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Abstract
Most mathematical models arising in stationary filtration processes as well as in the
theory of soft shells can be described by single-valued or generalized multivalued
pseudomonotone mixed variational inequalities with proper convex
nondifferentiable functionals. Therefore, for finding the minimum norm solution of
such inequalities, the current paper attempts to introduce a modified two-layer
iteration via a boundary point approach and to prove its strong convergence. The
results here improve and extend the corresponding recent results announced by
Badriev, Zadvornov and Saddeek (Differ. Equ. 37:934-942, 2001).
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1 Introduction
Let V be a real Banach space, V ∗ be its dual space, ‖ · ‖V∗ be the dual norm of the given
norm ‖ · ‖V , and 〈·, ·〉 be the duality pairing between V ∗ and V . Let M be a nonempty
closed convex subset of V . Let C(V ∗) be the family of nonempty compact subsets of V ∗.
Let H be a real Hilbert space with the inner product (·, ·) and the norm ‖ · ‖H , respectively.

We denote by → and ⇀ strong and weak convergence, respectively. Let A : V → V ∗

be a nonlinear single-valued mapping.

Definition . (see [–]) For all u,η ∈ V , the mapping A : V → V ∗ is said to be as
follows:

(i) pseudomonotone, if it is bounded and for every sequence {un} ⊂ V such that

un ⇀ u ∈ V and lim sup
n→∞

〈Aun, un – u〉 ≤ 

imply

lim inf
n→∞ 〈Aun, un – η〉 ≥ 〈Aη, u – η〉;
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(ii) coercive, if there exists a function ρ : R+ →R
+ with limξ→∞ ρ(ξ ) = +∞ such that

〈Au, u〉 ≥ ρ
(‖u‖V

)‖u‖V ;

(iii) potential, if

∫ 



(〈
A

(
t(u + η)

)
, u + η

〉
–

〈
A(tu), u

〉)
dt =

∫ 



〈
A(u + tη),η

〉
dt;

(iv) bounded Lipschitz continuous, if

‖Au – Aη‖V∗ ≤ μ(R)�
(‖u – η‖V

)
,

where R = max{‖u‖V ,‖η‖V }, μ is a nondecreasing function on [, +∞), and � is
the gauge function (i.e., it is a strictly increasing continuous function on [, +∞)
such that �() =  and limξ→∞ �(ξ ) = +∞);

(v) uniformly monotone, if there exists a gauge � such that

〈Au – Aη, u – η〉 ≥ �
(‖u – η‖V

)‖u – η‖V ;

(vi) inverse strongly monotone, if there exists a constant γ >  such that

〈Au – Aη, u – η〉 ≥ γ ‖Au – Aη‖
V .

If �(ξ ) = ξ and μ(R) = γ > , in (iv), the mapping A is called γ -Lipschitzian mapping, and
if there exists α >  such that �(ξ ) = αξ , in (v), the mapping A is called strongly mono-
tone mapping. It is obvious that any inverse strongly monotone mapping is 

γ
-Lipschitzian

mapping.
The single-valued pseudomonotone mixed variational inequality problem is formulated

as finding a point u ∈ M such that

〈Au,η – u〉 + F(η) – F(u) ≥ 〈f ,η – u〉 ∀η ∈ M, (.)

where A : V → V ∗ is a single-valued pseudomonotone mapping, F : V →R∪ {+∞} is a
proper convex and lower semicontinuous (but, in general, nondifferentiable) functional,
and f ∈ V ∗ is a given element.

Problem (.) is equivalent to finding u ∈ V such that

 ∈ Au – f + ∂F(u), (.)

where ∂F(u) is the subdifferential of F, i.e.,

∂F(u) =
{

u∗ ∈ V ∗ : F(η) – F(u) ≥ 〈
u∗,η – u

〉 ∀η ∈ V
}

.

The interior of the domain of F is denoted by int(D(F)).
Such problems appear in many fields of physics (e.g., in hydrodynamics, elasticity or

plasticity), more specifically, when describing or analyzing the steady state filtration (see,
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for example, [, –] and the references cited therein) and the problem of finding the equi-
librium of soft shells (see, for example, [, , –] and the references cited therein).

The existence of at least one solution to problem (.) can be guaranteed by impos-
ing pseudomonotonicity and coercivity conditions on the mapping A (see, for example,
[, ]).

If f =  and F(u) = IM(u) ∀u ∈ M, where IM is the indicator functional of M defined by
u ∈ M such that IM(u) =

{ , u ∈ M,
+∞, o.w, then problem (.) is equivalent to finding u ∈ M such

that

〈Au,η – u〉 ≥  ∀η ∈ M, (.)

which is known as the classical variational inequality problem firstly introduced and stud-
ied by Stampacchia []. Problem (.) is equivalent to the following nonlinear operator
equation: find u ∈ M such that

Au = f . (.)

A mapping J : V → V ∗ is called a duality mapping with gauge function � if, for every
u ∈ V , 〈Ju, u〉 = �(‖u‖V )‖u‖V and ‖Ju‖V∗ = �(‖u‖V ). If V = H , then the duality mapping
with the gauge function �(ξ ) = ξ can be identified with the identity mapping of H into
itself.

It is well known (see, for example, [, ]) that J() = , J is odd, single-valued, bijec-
tive and is uniformly continuous on bounded sets if V is a reflexive Banach space and V ∗

is uniformly convex; moreover, J– is also single-valued, bijective, and JJ– = IV∗ , J–J = IV .
Therefore, we always assume that the dual space of a reflexive Banach space is uniformly

convex.

Remark . (see, for example, []) The single-valued duality mapping J is bounded Lip-
schitz continuous and uniformly monotone.

In order to find a solution of problem (.), Badriev et al. [] suggested the following
two-layer iteration method: for an arbitrary u ∈ M, define un+ ∈ M as follows:

〈
J(un+ – un),η – un+

〉
+ τ

(
F(η) – F(un+)

) ≥ τ 〈f – Aun,η – un+〉 ∀η ∈ M, (.)

where τ >  is an iteration parameter and n ≥ .
In this way the original variational inequality problem (.) is thus reduced to another

variational inequality problem involving the duality mapping J instead of the original pseu-
domonotone mapping A. Such a problem can then be solved by known methods (see, for
example, [, ]).

If V = H , then the iteration generated by (.) can be written in the following form:

(un+ – un,η – un+) + τ
(
F(η) – F(un+)

) ≥ τ (f – Aun,η – un+) ∀η ∈ M, (.)

for an arbitrary u ∈ M and τ > .
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In [], Saddeek and Ahmed considered the following two-layer iteration method for
solving the nonlinear operator equation (.) in a Banach space V :

J(un+ – un) = τ (f – Aun), n ≥ , (.)

where u is an arbitrary point in M and τ > .
In the case when V = H , iteration (.) can be written as follows:

un+ = un – τ (Aun – f ), n ≥ , (.)

for τ >  and u is an arbitrary point in M.
Saddeek and Ahmed [] proved some weak convergence theorems of iterations (.)

and (.) for approximating the solution of nonlinear equation (.).
Attempts to modify the two-layer iterations (.) and (.) so that strong convergence is

guaranteed have recently been made.
In [], Saddeek introduced the following modification of (.) in a Hilbert space H

(boundary point method):

un+ = un – τh(un)(Aun – f ), n ≥ , (.)

where τ > , u is an arbitrary point in M, and h : M → [, ] is a function defined by He
and Zhu [] as follows:

h(u) = inf
{
α ∈ [, ] : αu ∈ M

} ∀u ∈ M. (.)

He obtained strong convergence results for finding the minimum norm solution of non-
linear equation (.).

In [], He and Zhu have observed that, if  /∈ M, calculating h(un) implies determining
h(un)un, a boundary point of M, so iteration (.) is known as the boundary point method.

In [], Saddeek extended the results of Saddeek [] to a uniformly convex Banach space
and introduced the following modification of the two-layer iteration (.) (boundary point
method):

Jun+ = Jun – τh(un)(Aun – f ), n ≥ , (.)

where τ > , u is an arbitrary point in M, τ > , and h is defined by (.).
In [], Noor introduced and studied the following generalized multivalued pseu-

domonotone mixed variational inequality problem: find u ∈ M, w ∈ A(u) such that

〈w,η – u〉 + F(η) – F(u) ≥ 〈f ,η – u〉 ∀η ∈ M, (.)

where A : V → C(V ∗) is a multivalued pseudomonotone mapping (see definition below),
F : V →R∪ {+∞} is a functional as above, and f ∈ V ∗ is a given element.

Clearly, problems (.) and (.) are special cases of problem (.).
The set of all u ∈ M satisfying (.) is denoted by SOL(M, F, A – f ).
In [], Badriev et al. obtained the following weak convergence theorems using the two-

layer iteration (.).
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Theorem . (see [], Theorem ) Let V be a real reflexive Banach space with a uniformly
convex dual space V ∗, and let J : V → V ∗ be the duality mapping. Let M be a nonempty
closed convex subset of V . Let A : V → V ∗ be a pseudomonotone, coercive, potential, and
bounded Lipschitz continuous mapping. Let F : V → R ∪ {+∞} be a proper convex and
γ -Lipschitzian (i.e., | F(u)–F(η) |≤ γ ‖u–η‖V ∀u,η ∈ V ,γ > ) functional. Define a func-
tional F : V →R∪ {+∞} by

F(u) = F(u) + F(u) – 〈f , u〉, F(u) =
∫ 



〈
A

(
t(u)

)
, u

〉
dt, f ∈ V ∗. (.)

Assume also that

 < τ < min

{
,


μ

}
, μ = μ

(
R + �–(R + γ )

)
, (.)

where

R = sup
u∈S

‖u‖V , R = sup
u∈S

‖Au – f ‖V∗ , S =
{

u ∈ M : F(u) ≤ F(u)
}

.

Then the sequence {un} defined by (.) is bounded in V , and all of its weak limit points are
solutions of problem (.).

Badriev et al. [] have remarked that, due to the reflexivity of V , the mixed variational
inequality (.) is solvable by Theorem ..

In Theorem ., the assumption that V is reflexive can be dropped. Indeed, if V ∗ is uni-
formly convex, then V is uniformly smooth (and hence V is reflexive).

Theorem . (see [], Theorem ) Let V = H be a real Hilbert space, and let M be a
nonempty closed convex subset of H . Let A : H → H be a pseudomonotone, coercive, po-
tential, and inverse strongly monotone mapping. Let Fi : H → R ∪ {+∞}, i = , , be the
same as in Theorem ..

Then the sequence {un} defined by (.) with  < τ < τ = γ converges weakly in H to a
solution of problem (.).

Some attempts to prove the weak convergence of the whole sequence in the framework
of Banach spaces have been made by Saddeek and Ahmed [] and Saddeek [, ].

Although the above mentioned theorems and all their extensions are unquestionably
interesting, only weak convergence theorems are obtained unless very strong assumptions
are made.

This suggests an important question: can the two-layer iteration method (.) be modi-
fied to prove its strong convergence to the minimum norm solution of problem (.).

In this paper, inspired by [, ], and [], a generalized multivalued pseudomonotone
mixed variational inequality is considered, and a modified two-layer iteration via a bound-
ary point approach to find the minimum norm solution of such inequalities is introduced,
and its strong convergence is proved in the framework of uniformly convex spaces. The
results obtained in this paper improve and generalize the corresponding recent results
announced by [].
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2 Definitions and preliminary
Definition . (see [, , ]) A multivalued mapping A : V → C(V ∗) is called

(i) pseudomonotone, if it is bounded and, for every sequence {un} ⊂ V , {wn} ⊂ A(un),
the conditions

un ⇀ u ∈ V and lim sup
n→∞

〈wn, un – u〉 ≤ 

imply that for every η ∈ V there exists w ∈ A(u) such that

lim inf
n→∞ 〈wn, un – η〉 ≥ 〈w, u – η〉;

(ii) coercive, if there exists a function ρ : R+ →R
+ with limξ→∞ ρ(ξ ) = +∞ such that

〈w, u〉 ≥ ρ
(‖u‖V

)‖u‖V ∀u ∈ V , w ∈ A(u);

(iii) potential, if

∫ 



(〈
w, u + η

〉
–

〈
w, u

〉)
dt =

∫ 



〈
w,η

〉
dt

for all u,η ∈ V , w ∈ A(t(u + η)), w ∈ A(tu), w ∈ A(u + tη), t ∈ [, ];
(iv) bounded Lipschitz continuous, if

‖w – ẃ‖V∗ ≤ μ(R)�
(‖u – η‖V

)

for all u,η ∈ V , w ∈ A(u), ẃ ∈ A(η), where μ(R) and �(ξ ) as above;
(v) inverse strongly monotone, if there exists a constant γ >  such that

〈w – ẃ, u – η〉 ≥ γ ‖w – ẃ‖
V

for all u,η ∈ V , w ∈ A(u), ẃ ∈ A(η).

Definition . is an extension of Definition .((i)-(iv), (vi)) of single-valued mappings to
multivalued mappings.

Let G : M × V ∗ →R∪ {+∞} be a functional defined as follows:

G(u, Jη) = ‖u‖
V – 〈Jη, u〉 + ‖Jη‖

V∗ + F(u), (.)

where u ∈ M, η ∈ V , Jη ∈ V ∗.

Definition . (see, for example, []) The mapping �
F
M : V → C(M) is called general-

ized F-projection mapping if �
F
M(η) = arg minu∈M G(u, Jη), ∀η ∈ V .

If V = H and F(u) =  ∀u ∈ M, then (.) reduces to the following simple form:

G(u, Jη) = ‖u – η‖
H , ∀u ∈ M,η ∈ H ,

and the generalized F-projection reduces to the projection �M from H to C(M).
The following two lemmas are also useful in the sequel.
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Lemma . (see []) The generalized F-projection �
F
M(η) has the following properties:

(i) �
F
M(η) is a nonempty closed convex subset of M for all η ∈ V ;

(ii) for all η ∈ V , ū ∈ �
F
M(η) if and only if

〈Jη – Jū, ū – v〉 + (F(v) – F(ū) ≥  ∀v ∈ M;

(iii) if V is strictly convex, then �
F
M(η) is a single-valued mapping.

Let G : V × V →R
+ ∪ {} be a functional defined as follows:

G(u,η) = ‖u‖
V – 〈Jη, u〉 + ‖η‖

V , ∀u,η ∈ V . (.)

Lemma . (see []) Let V be a real Banach space with a uniformly convex dual space V ∗,
let M be a nonempty closed convex subset of V , and let η ∈ V , ū ∈ �

F
M(η). Then

(i) G(u, ū) + G(ū,η) ≤ G(u,η) ∀u ∈ M;
(ii) for u,η ∈ V , G(u,η) =  iff u = η.

A Banach space V is said to have the Kadec-Klee property (see, for example, []) if, for
every sequence {un} in V with un ⇀ u and ‖un‖V → ‖u‖V together imply that limn→∞ ‖un –
u‖V = .

Every Hilbert space is uniformly convex, and every uniformly convex Banach space has
the Kadec-Klee property.

3 Main results
In this section, we propose a modification of the two-layer iteration method (.) by the
boundary point method to establish strong convergence theorems of the modified itera-
tion for finding the minimum norm solution of the following generalized pseudomono-
tone mixed variational inequality in uniformly convex spaces: find u ∈ M, w ∈ A(u) such
that

〈
h(w),η – u

〉
+ F(η) – F(u) ≥ 〈f ,η – u〉 ∀η ∈ M, (.)

where A, F, f are defined as above and h is a positive constant.

3.1 The modified two-layer iteration
For an arbitrary point u ∈ M, define un+ ∈ M as follows:

〈Jun+ – Jun,η – un+〉 + τ
(
F(η) – F(un+)

) ≥ τ
〈
f – h(un)wn,η – un+

〉 ∀η ∈ M, (.)

where τ >  is the iteration parameter, n ≥ , J is the duality mapping, wn ∈ A(un) and h
is defined by (.).

For M = V , F(u) =  ∀u ∈ M, and η = un+ ± z, z ∈ M, (.) is equivalent to

Jun+ = Jun – τ
(
h(un)wn – f

)
, ∀n ≥ , (.)

where wn ∈ A(un), and τ , J , h are defined as above.
Observe that iteration (.) is a modification and generalization of iterations (.)

and (.).



Saddeek Journal of Inequalities and Applications  (2017) 2017:216 Page 8 of 16

If V = H , A is a single-valued mapping in (.) and h(un) =  ∀n ≥ , we have itera-
tion (.).

Iteration (.) can be considered as a modified method for solving the following operator
inclusion problem: find u ∈ V such that

f ∈ Au, f ∈ V ∗. (.)

For each u ∈ V , w ∈ A(tu), let F̃ : V →R∪ {+∞} be a functional defined by

F̃(u) = F̃(u) + F(u) – 〈f , u〉, F̃(u) =
∫ 



〈
h(u)w, u

〉
dt, f ∈ V ∗. (.)

Let us assume also that

R̃ = sup
u∈S̃

‖u‖V , R̃ = sup
u∈S̃

∥∥h(u)w – f
∥∥

V∗ ,

S̃ =
{

u ∈ M : F̃(u) ≤ F̃(u)
}

, (.)

where w ∈ A(u).
Let μ̃ be a positive constant such that

μ̃ = μ
(
R̃ + �–(R̃ + γ )

)
. (.)

Theorem . Let V be a real uniformly convex Banach space with a uniformly convex dual
space V ∗, J : V → V ∗ be the duality mapping, and let M be a nonempty closed convex subset
of V . Let A : V → C(V ∗) be a multivalued mapping. Suppose that A is pseudomonotone,
coercive, potential, and bounded Lipschitz continuous mapping. Let F : V →R∪{+∞} be
a proper convex (not necessarily differentiable) and γ -Lipschitzian functional with M ⊂
int(D(F)). Let F̃ , R̃, R̃, S̃, and μ̃ be defined by (.), (.), and (.). Assume that  <
τ = min{, 

μ̃
}. Let {h(un)} be an increasing and bounded real sequence in [, ].

Then, for an arbitrary u = u ∈ M, the sequence {un} defined by (.) converges strongly
to ũ = �

F
SOL(M,F,h(w)–f ) (i.e., the minimum norm element in SOL(M, F, h(w) – f )).

Proof Since F is supposed to be convex and γ -Lipschitzian, and A is coercive and
bounded, it results from [] and [] that F is weakly lower semicontinuous and F̃ is co-
ercive; moreover, R̃ < +∞ and R̃ < +∞. Hence μ̃ < +∞. This means that the iterative
sequence (.) is well defined. �

Now we divide the proof into steps.
Step . We prove that {un} is bounded. To this end, it suffices to prove that

{un} ⊂ S̃, ‖un‖V ≤ R̃, n ≥ . (.)

Let us prove (.) by induction on n. For n = , we have u ∈ S̃. Suppose now that un ∈ S̃.
We will show that un+ ∈ S̃.
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Setting η = un in (.) and taking into account that the functional F is γ -Lipschitzian
and J is uniformly monotone, and the inequality τ ≤ , we obtain

�
(‖un+ – un‖V

)‖un+ – un‖V ≤ 〈Jun+ – Jun, un+ – un〉
≤ τ

[〈
f – h(un)wn, un+ – un

〉
+ F(un) – F(un+)

]

≤ [R̃ + γ ]‖un+ – un‖V . (.)

Now, using (.) together with the strict monotonicity of �, we have

‖un+ – un‖V ≤ �–(R̃ + γ ). (.)

Furthermore, it follows from the bounded Lipschitz continuity of A that, for any t ∈ [, ],
wn ∈ Aun, w

n ∈ A(un+ + t(un – un+))

∣∣〈w
n – wn, un+ – un

〉∣∣ ≤ μ(R∗)�
(∥∥( – t)(un+ – un)

∥∥
V

)‖un+ – un‖V

≤ μ(R∗)�
(‖un+ – un‖V

)‖un+ – un‖V , (.)

where R∗ = max{‖un+ + t(un – un+)‖V ,‖un‖V }.
Since

∥∥un+ + t(un – un+)
∥∥

V – ‖un‖V ≤ ∥∥( – t)(un+ – un)
∥∥

V ≤ ‖un+ – un‖V , (.)

it follows from the definition of R∗ that

R∗ ≤ R̃ + �–(R̃ + γ ). (.)

Since μ̃ is an increasing function, we must have

μ̃(R∗) ≤ μ̃. (.)

Consequently, it follows from (.) and (.) that

–
∣∣〈w

n – wn, un+ – un
〉∣∣ ≥ –μ̃�

(‖un+ – un‖V
)‖un+ – un‖V . (.)

Moreover, since A is potential, we have

F̃(un) – F̃(un+) =
∫ 



〈
h(un)w

n, un – un+
〉
dt – 〈f , un – un+〉 + F(un) – F(un+)

=
∫ 



〈
h(un)

(
w

n – wn
)
, un – un+

〉
dt –

〈
f – h(un)wn, un – un+

〉

+ F(un) – F(un+)

≥ –
∫ 



∣
∣〈h(un)

(
w

n – wn
)
, un – un+

〉∣∣dt + τ–[τ
〈
f – h(un)wn, un+ – un

〉

+ F(un) – F(un+)
]
. (.)
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Setting η = un in (.) and using the uniform monotonicity of J , (.), (.), it results that

F̃(un) – F̃(un+) ≥ –μ̃�
(‖un+ – un‖V

)‖un+ – un‖V

+ τ–〈J(un+) – J(un), un+ – un
〉

≥ λ�
(‖un+ – un‖V

)‖un+ – un‖V , λ = τ– – μ̃ > . (.)

This implies that F̃(un+) ≤ F̃(un) ≤ F̃(u) and so un+ ∈ S̃. So {un} is bounded.
Step . We prove that limn→∞ ‖un+ – un‖V =  and limn→∞ ‖Jun+ – Jun‖V∗ = .
It follows from (.) that the sequence {F̃(un)} is bounded and monotone, and thus we

have that limn→∞ F̃(un) exists. This together with (.) implies that

lim
n→∞λ�

(‖un+ – un‖V
)‖un+ – un‖V = . (.)

Since � is continuous and strictly increasing, it follows from (.) that

lim
n→∞‖un+ – un‖V = . (.)

Since J is bounded Lipschitz continuous, � is continuous and �() = , it follows
from (.) that

lim
n→∞‖Jun+ – Jun‖V∗ = . (.)

Step . We show that there exists a subsequence {unk } of {un} such that unk ⇀ ū ∈ V ,
limk→∞ F(unk ) ≥ F(ū), and lim supk→∞ h(unk )〈wnk , unk – ū〉 ≤ .

Since {un} is bounded and V is reflexive, we can choose a subsequence {unk } of {un} such
that unk ⇀ ū ∈ V as k → ∞.

This together with the weak lower semicontinuity of F implies that limk→∞ F(unk ) ≥
F(ū).

Since F is γ -Lipschitzian, {h(un)} ⊂ [, ], it follows from (.) that, for arbitrary η ∈ M,

h(unk )〈wnk , unk – η〉 = h(unk )〈wnk , unk – unk+〉 + h(unk )〈wnk , unk+ – η〉
≤ h(unk )〈wnk , unk – unk+〉 + τ–〈Junk+ – Junk ,η – unk+〉

+
(
F(η) – F(unk )

)
+

(
F(unk ) – F(unk+ )

)

+ 〈f , unk+ – unk 〉 + 〈f , unk – η〉
≤ (‖wnk ‖V∗ + ‖f ‖V∗ + γ

)‖unk+ – unk ‖V + τ–[‖Junk+ – Junk ‖V∗

× ‖η – unk+‖V
]

+
(
F(η) – F(unk )

)
+ 〈f , unk – η〉

≤ Cη

(‖Junk+ – Junk ‖V∗ + ‖unk+ – unk ‖V
)

+
(
F(η) – F(unk )

)
+ 〈f , unk – η〉, (.)

where Cη is a positive constant depending on η.
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Setting η = ū in (.) and using the weak lower semicontinuity of F, (.), (.), we
have

lim sup
k→∞

h(unk )〈wnk , unk – ū〉 ≤ lim sup
k→∞

Cū
(‖Junk+ – Junk ‖V∗ + ‖unk+ – unk ‖V

)

+ lim sup
k→∞

(
F(ū) – F(unk )

)
+ lim sup

k→∞
〈f , unk – ū〉

≤ . (.)

Step . We show that ū ∈ SOL(M, F, h(w) – f ).
Since {h(un)} ⊂ [, ] is bounded and monotone increasing, it follows that

lim
n→∞ h(un) = h > . (.)

By (.)-(.), the lower semicontinuity of F and by the pseudomonotonicity of A, we
have

 = lim inf
k→∞

Cη

(‖Junk+ – Junk ‖V∗ + ‖unk+ – unk ‖V
)

≥ lim inf
k→∞

h(unk )〈wnk , unk – η〉 + lim inf
k→∞

(
F(unk) – F(η)

)
+ lim inf

k→∞
〈f ,η – unk 〉

≥ 〈
h(w̄), ū – η

〉
+ F(ū) – F(η) + 〈f ,η – ū〉,

where w̄ ∈ Aū. This means that ū ∈ SOL(M, F, h(w) – f ).
Step . We prove that

lim sup
k→∞

[〈–Jū, unk+ – ū〉 + F(ū) – F(unk+ )
] ≤ , (.)

where ū = �
F
SOL(M,F,h(w)–f ).

Indeed take a subsequence {unk+} of {un} such that unk+ ⇀ ū.
Note that ū = �

F
SOL(M,F,h(w)–f ). Then from ū ∈ SOL(M, F, h(w) – f ), the weak lower

semicontinuity of F, and Lemma .(ii), the desired inequality (.) follows immediately.
Step . We show that limn→∞ ‖un – ū‖V = .
Since unk+ ⇀ ū, it follows from the weak lower semicontinuity of ‖ · ‖V that

lim inf
k→∞

‖unk+‖V ≥ ‖ū‖V . (.)

From the convexity of D(F), F and from the weak lower semicontinuity of F, we obtain
that F is subdifferentiable in int(D(F)). Thus, for all u ∈ D(F), there exists an element
u∗ ∈ V ∗ such that

F(u) – F(ū) ≥ 〈
u∗, u – ū

〉
,

and hence

F(unk+ ) – F(ū) ≥ 〈Junk , unk+ – ū〉, k ≥ . (.)
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In view of unk+ = �
F
SOL(M,F,h(w)–f )J

–(Junk – τh(unk )(f – wnk )), we have

G
(
unk+ , Junk – τh(unk )(f – wnk )

) ≤ G
(
ū, Junk – τh(unk )(f – wnk )

)
.

By using (.) with Jη = Junk – τh(unk )(f – wnk ), we have

‖unk+‖
V – 

〈
Junk – τh(unk )(f – wnk ), unk+

〉
+

∥∥Junk – τh(unk )(f – wnk )
∥∥

V∗ + F(unk+ )

≤ ‖ū‖
V – 

〈
Junk – τh(unk )(f – wnk ), ū

〉

+
∥∥Junk – τh(unk )(f – wnk )

∥∥
V∗ + F(ū)

= ‖ū‖
V – 

〈
Junk – τh(unk )(f – wnk ), unk+

〉

+ 
〈
Junk – τh(unk )(f – wnk ), unk+ – ū

〉

+
∥
∥Junk – τ (unk )(f – wnk )

∥
∥

V∗ + F(ū),

which implies that

‖unk+‖
V ≤ ‖ū‖

V + 
(〈Junk , unk+ – ū〉 + F(ū) – F(unk+ )

)

+ τh(unk )〈wnk , unk+ – ū〉 + τh(unk )〈f , ū – unk+〉. (.)

Taking the lim supk→∞ on the both sides of (.) and using unk+ ⇀ ū, (.)-(.),
and (.) yields

lim sup
k→∞

‖unk+‖
V ≤ ‖ū‖

V ,

which implies that

lim sup
k→∞

‖unk+‖V ≤ ‖ū‖V . (.)

Combining (.) and (.), we have

‖ū‖V ≤ lim inf
k→∞

‖unk+‖V ≤ lim sup
k→∞

‖unk+‖V ≤ ‖ū‖V . (.)

This shows that

lim
k→∞

‖unk+‖V = ‖ū‖V . (.)

Since V is a uniformly convex Banach space, then it has the Kadec-Klee property, and so
from unk+ ⇀ ū and (.) we obtain

lim
k→∞

unk+ = ū. (.)

Let us now show that the whole sequence converges strongly to ū.
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Since {G(un+, )} is bounded and nondecreasing (indeed, by Lemma .(i), we have
G(un+, un)+G(un+, ) ≤ G(un, ) and G(un+, un) ≥ (‖un+‖V –‖un‖V ) ≥ ), it follows
that {G(un+, )} is convergent.

This together with (.) implies that

lim
n→∞ G(un+, ) = G(ū, ). (.)

Now, following to [], we suppose that there exists some subsequence {unj+} of {un} such
that limj→∞ unj+ = û, then by Lemma .(i) we obtain

 ≤ G(ū, û) = lim
k,j→∞

G(unk+ , unj+ ) = lim
k,j→∞

G
(
unk+ ,�F

SOL(M,F,h(w)–f )
)

≤ lim
k,j→∞

[
G(unk+ , ) – G

(
�

F
SOL(M,F,h(w)–f ), 

)]

= lim
k,j→∞

[
G(unk+ , ) – G(unj+ , )

]

= G(ū, ) – G(ū, ) = ,

which means that G(ū, û) =  and hence, by Lemma .(ii), it results that û = ū.
Consequently, limn→∞ un = ū. This completes the proof of Theorem ..

Theorem . Let V = H be a real Hilbert space, and let M be a nonempty closed convex
subset of H . Let A : H → C(H) be a multivalued mapping. Suppose that A is a pseu-
domonotone, coercive, potential, and inverse strongly monotone mapping. Let {h(un)}, M,
F̃ , S̃, μ̃ and F̃, F, R̃, R̃ be the same as in Theorem ..

Then, for arbitrary u = u ∈ M, the sequence {un} defined by

(un+ – un,η – un+) + τ
(
F(η) – F(un+)

) ≥ τ
(
f – h(un)wn,η – un+

) ∀η ∈ M, (.)

with  < τ < τ = γ

h , h > , converges strongly to ũ = �
F
SOL(M,F,h(w)–f ).

Proof Since any inverse strongly monotone mapping is 
γ

-Lipschitzian mapping, i.e.,
bounded Lipschitz continuous with μ(ξ ) = 

γ
and �(ξ ) = ξ , then by simple modifications

of the proof of Theorem ., we can easily show that there exists a subsequence {unk+} of
{un} such that unk+ ⇀ ū ∈ SOL(M, F, h(w) – f ) and limk→∞ ‖unk+‖H = ‖ū‖H .

Since every Hilbert space is uniformly convex, by virtue of the Kadec-Klee property of
H , we have limk→∞ unk+ = ū ∈ SOL(M, F, h(w) – f ).

Now, we prove that un ⇀ ū and limn→∞ ‖un‖H = ‖ū‖H .
From ū ∈ SOL(M, F, h(w) – f ), we have

τ
(
F(η) – F(ū)

) ≥ τ
(
f – h(w̄),η – ū

)
, ∀η ∈ M. (.)

Setting η = un+ in (.) and η = ū in (.), we have

τ
(
F(un+) – F(ū)

) ≥ τ
(
f – h(w̄), un+ – ū

)
(.)

and

τ
(
F(ū) – F(un+)

) ≥ (un+ – un, un+ – ū) + τ
(
f – h(un)wn, ū – un+

)
. (.)
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Adding (.) and (.), we have

(un+ – ū, un+ – ū) ≤ (un – ū, un+ – ū) – τ
(
h(un)wn – h(w̄), un+ – ū

)

=
(
un – ū – τ

(
h(un)wn – h(w̄)

)
, un+ – ū

)
,

which implies that

‖un+ – ū‖H ≤ ∥
∥un – ū – τ

(
h(un)wn – h(w̄)

)∥∥
H .

Then, by the inverse strong monotonicity of A, we obtain for all sufficiently large n

‖un+ – ū‖
H ≤ ‖un – ū‖

H – τ
(
h(un)wn – h(w̄), un – ū

)
+ τ ∥∥h(un)wn – h(w̄)

∥
∥

H

= ‖un – ū‖
H – τh(wn – w̄, un – ū) + τ h‖wn – w̄‖

H

≤ ‖un – ū‖
H – τh

(
 –

τh
γ

)
‖wn – w̄‖

H .

Since  – τh
γ

> , it follows that ‖un+ – ū‖H ≤ ‖un – ū‖H and so limn→∞ ‖un – ū‖H = σū.
By following the same arguments as in [] and [], we can readily claim that all weak

limit points of the sequence {un} coincide, and hence un ⇀ ū as n → ∞.
By the weak lower semicontinuity of ‖ · ‖H , this implies that

lim inf
n→∞ ‖un‖H > ‖ū‖H . (.)

Analogically to the proof of step  with obvious modifications, we have

lim sup
n→∞

‖un‖H ≤ ‖ū‖H . (.)

This, together with (.), implies that limn→∞ ‖un‖H = ‖ū‖H .
Applying again the virtue of the Kadec-Klee property of H , we obtain limn→∞ un = ū.

This completes the proof of Theorem .. �

Remark . Theorems . and . extend and improve the corresponding Theorems .
and ..

Example . (Axisymmetric shell problem) A quintessential example of a single-valued
mapping satisfying all the assumptions contemplated in Theorems . and . which ap-
pears in determining the axisymmetric equilibrium position of a soft netlike rotation shell
is as follows:

The shell surface (in a strainless state) is assumed to be a cylinder of length l and radius .
Let s be a Lagrangian coordinate in the longitudinal direction such that  < s < l.

Let V = [
◦

W ()
p (, l)] and V ∗ = [

◦
W (–)

q (, l)], q = p
p– , p > . Set u(s) = (u(s), u(s)), η(s) =

(η(s),η(s)), M = {u ∈ V : u(s)+ ≥  ∀s ∈ (, l)}, and λ = [(+ du
ds ) +( du

ds )] 
 , λ = +u.

Consider the surface force is characterized by a known constant function P. Let Ti(λi),
i = , , be two functions (tightening force) satisfying conditions ()-() in Badriev and
Banderov [].
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Consider the mappings A, B, C, D : V → V ∗ defined by

〈Au,η〉 =
∫ l



T(λ)
λ

((
 +

du

ds
,

du

ds

)
,

dη

ds

)
ds;

〈Bu,η〉 =
∫ l



(



u


dη

ds
+

(
 +

du

ds

)
uη

)
ds;

〈Cu,η〉 =
∫ l



((
 +

du

ds

)
η +

du

ds
dη

ds

)
ds;

〈Du,η〉 =
∫ l


T(λ)η ds.

If A = (A + D) + P(B + C), then by Theorems  and  in [] it follows that the mapping
A satisfies all the assumptions postulated in Theorems . and ..

4 Conclusion
A generalized multivalued pseudomonotone mixed variational inequality is considered,
and a modified two-layer iteration via a boundary point approach to find the minimum
norm solution of such inequalities is introduced, and its strong convergence is proved in
the framework of uniformly convex spaces. The results develop the corresponding recent
results.
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