC(x – ρA∗(Ax – By)),

y = PQ(y + ρB∗(Ax – By)),
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for all ρ >  and ρ > , where PC is the metric projection from H onto C, and PQ is the
metric projection from H onto Q, [].

As mentioned in Moudafi [], the interest of the split-equality problem covers many
situations, for instance in decomposition methods for PDEs, game theory, and modulated
radiation therapy (IMRT). For details, see [, , ]. Besides, we also observed that prob-
lem are extended to many generalized problems, like the split-equality fixed point problem
[, ].

To solve the split-equality problem, Moudafi [] proposed the alternating CQ algo-
rithm:

(ACQA)

⎧
⎪⎪⎨

⎪⎪⎩

x and y are chosen arbitrarily in H and H, respectively,

xn+ := PC(xn – ρnA∗(Axn – Byn)),

yn+ := PQ(yn + ρnB∗(Axn+ – Byn)), n ∈N,

where H = R
N , H = R

M , PC is the metric projection from H onto C, and PQ is the metric
projection from H onto Q, ε > , A is a J ×N matrix, B is a J ×M matrix, λA and λB are the
spectral radius of A∗A and B∗B, respectively, and {ρn} is a sequence in (ε, min{ 

λA
, 

λB
} – ε).

In , Byrne and Moudafi [] presented a simultaneous algorithm, which was called
the projected Landweber algorithm, to study the split-equality problem:

(PLA)

⎧
⎪⎪⎨

⎪⎪⎩

x and y are chosen arbitrarily in H and H, respectively,

xn+ := PC(xn – ρnA∗(Axn – Byn)),

yn+ := PQ(yn + ρnB∗(Axn – Byn)), n ∈N,

where H = R
N , H = R

M , PC is the metric projection from H onto C, and PQ is the metric
projection from H onto Q, ε > , A is a J × N matrix, B is a J × M matrix, λA and λB are
the spectral radius of A∗A and B∗B, respectively, and {ρn} is a sequence in (ε, 

λA+λB
).

Next, we need the following results to establish our results in the sequel. Let H and H

be two real Hilbert spaces, W := H × H with inner product

〈w, w〉 = 〈u, u〉H + 〈v, v〉H

for all w = (u, v), w = (u, v) ∈ W . Hence, W is a real Hilbert space with norm

‖z‖ :=
(‖u‖

H + ‖v‖
H

)/, where z = (u, v) ∈ W .

(For simple, 〈·, ·〉H and 〈·, ·〉H are written by 〈·, ·〉.) Further, we know that {wn = (un, vn)} ⊆
W = H × H converges weakly to w = (u, v) if and only if {un} converges weakly to u
and {vn} converges weakly to v. Next, suppose that C and Q are nonempty closed convex
subsets of H and H, respectively, and set D = C × Q ⊆ W . Then the metric projection
PD(w) = (PC(u), PQ(v)) for all z = (u, v) ∈ W .

Next, we give a reflected projected Landweber algorithm for the split-equality problem.

Theorem . Let H, H, and H be real Hilbert spaces. Let C and Q be nonempty closed
convex subsets of H and H, respectively. Let A : H → H and B : H → H be linear and
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bounded operators with adjoint operators A∗ and B∗, respectively. Let � be the solution set
of the split-equality problem and assume that � 
= ∅. For k > , suppose ρ satisfies

 < ρ < min

{ √
k

( +
√

k) · (‖A‖ + ‖B‖)
,

k
(k

√
k +

√
k + ) · (‖A‖ + ‖B‖)

}

.

Let {xn}n∈N and {yn}n∈N be defined by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x and y are chosen arbitrarily in H and H, respectively,

u = x, v = y,

xn+ := PC(xn – ρA∗(Aun – Bvn)),

yn+ := PQ(yn + ρB∗(Aun – Bvn)),

un+ := xn+ – xn,

vn+ := yn+ – yn, n ∈ N.

(.)

Then there exists (x̄, ȳ) ∈ � such that {xn}n∈N converges weakly to x̄ and {yn}n∈N converges
weakly to ȳ.

Proof Let S = C × Q, G := [A, –B], w = [x y]T , b = [ ]T . Then

G∗G =

[
A∗A –A∗B

–B∗A B∗B

]

, PS

[
x
y

]

=

[
PCx
PQy

]

.

Thus,

[
xn+

yn+

]

= PS

([
xn

yn

]

– ρ

[
A∗A –A∗B

–B∗A B∗B

][
un

vn

])

and

[
un+

vn+

]

= 

[
xn+

yn+

]

–

[
xn

yn

]

.

Therefore, we get the conclusion of Theorem . by using Theorem .. �

In Theorem ., if we set H = H and B is the identity mapping on H, then we can
obtain a new algorithm and related convergence theorem for the split-feasibility problem.

Corollary . Let H and H be real Hilbert spaces. Let C and Q be nonempty closed
convex subsets of H and H, respectively. Let A : H → H be a linear and bounded operator
with adjoint operator A∗. Let � be the solution set of the split-feasibility problem (SFP) and
assume that � 
= ∅. For k > , suppose ρ satisfies

 < ρ < min

{ √
k

( +
√

k) · (‖A‖ + )
,

k
(k

√
k +

√
k + ) · (‖A‖ + )

}

.
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Table 1 Numerical results for Example 5.1 (x1 = (10, 10)T , ρn = ρ = 0.06 for all n ∈N)

ε CPU(s) Iteration Approximate solution CPU(s) Iteration Approximate solution

CQ algorithm PRGA
10–3 - 2 (0.5994553, 0.8004082) 0.01 314 (0.6006783, 0.7994908)
10–4 375.25 1,630,698 (0.5999200, 0.8000600) 0.03 1334 (0.5999466, 0.8000400)

CQ-like algorithm (wn = 1) CQ-like algorithm (wn = 1.9)
10–3 6.47 249,918 (0.6007997, 0.7993996) 3.41 131,247 (0.6007997, 0.7993996)
10–4 652.44 24,999,920 (0.6000800, 0.7999400) 342.80 13,157,560 (0.6000800, 0.7999400)

Let {xn}n∈N and {yn}n∈N be defined by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x and y are chosen arbitrarily in H and H, respectively,

u = x, v = y,

xn+ := PC(xn – ρA∗(Aun – vn)),

yn+ := PQ(yn + ρ(Aun – vn)),

un+ := xn+ – xn,

vn+ := yn+ – yn, n ∈ N.

(.)

Then there exists x̄ ∈ � such that {xn}n∈N converges weakly to x̄. Further, {yn}n∈N converges
weakly to Ax̄.

Remark . The results in this section are different from those in the references. For
example, one may refer to [], Theorem ..

Remark . From the results in this section, we know that the split-equality problem is
a special case of the split-feasibility problem. This is an important contribution in this
paper since many researchers thought that the split-feasibility problem is a special case of
the split-equality problem.

5 Numerical results
All codes were written in R language (version .. (--)). The R Foundation for
Statistical Computing Platform: x--w-mingw/x (-bit).

Example . Let H = H = R
, C := {x ∈R

 : ‖x‖ ≤ }, Q := {x = (u, v) ∈R
 : (u – ) + (v –

) ≤ }, A = I, where I is  ×  identity matrix. Then (SFP) has the unique solution
x̄ := (x̄, x̄) ∈R

. Indeed, x̄ = . and x̄ = ..

We give numerical results for problem (SFP) by using algorithm (PRGA), CQ algorithm,
and CQ-like algorithm. Let ε >  and the algorithm stop if ‖xn – x̄‖ < ε.

In Tables  and , we set x = (, )T , ρn = ρ = . for all n ∈ N. From Table , we see
that the proposed algorithm in Theorem . reaches the required errors faster than the
CQ algorithm and CQ-like algorithms with wn =  (resp. wn = .). From Tables  and ,
we see that the proposed algorithm in Theorem . only need ,, iteration number
and . seconds to reach the required error ε = –, but the other algorithms could
not reach the required error.

In Tables  and , we set x = (, )T , ρn = ρ = . for all n ∈ N. From Table , we see
that the proposed algorithm in Theorem . reaches the required errors faster than the
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Table 2 Numerical results for Example 5.1

PRGA [x1 = (10, 10)T , ρ = 0.06]

ε CPU(s) Iteration Approximate solution

10–3 0.01 314 (0.6006783, 0.7994908)
10–4 0.03 1334 (0.5999466, 0.8000400)
10–5 0.10 3741 (0.6000052, 0.7999961)
10–6 14.67 650,838 (0.5999999, 0.8000001)
10–7 150.65 6,402,868 (0.6000001, 0.8000000)

Table 3 Numerical results for Example 5.1 (x1 = (1, 1)T , ρn = ρ = 0.06 for all n ∈N)

CQ algorithm PRGA

ε CPU(s) Iteration Approximate solution CPU(s) Iteration Approximate solution

10–3 3.89 166,658 (0.6007997, 0.7993996) - 375 (0.5993223, 0.8005078)
10–4 374.21 16,666,660 (0.6000800, 0.7999400) 0.15 7086 (0.5999597, 0.8000302)

Table 4 Numerical results for Example 5.1

PRGA [x1 = (1, 1)T , ρ = 0.06]

ε CPU(s) Iteration Approximate solution

10–3 – 375 (0.5993223, 0.8005078)
10–4 0.16 7086 (0.5999597, 0.8000302)
10–5 0.22 9493 (0.5999947, 0.8000040)
10–6 1.00 44,211 (0.6000002, 0.7999999)
10–7 24.63 1,058,254 (0.6, 0.8)

CQ algorithm. From Tables  and , we see that the proposed algorithm in Theorem .
only needs ,, iterations and . seconds to reach the required error ε = –,
but the CQ algorithm could not reach the required error.

6 Conclusions
In this paper, we study the split-feasibility problem in Hilbert spaces by using the projected
reflected gradient algorithm. From the proposed numerical results, we know the projected
reflected gradient algorithm is useful and faster than the CQ algorithm and CQ-like al-
gorithms under suitable conditions. As applications, we study the convex linear inverse
problem and the split-equality problem in Hilbert spaces. Here, we give an important con-
nection between the linear inverse problem and the split-equality problem. Hence, many
modified projected Landweber algorithms for the split-equality problem will be presented
by using the related algorithms for the linear inverse problem.
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