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Abstract
In the article, we present the best possible parameters λ = λ(p) and μ =μ(p) on the
interval [0, 1/2] such that the double inequality

Gp
[
λa + (1 – λ)b,λb + (1 – λ)a

]
A1–p(a,b)

< E(a,b) < Gp
[
μa + (1 –μ)b,μb + (1 –μ)a

]
A1–p(a,b)

holds for any p ∈ [1,∞) and all a,b > 0 with a �= b, where A(a,b) = (a + b)/2,
G(a,b) =

√
ab and E(a,b) = [2

∫ π /2
0

√
a cos2 θ + b sin2 θ dθ /π ]2 are the arithmetic,

geometric and special quasi-arithmetic means of a and b, respectively.
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1 Introduction
Let r ∈ (, ). Then the Legendre complete elliptic integrals K(r) and E(r) [, ] of the first
and second kinds are defined as

K(r) =
∫ π/



dt
√

 – r sin(t)
, E(r) =

∫ π/



√
 – r sin(t) dt,

respectively. It is well known that the function r → K(r) is strictly increasing from (, )
onto (π/,∞) and the function r → E(r) is strictly decreasing from (, ) onto (,π/), and
they satisfy the formulas (see [, Appendix E, pp. ,])

dK(r)
dr

=
E(r) – r′K(r)

rr′ ,
dE(r)

dr
=
E(r) – K(r)

r
,

K
(


√

r
 + r

)
= ( + r)K(r), E

(

√

r
 + r

)
=

E(r) – r′K
 + r

,

where r′ =
√

 – r.
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The complete elliptic integrals K(r) and E(r) are the particular cases of the Gaussian
hypergeometric function [–]

F(a, b; c; x) =
∞∑

n=

(a)n(b)n

(c)n

xn

n!
(– < x < ),

where (a) =  for a �= , (a)n = a(a + )(a + ) · · · (a + n – ) = �(a + n)/�(a) is the shifted
factorial function and �(x) =

∫ ∞
 tx–e–t dt (x > ) is the gamma function [–]. Indeed,

K(r) =
π


F
(




,



; ; r
)

=
π



∞∑

n=

( 
 )

n

(n!) rn,

E(r) =
π


F
(

–



,



; ; r
)

=
π



∞∑

n=

(– 
 )n( 

 )n

(n!) rn.

Recently, the bounds for the complete elliptic integrals have attracted the attention of
many researchers. In particular, many remarkable inequalities and properties for K(r),
E(r) and F(a, b; c; x) can be found in the literature [–].

In , a class of quasi-arithmetic mean was introduced by Toader [] which is defined
by

Mp,n(a, b) = p–
(


π

∫ π


p
(
rn(θ ) dθ

))
= p–

(

π

∫ π/


p
(
rn(θ ) dθ

))
,

where rn(θ ) = (an cos θ +bn sin θ )/n for n �= , r(θ ) = acos θ bsin θ , and p is a strictly mono-
tonic function. It is well known that many important means are the special cases of the
quasi-arithmetic mean. For example,

M/x,(a, b) =
π


∫ π/


dθ√

a cos θ+b sin θ

=

⎧
⎨

⎩
πa/[K(

√
 – (b/a))], a ≥ b,

πb/[K(
√

 – (a/b))], a < b,

is the arithmetic-geometric mean of Gauss [–],

Mx,(a, b)) =

π

∫ π/



√
a cos θ + b sin θ dθ =

⎧
⎨

⎩
aE(

√
 – (b/a))/π , a ≥ b,

bE(
√

 – (a/b))/π , a < b,

is the Toader mean [–], and

Mx,(a, b)) =

π

∫ π/


acos θ bsin θ dθ

is the Toader-Qi mean [–].
Let p =

√
x and n = . Then Mp,n(a, b) reduces to a special quasi-arithmetic mean

E(a, b) = M√
x,(a, b)) =

⎧
⎨

⎩
a[E(

√
 – b/a)]/π, a ≥ b,

b[E(
√

 – a/b)]/π, a < b.
(.)
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Let

A(a, b) =
a + b


, G(a, b) =

√
ab,

Mp(a, b) =
(

ap + bp



)/p

(p �= ), M(a, b) =
√

ab,

be the arithmetic, geometric and pth power means of a and b, respectively. Then it is well
known that the inequality

G(a, b) = M(a, b) < A(a, b) = M(a, b) (.)

holds for all a, b >  with a �= b, and the double inequality

π


M/

(
, r′) < E(r) <

π


M

(
, r′) (.)

holds for all r ∈ (, ) (see [, ..]).
From (.)-(.) we clearly see that

G(a, b) < E(a, b) < A(a, b)

for all a, b >  with a �= b.
Let p ∈ [,∞) and

f (x; p; a, b) = Gp[xa + ( – x)b, xb + ( – x)a
]
A–p(a, b).

Then it is not difficult to verify that the function x → f (x; p; a, b) is strictly increasing on
[, /] for fixed p ∈ [,∞) and a, b >  with a �= b. Note that

f (; p; a, b) = Gp(a, b)A–p(a, b) ≤ G(a, b)

< E(a, b) < A(a, b) = f (/; p; a, b) (.)

for all p ∈ [,∞) and a, b >  with a �= b.
Motivated by inequalities (.) and the monotonicity of the function x → f (x; p; a, b) on

the interval [, /], in the article, we shall find the best possible parameters λ = λ(p),μ =
μ(p) on the interval [, /] such that the double inequality

Gp[λa + ( – λ)b,λb + ( – λ)a
]
A–p(a, b)

< E(a, b) < Gp[μa + ( – μ)b,μb + ( – μ)a
]
A–p(a, b)

holds for any p ∈ [,∞) and all a, b >  with a �= b.

2 Lemmas
Lemma . (see [, Theorem .]) Let –∞ < a < b < +∞, f , g : [a, b] → R be continu-
ous on [a, b] and differentiable on (a, b), and g ′(x) �=  on (a, b). If f ′(x)/g ′(x) is increasing
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(decreasing) on (a, b), then so are the functions

f (x) – f (a)
g(x) – g(a)

,
f (x) – f (b)
g(x) – g(b)

.

If f ′(x)/g ′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

Lemma . The inequality


p

+
(


√


π

)/p

< 

holds for all p ∈ [,∞).

Proof Let

f (p) =


p
+

(

√


π

)/p

. (.)

Then simple computations lead to

lim
p→∞ f (p) = , (.)

f ′(p) =

p log

(√
π



)[(

√


π

)/p

–


 log(
√

π
 )

]

≥ 
p log

(√
π



)[(

√


π

)

–


 log(
√

π
 )

]

=
 log(

√
π
 ) – π

πp >  (.)

for p ∈ [,∞).
Therefore, Lemma . follows easily from (.)-(.). �

Lemma . The following statements are true:
() The function r 
→ [E(r) – ( – r)K(r)]/r is strictly increasing from (, ) onto (π/, ).
() The function r 
→ [K(r) – E(r)]/r is strictly increasing from (, ) onto (π/,∞).
() The function r 
→ [E(r) + ( – r)K(r)]/( – r) is strictly increasing from (, ) onto

(π ,∞).
() The function r 
→ [E(r) – ( – r)K(r)]/( + r) is strictly decreasing from (, ) onto

(,π/).
() The function r 
→ r[E(r) – ( – r)K(r)]/[( + r)(K(r) – E(r))] is strictly

decreasing from (, ) onto (, ).

Proof Parts () and () can be found in the literature [, Theorem .() and Exer-
cise .()].
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For part (), let f(r) = [E(r) + ( – r)K(r)]/( – r). Then simple computations lead to

f
(
+)

= π , f
(
–)

= ∞, (.)

f ′
 (r) =

r
( – r)

[

r

(
E(r) –

(
 – r)K(r)

)
+

(
 – r)K(r)

]
. (.)

It follows from part () and (.) that

f ′
 (r) >  (.)

for all r ∈ (, ). Therefore, part () follows from (.) and (.).
For part (), let f(r) = [E(r) – ( – r)K(r)]/( + r), then one has

f
(
+)

=
π


, f

(
–)

= , (.)

f ′
(r) =

r
( + r)

[(
 – r)E(r) – ( – r)K(r)

r – E(r)
]

. (.)

From part () and (.) we clearly see that

f ′
(r) < –

r
( + r)

<  (.)

for all r ∈ (, ). Therefore, part () follows from (.) and (.).
For part (), let f(r) = r[E(r) – ( – r)K(r)]/[( + r)(K(r) – E(r))], then f(r) can be

rewritten as

f(r) =
E(r) – ( – r)K(r)

 + r × 
K(r)–E(r)

r

× 
 + r . (.)

Therefore, part () follows easily from parts () and () together with (.). �

Lemma . The function

g(r) =
rK(r)

( + r)[K(r) – E(r)]

is strictly decreasing from (, ) onto (/, ).

Proof Let g(r) = rK(r) and g(r) = ( + r)[K(r) – E(r)]. Then we clearly see that

g
(
+)

= g
(
+)

= , g(r) =
g(r)
g(r)

, (.)

g
(
–)

=



, (.)

g ′
(r)

g ′
(r)

=


 – E(r)
E(r)+(–r)K(r)

–r

. (.)
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From Lemma .(), (.) and (.) we know that

g
(
+)

= lim
r→+

g ′
(r)

g ′
(r)

=  (.)

and the function g ′
(r)/g ′

(r) is strictly decreasing on (, ).
Therefore, Lemma . follows easily from Lemma ., (.), (.) and (.) together

with the monotonicity of the function g ′
(r)/g ′

(r). �

Lemma . Let u ∈ [, ], r ∈ (, ), p ∈ [,∞) and

h(u, p; r) =



p log

[
 –

ur

( + r)

]
– log

[
(E(r) – ( – r)K(r))

π( + r)

]
. (.)

Then one has
() h(u, p; r) >  for all r ∈ (, ) if and only if u ≤ /p;
() h(u, p; r) <  for all r ∈ (, ) if and only if u ≥  – (

√
/π )/p.

Proof It follows from (.) that

h
(
u, p; +)

= , (.)

h
(
u, p; –)

=
p


log( – u) + log

(
π



)
, (.)

∂h(u, p; r)
∂r

=
( – r)[K(r) – E(r)]

r( + r)[E(r) – ( – r)K(r)]
–

pur( – r)
( + r)[( + r) – ur]

=
( – r)[(K(r) – E(r)) + p(E(r) – ( – r)K(r))]

( + r)[( + r) – ur][E(r) – ( – r)K(r)]
[
h(p; r) – u

]
, (.)

where

h(p; r) =
( + r)[K(r) – E(r)]

r[(K(r) – E(r)) + p(E(r) – ( – r)K(r))]

=


g(r) + (p – )f(r)
, (.)

where f(r) and g(r) are defined by (.) and Lemma ., respectively.
From Lemma .() and Lemma . together with (.) we clearly see that the function

r → h(p; r) is strictly increasing on (, ) and

h
(
p; +)

=


p
, (.)

h
(
p; –)

= . (.)

From Lemma . we know that  – (
√

/π )/p > /(p). Therefore, we only need to divide
the proof into three cases as follows.

Case  u ≤ /(p). Then Lemma .(), (.), (.) and the monotonicity of the func-
tion r → h(p; r) on the interval (, ) lead to the conclusion that the function r → h(u, p; r)
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is strictly increasing on (, ). Therefore, h(u, p; r) >  for all r ∈ (, ) follows from (.)
and the monotonicity of the function r → h(u, p; r).

Case  u ≥  – (
√

/π )/p. Then from Lemma ., Lemma .(), (.), (.), (.),
(.) and the monotonicity of the function r → h(p; r) on the interval (, ) we clearly
see that there exists r ∈ (, ) such that the function r → h(u, p; r) is strictly decreasing on
(, r) and strictly increasing on (r, ), and

h
(
u, p; –) ≤ . (.)

Therefore, h(u, p; r) <  for all r ∈ (, ) follows from (.) and (.) together with the
piecewise monotonicity of the function r → h(u, p; r) on the interval (, ).

Case  /(p) < u <  – (
√

/π )/p. Then (.) leads to

h
(
u, p; –)

> . (.)

It follows from Lemma .(), (.), (.), (.) and the monotonicity of the function
r → h(p; r) on the interval (, ) that there exists r∗ ∈ (, ) such that the function r →
h(u, p; r) is strictly decreasing on (, r∗) and strictly increasing on (r∗, ). Therefore, there
exists λ ∈ (, ) such that h(u, p; r) <  for r ∈ (,λ) and h(u, p; r) >  for r ∈ (λ, ). �

3 Main result
Theorem . Let λ,μ ∈ [, /]. Then the double inequality

Gp[λa + ( – λ)b,λb + ( – λ)a
]
A–p(a, b)

< E(a, b) < Gp[μa + ( – μ)b,μb + ( – μ)a
]
A–p(a, b)

holds for any p ∈ [,∞) and all a, b >  with a �= b if and only if λ ≤ /–
√

 – (
√

/π )/p/
and μ ≥ / – √p/(p).

Proof Let t ∈ [, /], since Gp[ta+(– t)b, tb+(– t)a]A–p(a, b) and E(a, b) are symmetric
and homogeneous of degree one, without loss of generality, we assume that a > b > . Let
r ∈ (, ) and b/a = ( – r)/( + r). Then (.) leads to

E(a, b) =
( + r)

π( + r)
A(a, b)E

(

√

r
 + r

)
=


π A(a, b)

[E(r) – ( – r)K(r)]

 + r ,

log
[
Gp(ta + ( – t)b, tb + ( – t)a

)
A–p(a, b)

]
– log E(a, b)

= log

[
Gp(ta + ( – t)b, tb + ( – t)a)A–p(a, b)

A(a, b)

]
– log

[
E(a, b)
A(a, b)

]

=



p log

[
 –

( – t)r

( + r)

]
– log

[
(E(r) – ( – r)K(r))

π( + r)

]
.

(.)

Therefore, Theorem . follows easily from Lemma . and (.). �

Let p = , , then Theorem . leads to Corollary . immediately.
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Corollary . Let λ,μ,λ,μ ∈ [, /]. Then the double inequalities

H
[
λa + ( – λ)b,λb + ( – λ)a

]
< E(a, b) < H

[
μa + ( – μ)b,μb + ( – μ)a

]
,

G
[
λa + ( – λ)b,λb + ( – λ)a

]
< E(a, b) < G

[
μa + ( – μ)b,μb + ( – μ)a

]

hold for all a, b >  with a �= b if and only if λ ≤ / –
√

 – /π/ = . . . . , μ ≥
/ –

√
/ = . . . . , λ ≤ / –

√
 – /π/ = . . . . and μ ≥ /.

Let p ∈ [,∞), r ∈ (, ), a = r, b =  – r = r′, λ = / –
√

 – (
√

/π )/p/ and μ =
/ – √p/(p). Then (.) and Theorem . lead to Corollary . immediately.

Corollary . The double inequality

√
π


(
 + r′)(–p)/

[
r′ +

(

π

)/p

r
]p/

< E(r) <
√

π


(
 + r′)(–p)/

[(
 + r′) –

r

p

]p/

holds for all r ∈ (, ) and p ∈ [,∞).

4 Results and discussion
In this paper, we provide the sharp bounds for the special quasi-arithmetic mean E(a, b)
in terms of the arithmetic mean A(a, b) and geometric mean G(a, b) with two parameters.
As consequences, we present the best possible one-parameter harmonic and geometric
means bounds for E(a, b) and find new bounds for the complete elliptic integral of the
second kind.

5 Conclusion
In the article, we derive a new bivariate mean E(a, b) from the quasi-arithmetic mean and
provide its sharp upper and lower bounds in terms of the concave combination of arith-
metic and geometric means.
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