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Abstract
In this paper, we prove that an isotropic complex symmetric α-stable random
measure (0 < α < 2) can be approximated by a complex process constructed by
integrals based on the Poisson process with random intensity.
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1 Introduction
Let α ∈ (, ), X and X be real random variables defined on the same probability space.
A complex random variable X = X + iX is called symmetric α-stable (in short SαS) if the
random vector (X, X) is SαS in R

, where i is an imaginary unit. Furthermore, a complex
SαS random variable X = X + iX is isotropic if and only if there exist two independent
and identically distributed (in short for i.i.d.) zero mean normal random variables G, G

and an α/-stable random variable A, independent of (G, G), totally skewed to the right,
such that (X, X) is sub-Gaussian with underlying vector (G, G), that is to say,

(X, X) d= (
√

AG,
√

AG),

where d= denotes the finite-dimensional distribution equality. Let G be a complex Gaussian
random variable satisfying G = G + iG, where G, G are i.i.d. zero mean normal random
variables. Thus, every complex isotropic SαS random variable X with α <  can be denoted
by X =

√
AG.

Much of present works mainly focus on real-valued random variables; however, in
Samorodnitsky and Taqqu [], Cohen [, ], Benassi et al. [], they encounter an important
class of real-valued stable processes, which are defined in terms of integral with respect to
complex SαS random measure. These show that complex random measure is very impor-
tant in theory. Next, we introduce a series of processes approximating to different random
measures based on the primary works of Stroock []. Finally, we construct a process to ap-
proximate to complex-valued random measure.

Let {N(t), t ∈ [,∞)} be a standard Poisson process. For all n ≥ , define a process Un =
{Un(t), t ∈ [,∞)} by

Un(t) =
√

n
∫ t


(–)N(ns) ds, t ≥ .
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Stroock [] proved that when n → ∞, the law of Un converges weakly in the Banach space
C([, T]) of continuous functions on [, T], to a Wiener measure. Bardina and Jolis []
proved that

Un(s, t) = n
∫ t



∫ s



√
xy(–)N(

√
nx,

√
ny) dx dy

converges in law in the space of continuous functions on C([, ]), the space of con-
tinuous functions on [, ] × [, ], as n → ∞, to the ordinary Brownian sheet, where
{N(x, y), (x, y) ∈ R


+} is a standard Poisson process in the plane. Let {Nα(t), t ∈ [,∞)} be

a Poisson process with random intensity. Under this condition, when n → ∞, Dai and Li
[] proved that the process Xn = {Xn(t)} defined by

Xn(t) =
√

n
∫ t


(–)Nα (ns) ds,  ≤ t ≤ ,

converges weakly in C([, ]) to a sub-Gaussian process Xα = {√AW (t), t ∈ [, ]}, where
{W (t), t ∈ [, ]} is a standard Brownian motion and A is a random variable with the same
law as A. They also proved under certain conditions that

Xn(s, t) = n
∫ t



∫ s



√
xy(–)Nα (

√
nx,

√
ny) dx dy,  ≤ t ≤ ,

converges weakly in C([, ]) to a two-parameter standard sub-Gaussian process, where
{Nα(x, y); x, y ∈ [,∞)} is a two-parameter Poisson process with random intensity.

On the other hand, on approximation to complex Brownian motion, Bardina [] con-
sidered the process Uθ

n = {Uθ
n (t), t ∈ [,∞)} defined by

Uθ
n (t) =

√
n

∫ t


eiθN(ns) ds, t ≥ ,

where i is an imaginary unit. Bardina proved that if θ ∈ (,π ) ∪ (π , π ), when n → ∞,
Pθ

n the image law of Uθ
n in the Banach space C([, T],C) converges weakly to the law of a

complex Brownian motion in C([, T],C). When θ = π , Pθ
n , converges weakly to the law of√

W (t), where {W (t), t ∈ [, T]} is a standard Brownian motion.
Inspired by the above works, in this paper, we will prove similar results about an isotropic

complex SαS random variable. Define

Xθ
n (t) =

√
n

∫ t


eiθNα (nr) dr,  ≤ t ≤ , ()

where {Nα(t), t ∈ [,∞)} is a Poisson process with random intensity 
A . In the trivial case,

when θ = , the process Xθ
n (t) is deterministic, and when n tends to infinity, Xθ

n (t) goes to
infinity. When θ = π , the process Xθ

n (t) is real and () becomes

Xθ
n (t) =

√
n

∫ t


(–)Nα (nr) dr,  ≤ t ≤ , ()

this case was studied by Dai and Li [].
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We will prove under certain conditions, when θ ∈ (,π ) ∪ (π , π ), that the law of
Xθ

n converges weakly in C([, ],C) to the law of isotropic complex SαS random mea-
sure.

The rest of the paper is organized as follows. First we give preliminaries and the main
result, then we present some lemmas, including proving the tightness and identification
of the limit law, to prove the main result.

2 Preliminaries and the main result
Now we give some preliminary definitions and the main result.

Definition . ([]) Let (�,F, P) be a probability space. Suppose that A is a nonnega-
tive random variable on the probability space (�,F, P). Let (�,F , P) = (� × �,F ×
F, P × P) be the underlying probability space of this paper. Let N = {N(t), t ≥ } be a
counting process on (�,F , P) satisfying the following assumptions:

(a) When A >  is given, N is a Poisson process on (�,F, P) with intensity 
A ;

(b) When A = , N =  a.s.
Then we call N as the Poisson process with random intensity 

A .

Throughout this paper, we define the Poisson process {Nα(t), t ≥ } with random inten-
sity 

A , we assume that A is a strictly α
 -stable random variable with respect to (�,F, P),

totally skewed to the right, with Laplace transform given by

E exp{–λA} = exp
{

–λ
α

}

.

Considering the sequences Xθ
n defined by (), we have the following theorem.

Theorem . Let the process {Xθ
n (t),  ≤ t ≤ }, considering Pθ

n the image law of Xθ
n ,

in the Banach space C([, ],C). Then, if θ ∈ (,π ) ∪ (π , π ), when n tends to infinity,
Pθ

n converges weakly to the law in C([, ],C) of isotropic complex SαS random measure
{X(t) =

√
AG(t)},  ≤ t ≤ , where {G(t)} is complex Gaussian measure, A is a random

variable with the same law as A.

The main idea of the proof of the theorem is that, when Nα = {Nα(t), t ∈ [,∞)} is a
Poisson process with random intensity A, the process Xθ

n /
√

A converges weakly to complex
Brownian motion independent of A. Then, according to the idea of [], we need to check
that if θ ∈ (,π ) ∪ (π , π ), the family Pθ

n is tight and the law of all possible weak limits of
Pθ

n is the law of a complex Brownian motion.
We split the proof of Theorem . into two parts. We first prove the tightness of the

process Xθ
n and then identify the limit law of the process Xθ

n .
In this paper, K denotes a positive constant independent of n, it may change value from

one expression to another.

Proof of tightness We give an auxiliary process Y θ
n = {Y θ

n (t), t ∈ [, T]}, T > , denoted by

Y θ
n (t) = {A>}

√
n
A

∫ t


eiθNα (nr) dr.
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For any n ≥ , we have

P
(
Xθ

n (t) =
√

AY θ
n (t), t ∈ [, ]

)
= . ()

Since P(A = ) = .
Denote

Iθ
,n(t) =

[
{A>}

√
n
A

[∫ t


cos

(
θNα(nr)

)
dr

]]
= Re

[
Y θ

n (t)
]
,

and

Iθ
,n(t) =

[
{A>}

√
n
A

[∫ t


sin

(
θNα(nr)

)
dr

]]
= Im

[
Y θ

n (t)
]
.

Lemma . There exists a constant K such that, when θ ∈ (,π ) ∪ (π , π ), for any s, t ∈
[, ] and n > ,

E
[
Iθ

,n(t) – Iθ
,n(s)

] + E
[
Iθ

,n(t) – Iθ
,n(s)

] ≤ K(t – s).

Proof Without loss of generality, we assume s < t. Then

E
[
Iθ

,n(t) – Iθ
,n(s)

] + E
[
Iθ

,n(t) – Iθ
,n(s)

]

= E

[
{A>}

n

A

∫
[s,t]

⊗
j=

cos
(
θNα(nrj)

)
dr dr dr dr

+ {A>}
n

A

∫
[s,t]

⊗
j=

sin
(
θNα(nrj)

)
dr dr dr dr

]

=: B + B,

where

B =


E

[
{A>}

n

A

∫
[s,t]

⊗
j=

cos
(
θ
(
Nα(nrj) – Nα(nrj–)

)) ⊗
l=

drl

]
,

B =


E

[
{A>}

n

A

∫
[s,t]

⊗
j=

cos
(
θ
(
Nα(nrj) + Nα(nrj–)

)) ⊗
l=

drl

]
.

Using the independence increments of the Poisson process, we obtain

B =


E

[
{A>}

n

A

∫
[s,t]

⊗
j=

E
[
cos

(
θ
(
Nα(nrj) – Nα(nrj–)

))|A] ⊗
l=

drl

]

≤ E
[

{A>}
n

A

∫ t

s

∫ r

s
E

[
cos

(
θ
(
Nα(nr) – Nα(nr)

))|A]
dr dr

×
∫ t

s

∫ r

s
E

[
cos

(
θ
(
Nα(nr) – Nα(nr)

))|A]
dr dr

]
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≤ E
[

{A>}
n

A

∫ t

s

∫ r

s

∥∥E[
cos

(
θ
(
Nα(nr) – Nα(nr)

))|A]∥∥dr dr

×
∫ t

s

∫ r

s

∥∥E[
cos

(
θ
(
Nα(nr) – Nα(nr)

))|A]∥∥dr dr

]
,

where ‖ · ‖ denotes the modulus of the complex number. It is easy to obtain

∥∥E[
cos

(
θ
(
Nα(nr) – Nα(nr)

))|A]∥∥ ≤ e– n
A (r–r)(–cos θ )

and

∥∥E[
cos

(
θ
(
Nα(nr) – Nα(nr)

))|A]∥∥ ≤ e– n
A (r–r)(–cos θ ).

Then

B ≤ E

[
{A>}

n

A

∫ t

s

∫ r

s

∫ t

s

∫ r

s
e– n

A (r–r)(–cos θ )e– n
A (r–r)(–cos θ )

⊗
l

drl

]

≤ E
[

{A>}
n

A
A(t – s)

( – cos θ )n

]

=


( – cos θ ) (t – s).

Next we calculate B. Considering the fact that

[
cos(x + x) cos(x + x)

]

=
[
cos

(
(x – x) + (x – x) + (x + x – x)

)
cos(x + x)

]

=
[
cos

(
(x – x) + (x – x)

)][
cos(x + x – x) cos(x + x)

]

–
[
sin

(
(x – x) + (x – x)

)][
sin(x + x – x) cos(x + x)

]

≤ ∣∣[cos
(
(x – x) + (x – x)

)]∣∣ +
∣∣[sin

(
(x – x) + (x – x)

)]∣∣
≤ [∣∣[cos(x – x)

]∣∣ +
∣∣[sin(x – x)

]∣∣] × [∣∣[cos(x – x)
]∣∣ +

∣∣[sin(x – x)
]∣∣].

By the independence increments of the Poisson process, we have

B =


E

[
{A>}

n

A

∫
[s,t]

⊗
j=

cos
(
θ
(
Nα(nrj) + Nα(nrj–)

)) ⊗
l=

drl

]

≤ 

E

[
{A>}

n

A

∫
[s,t]

[∣∣E[
cos

(
θ
(
Nα(nr) – Nα(nr)

))|A]∣∣

+
∣∣E[

sin
(
θ
(
Nα(nr) – Nα(nr)

))|A]∣∣][∣∣E[
cos

(
θ
(
Nα(nr) – Nα(nr)

))|A]∣∣

+
∣∣E[

sin
(
θ
(
Nα(nr) – Nα(nr)

))|A]∣∣] ⊗
j=

drj

]
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≤ 

E

[
{A>}

n

A

∫
[s,t]

∥∥Eeiθ (Nα (nr)–Nα (nr))|A∥∥∥∥Eeiθ (Nα (nr)–Nα (nr))|A∥∥ ⊗
j=

drj

]

≤ 
( – cos θ ) (t – s).

Then we obtain that

E
[
Iθ

,n(t) – Iθ
,n(s)

] + E
[
Iθ

,n(t) – Iθ
,n(s)

] ≤ 
( – cos θ ) (t – s) = K(t – s).

This completes the proof. �

Lemma . The set of laws of {Xθ
n}n≥ in C([, ],C) is tight.

Proof To prove the tightness, we have to prove that the law corresponding to the real part
and the imaginary part of the process Xθ

n is tight.
In fact, it is almost sure that Y θ

n () =  for all n ≥ . Lemma . and Theorem . of []
show that the set of the law of the real part and the imaginary part of the process {Y θ

n }n≥

is tight in C([, ],R) for a fixed constant A. Hence, for any ε > , there exists a compact
set Sε ⊂ C([, ],R) such that

P
(
Iθ

,n ∈ Sε , n ≥ 
)

>  – ε/. ()

Because A is a finite positive random variable, then there exists a bounded set Nε such
that

P(A ∈ Nε) >  – ε/. ()

Observe that the set 	ε := {af ; a ∈ Nε , f ∈ Sε} is compact in C([, ],R). Then, combining
() and (), for any n ≥ , we have

P
(
AIθ

,n ∈ 	ε

) ≥ P
(
A ∈ Nε , Iθ

,n ∈ Sε

) ≥  – ε. ()

Then, combining () and (), we obtain that, for any ε > , the real part of the process Xθ
n

has

P
(
Re

(
Xθ

n
) ∈ 	ε

) ≥  – ε.

Using a similar idea, we obtain that, for any ε > , the imaginary part of the process Xθ
n has

P
(
Im

(
Xθ

n
) ∈ 	′

ε

) ≥  – ε.

This completes the proof. �

Identification of the limit law Let {Pθ
nk

} be a subsequence of {Pθ
n} weakly convergent to

some probability Pθ . If θ ∈ (,π )∪ (π , π ), when A >  is given, then the canonical process
Z = {Zt(Xn) =: Xn(t)} is a complex Brownian motion under the probability Pθ , that is, the
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real part and the imaginary part of the process are two independent Brownian motions
with respect to the probability space (�,F, P).

Using Paul Lévy’s theorem, it suffices to prove that under Pθ , when A >  is given, the real
part and the imaginary part of the canonical process are both martingales with respect to
the natural filtration {Ft}, with quadratic variations 〈Re[Z], Re[Z]〉t = At, 〈Im[Z], Im[Z]〉t =
At, and covariation 〈Re[Z], Im[Z]〉t =  with respect to the probability space (�,F, P).

Next, we first prove the martingale property and then prove the quadratic variations and
covariation; these proofs are similar to the proof in []. Here, we give a sketch of the proof
with some lemmas.

Let θ ∈ (,π ) ∪ (π , π ), in order to prove that under Pθ the real and imaginary parts of
the canonical process Z are martingales with respect to its natural filtration {Ft}, we have
to prove that for any s ≤ s ≤ · · · ≤ sk ≤ s, k ≥  and for any bounded continuous function
ϕ : Ck →R such that

EPθ

[
ϕ(Zs , . . . , Zsk )

(
Re[Zt] – Re[Zs]

)]
= , ()

and

EPθ

[
ϕ(Zs , . . . , Zsk )

(
Im[Zt] – Im[Zs]

)]
= . ()

We first consider ().
Since {Pθ

n} weakly converges to Pθ , combining Lemma ., we have

lim
n→∞EPθ

n

[
ϕ
(
Xθ

n (s), . . . , Xθ
n (sk)

)(
Re

[
Xθ

n (t)
]

– Re
[
Xθ

n (s)
])]

= EPθ

[
ϕ
(
Xθ

n (s), . . . , Xθ
n (sk)

)(
Re

[
Xθ

n (t)
]

– Re
[
Xθ

n (s)
])]

.

So it suffices to prove that

E
[
ϕ
(
Xθ

n (s), . . . , Xθ
n (sk)

)(
Iθ

,n(t) – Iθ
,n(s)

)]

converges to zero when n → ∞. Now, we just need to prove that

lim
n→∞

∥∥E[
ϕ
(
Xθ

n (s), . . . , Xθ
n (sk)

)(
Iθ

,n(t) – Iθ
,n(s)

)]∥∥ = .

In fact

∥∥E[
ϕ
(
Xθ

n (s), . . . , Xθ
n (sk)

)(
Xθ

n (t) – Xθ
n (s)

)]∥∥

=
∥∥∥∥E

[
ϕ
(
Xθ

n (s), . . . , Xθ
n (sk)

)
eiθNα (ns)]

E

[√
n

∫ t

s
eiθ (Nα (nr)–Nα (ns)) dr

]∥∥∥∥

≤ K
∥∥∥∥E

[√
n

∫ t

s
E

[
eiθ (Nα (nr)–Nα (ns))]dr

]∥∥∥∥

≤ K
√

n
∫ t

s

∥∥E[
eiθ (Nα (nr)–Nα (ns))]∥∥dr

= K
√

n
∫ t

s
e– n

A (r–s)(–cos θ ) dr
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= K
√

A
n

 – e– n
A (t–s)(–cos θ )

 – cos θ

→ , n → ∞.

Using the same idea of proof (), we can obtain the proof of ().

We give the following auxiliary lemma.

Lemma . Let θ ∈ (,π ) ∪ (π , π ). Consider the natural filtration {Fn,θ
t } of the process

Y θ
n . Then, for any s < t and for any real Fn,θ

s -measurable and bounded random variable H ,
if A >  is given, we have

(a) limn→∞ E[n
∫ t

s
∫ r

s eiθ (Nα (nr)–Nα (nr)) dr dr] = A(t – s)( + i sin θ
–cos θ

);
(b) limn→∞ ‖E[n

∫ t
s

∫ r
s [eiθ (Nα (nr)+Nα (nr))H] dr dr]‖ = .

Proof We first prove (a). In fact

E

[
n

∫ t

s

∫ r

s
eiθ (Nα (nr)–Nα (nr)) dr dr

]

= n
∫ t

s

∫ r

s
e– A

n (r–r)(–eiθ ) dr dr

= A(t – s)
(

 + i
sin θ

 – cos θ

)
+ o

(
A
n

)
,

then

lim
n→∞E

[
n

∫ t

s

∫ r

s
eiθ (Nα (nr)–Nα (nr)) dr dr

]
= A(t – s)

(
 + i

sin θ

 – cos θ

)
.

Now we prove (b). Using the fact that the Poisson process has independent increments,
we can obtain

∥∥∥∥E
[

n
∫ t

s

∫ r

s

[
eiθ (Nα (nr)+Nα (nr))H

]
dr dr

]∥∥∥∥

=
∥∥∥∥n

∫ t

s

∫ r

s
E
[
eiθ (Nα (nr)–Nα (nr))+iθ

(
Nα (nr)–Nα (ns)

)
+iθNα (ns)H

]
dr dr

∥∥∥∥

=
∥∥∥∥n

∫ t

s

∫ r

s

[
Eeiθ (Nα (nr)–Nα (nr))][Eeiθ (Nα (nr)–Nα (ns))][EeiθNα (ns)H

]
dr dr

∥∥∥∥

≤ Kn
∫ t

s

∫ r

s

∥∥e– n
A (r–r)(–eiθ )∥∥∥∥e– n

A (r–s)(–eiθ )∥∥dr dr

= Kn
∫ t

s

∫ r

s
e– n

A (r–r)(–cos θ )e– n
A (r–s)(–cos(θ )) dr dr

=
KAe

ns
A (–cos θ )

cos θ – cos(θ )

∫ t

s
e– n

A (–cos θ )r dr

–
KAe

ns
A (–cos(θ ))

cos θ – cos(θ )

∫ t

s
e– n

A (–cos(θ ))r dr
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=
KA( – cos θ )

n(cos θ – cos(θ ))
–

KA( – e– n(t–s)
A (–cos(θ )))

n(cos θ – cos(θ ))( – cos(θ ))

→ , n → ∞.

This completes the proof. �

Lemma . Consider {Pθ
n} the laws on C([, T],C) of the processes Xθ

n , and assume that
{Pθ

nk
} is a subsequence weakly convergent to Pθ . Let Z be the canonical process, and let

{Ft} be its natural filtration. Then, if A is given, under Pθ , when θ ∈ (,π ) ∪ (π , π ), we
have the quadratic variations 〈Re[Z], Re[Z]〉t = At, 〈Im[Z], Im[Z]〉t = At, and covariation
〈Re[Z], Im[Z]〉t =  with respect to the probability space (�,F, P).

Proof Let θ ∈ (,π ) ∪ (π , π ), A is given. We will prove that 〈Re[Z], Re[Z]〉t = At,
〈Im[Z], Im[Z]〉t = At, 〈Re[Z], Im[Z]〉t = . It is enough to prove that for any s ≤ s ≤ · · · ≤
sk ≤ s, k ≥  and for any bounded continuous function ϕ : Ck →R, such that

lim
n→∞E

[
ϕ
(
Xθ

n (s), . . . , Xθ
n (sk)

)((
Iθ

,n(t) – Iθ
,n(s)

) – A(t – s)
)]

= , ()

lim
n→∞E

[
ϕ
(
Xθ

n (s), . . . , Xθ
n (sk)

)((
Iθ

,n(t) – Iθ
,n(s)

) – A(t – s)
)]

= , ()

lim
n→∞E

[
ϕ
(
Xθ

n (s), . . . , Xθ
n (sk)

)((
Iθ

,n(t) – Iθ
,n(s)

)(
Iθ

,n(t) – Iθ
,n(s)

))]
= . ()

In fact

E

[
ϕ
(
Xθ

n (s), . . . , Xθ
n (sk)

)(√
n

∫ t

s
cos

(
θNα(nr)

)
dr

)]

= E
[
ϕ
(
Xθ

n (s), . . . , Xθ
n (sk)

)(
n

∫ t

s

∫ r

s
cos

(
θNα(nr)

)
cos

(
θNα(nr)

)
dr dr

)]

= E

[
ϕ
(
Xθ

n (s), . . . , Xθ
n (sk)

)(
n

∫ t

s

∫ r

s
cos

(
θ
(
Nα(nr) – Nα(nr)

))

+ cos
(
θ
(
Nα(nr) + Nα(nr)

))
dr dr

)]

= n
∫ t

s

∫ r

s
cos

(
θ
(
Nα(nr) – Nα(nr)

))
dr drE

[
ϕ
(
Xθ

n (s), . . . , Xθ
n (sk)

)]

+ E

[∫ t

s

∫ r

s
ϕ
(
Xθ

n (s), . . . , Xθ
n (sk)

)
cos

(
θ
(
Nα(nr) + Nα(nr)

))
dr dr

]

= Re

{
n

∫ t

s

∫ r

s
eθ (Nα (nr)–Nα (nr)) dr dr

}
E
[
ϕ
(
Xθ

n (s), . . . , Xθ
n (sk)

)]

+ Re

{
E

[
n

∫ t

s

∫ r

s
ϕ
(
Xθ

n (s), . . . , Xθ
n (sk)

)
eθ (Nα (nr)+Nα (nr)) dr dr

]}
.

Combining Lemma . and that Pθ
n converges weakly to Pθ , we can obtain that when n →

∞, above two integrals converge to A(t – s)E[ϕ(Zs , . . . , Zsk )]. This completes the proof
of ().
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Similarly, when n tends to infinity, we obtain the expression

E
[
ϕ
(
Xθ

n (s), . . . , Xθ
n (sk)

)(
Iθ

,n(t) – Iθ
,n(s)

)]

converges to A(t – s)E[ϕ(Zs , . . . , Zsk )]. This completes the proof of ().
Now, we prove ().

E
[
ϕ
(
Xθ

n (s), . . . , Xθ
n (sk)

)((
Iθ

,n(t) – Iθ
,n(s)

)(
Iθ

,n(t) – Iθ
,n(s)

))]

= E

[
ϕ
(
Xθ

n (s), . . . , Xθ
n (sk)

)(
n

∫ t

s
cos

(
θ
(
Nα(nr)

))
dr

∫ t

s
sin

(
θ
(
Nα(nr)

))
dr

)]

= E

[
n

∫ t

s

∫ r

s

(
ϕ
(
Xθ

n (s), . . . , Xθ
n (sk)

))
cos

(
θ
(
Nα(nr)

))
sin

(
θ
(
Nα(nr)

))
dr dr

]

+ E

[
n

∫ t

s

∫ r

s

(
ϕ
(
Xθ

n (s), . . . , Xθ
n (sk)

))
sin

(
θ
(
Nα(nr)

))
cos

(
θ
(
Nα(nr)

))
dr dr

]

= E

[
n

∫ t

s

∫ r

s

(
ϕ
(
Xθ

n (s), . . . , Xθ
n (sk)

))
sin

(
θ
(
Nα(nr) + Nα(nr)

))
dr dr

]

= Im

[
E

[
n

∫ t

s

∫ r

s

(
ϕ
(
Xθ

n (s), . . . , Xθ
n (sk)

))
eθ (Nα (nr)+Nα (nr)) dr dr

]]
.

From () of Lemma ., when n tends to infinity, we have

E
[
ϕ
(
Xθ

n (s), . . . , Xθ
n (sk)

)((
Iθ

,n(t) – Iθ
,n(s)

)(
Iθ

,n(t) – Iθ
,n(s)

))] → .

This completes the lemma. �

Lemma . If θ ∈ (,π )∪ (π , π ), A >  is given. For any T > , when n → ∞, the real part
and the imaginary part of Xθ

n converge weakly in C([, T],R), with respect to (�,F, P), to
independent zero mean and variance At Brownian motions B(t) and B(t), respectively.

Proof When A is given, Nα(t) is the Poisson process with non-random intensity 
A with

respect to (�,F, P). Thus, for any T > , by Lemma ., the real part and the imaginary
part of Xθ

n converge weakly in C([, T],R), with respect to (�,F, P), to two independent
zero mean and variance At Brownian motions B(t) and B(t), respectively. �

Lemma . If θ ∈ (,π ) ∪ (π , π ). When n → ∞, the real part and the imaginary part
of Xθ

n converge in law to sub-Gaussian processes {√AG(t)}, {√AG(t)}, t ∈ [, ], respec-
tively, where {G(t)}, {G(t)}, t ∈ [, ] are independent copies of a standard Brownian mo-
tion G(t), A is a random variable with the same law as A.

Proof Combining Lemma ., the proof is similar to the proof of Theorem  of []. �

Proof of Theorem . Combining Lemma ., Lemma . and Corollary .. of [], we
can obtain the conclusion. �



Wang et al. Journal of Inequalities and Applications  (2017) 2017:233 Page 11 of 11

3 Conclusions
We prove that an isotropic complex symmetric α-stable random measure ( < α < ) can
be approximated by a complex process constructed by integrals based on the Poisson pro-
cess with random intensity, which gives a new method to construct complex-valued ran-
dom measure.
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