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Abstract
In this paper, we prove the existence and uniqueness of solutions of the β-Cauchy
problem of second order β-difference equations

a0(t)D2
βy(t) + a1(t)Dβy(t) + a2(t)y(t) = b(t), t ∈ I,

a0(t) �= 0, in a neighborhood of the unique fixed point s0 of the strictly increasing
continuous function β , defined on an interval I ⊆ R. These equations are based on
the general quantum difference operator Dβ , which is defined by
Dβ f (t) = (f (β(t)) – f (t))/(β(t) – t), β(t) �= t. We also construct a fundamental set of
solutions for the second order linear homogeneous β-difference equations when the
coefficients are constants and study the different cases of the roots of their
characteristic equations. Finally, we drive the Euler-Cauchy β-difference equation.
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1 Introduction
Quantum calculus allows us to deal with sets of non-differentiable functions by substi-
tuting the classical derivative by a difference operator. Non-differentiable functions are
used to describe many important physical phenomena. Quantum calculus has a lot of ap-
plications in different mathematical areas such as the calculus of variations, orthogonal
polynomials, basic hyper-geometric functions, economical problems with a dynamic na-
ture, quantum mechanics and the theory of scale relativity; see, e.g., [–]. The general
quantum difference operator Dβ is defined, in [, p.], by

Dβ f (t) =

{
f (β(t))–f (t)

β(t)–t , t �= s,
f ′(s), t = s,

where f : I →X is a function defined on an interval I ⊆R,X is a Banach space and β : I → I
is a strictly increasing continuous function defined on I , which has only one fixed point
s ∈ I and satisfies the inequality: (t – s)(β(t) – t) ≤  for all t ∈ I . The function f is said to
be β-differentiable on I , if the ordinary derivative f ′ exists at s. The β-difference operator
yields the Hahn difference operator when β(t) = qt + ω, ω > , q ∈ (, ), and the Jackson
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q-difference operator when β(t) = qt, q ∈ (, ); see [–]. In [], [, Chapter ], the
definition of the β-derivative, the β-integral, the fundamental theorem of β-calculus, the
chain rule, Leibniz’s formula and the mean value theorem were introduced. In [], the
β-exponential, β-trigonometric and β-hyperbolic functions were presented. In [], the
existence and uniqueness of solutions of the β-initial value problem of the first order were
established. In addition, an expansion form of the β-exponential function was deduced.

This paper is devoted for deducing some results of the solutions of the homogeneous
second order linear β-difference equations which are based on Dβ . In Section , we in-
troduce the needed preliminaries of the β-calculus from [, –]. In Section , we
prove the existence and uniqueness of solutions of the β-Cauchy problem of second or-
der β-difference equations in a neighborhood of s. We also construct a fundamental
set of solutions for the second order linear homogeneous β-difference equations when
the coefficients are constants and study the different cases of the roots of their charac-
teristic equations. Finally, we drive the Euler-Cauchy β-difference equation. Through-
out this paper, J is a neighborhood of the unique fixed point s of β and X is a Banach
space. If f is β-differentiable two times over I , then the second order derivative of f is de-
noted by D

β f = Dβ (Dβ f ). Furthermore, S(y, b) = {y ∈ X : ‖y – y‖ ≤ b} and the rectangle
R = {(t, y) ∈ I ×X : |t – s| ≤ a,‖y – y‖ ≤ b}, where a, b are fixed positive real numbers.

2 Preliminaries
In this section, we present some needed results associated with the β-calculus from [,
–].

Lemma . The following statements are true:
(i) The sequence of functions {βk(t)}∞k= converges uniformly to the constant function

β̂(t) := s on every compact interval V ⊆ I containing s.
(ii) The series

∑∞
k= |βk(t) – βk+(t)| is uniformly convergent to |t – s| on every compact

interval V ⊆ I containing s.

Lemma . If f : I → X is a continuous function at s, then the sequence {f (βk(t))}∞k=

converges uniformly to f (s) on every compact interval V ⊆ I containing s.

Theorem . If f : I → X is continuous at s, then the series
∑∞

k= ‖(βk(t) – βk+(t)) ×
f (βk(t))‖ is uniformly convergent on every compact interval V ⊆ I containing s.

Lemma . Let f : I →X be β-differentiable and Dβ f (t) =  for all t ∈ I . Then f (t) = f (s)
for all t ∈ I .

Theorem . Assume that f : I → X and g : I → R are β-differentiable functions on I .
Then:

(i) the product fg : I →X is β-differentiable on I and

Dβ (fg)(t) =
(
Dβ f (t)

)
g(t) + f

(
β(t)

)
Dβg(t)

=
(
Dβ f (t)

)
g
(
β(t)

)
+ f (t)Dβg(t),
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(ii) f /g is β-differentiable at t and

Dβ (f /g)(t) =
(Dβ f (t))g(t) – f (t)Dβg(t)

g(t)g(β(t))
,

provided that g(t)g(β(t)) �= .

Theorem . Assume f : I →X is continuous at s. The function F defined by

F(t) =
∞∑

k=

(
βk(t) – βk+(t)

)
f
(
βk(t)

)
, t ∈ I (.)

is a β-antiderivative of f with F(s) = . Conversely, a β-antiderivative F of f vanishing at
s is given by (.).

Definition . Let f : I →X and a, b ∈ I . The β-integral of f from a to b is

∫ b

a
f (t) dβ t =

∫ b

s

f (t) dβ t –
∫ a

s

f (t) dβ t,

where

∫ x

s

f (t) dβ t =
∞∑

k=

(
βk(x) – βk+(x)

)
f
(
βk(x)

)
, x ∈ I,

provided that the series converges at x = a and x = b. f is called β-integrable on I if the
series converges at a and b for all a, b ∈ I . Clearly, if f is continuous at s ∈ I , then f is
β-integrable on I .

Definition . The β-exponential functions ep,β (t) and Ep,β (t) are defined by

ep,β (t) =
∏∞

k=[ – p(βk(t))(βk(t) – βk+(t))]
(.)

and

Ep,β (t) =
∞∏

k=

[
 + p

(
βk(t)

)(
βk(t) – βk+(t)

)]
, (.)

where p : I → C is a continuous function at s and both infinite products are convergent
to a non-zero number for every t ∈ I and ep,β (t) = 

Ep,β (t) .

It is worth mentioning that both products in (.) and (.) are convergent since∑∞
k= |p(βk(t))(βk(t) – βk+(t))| is uniformly convergent. See [, Definition .].

Theorem . The β-exponential functions ep,β (t) and E–p,β (t) are, respectively, the unique
solutions of the β-initial value problems:

Dβy(t) = p(t)y(t), y(s) = ,

Dβy(t) = –p(t)y
(
β(t)

)
, y(s) = .
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Theorem . Assume that p, q : I → C are continuous functions at s ∈ I . The following
properties are true:

(i) 
ep,β (t) = e–p/[+(β(t)–t)p](t),

(ii) ep,β (t)eq,β (t) = ep+q+(β(t)–t)pq(t),
(iii) ep,β (t)/eq,β (t) = e(p–q)/[+(β(t)–t)q](t).

Definition . The β-trigonometric functions are defined by

cosp,β (t) =
eip,β (t) + e–ip,β (t)


,

sinp,β (t) =
eip,β (t) – e–ip,β (t)

i
.

Theorem . For all t ∈ I . The following relation holds true:

eip,β (t) = cosp,β (t) + i sinp,β (t).

Theorem . Assume that the function f : R →X is continuous at (s, y) ∈ R and satis-
fies the Lipschtiz condition (with respect to y)

∥∥f (t, y) – f (t, y)
∥∥ ≤ L‖y – y‖, for all (t, y), (t, y) ∈ R.

Then the β-initial value problem Dβy(t) = f (t, y), y(s) = y, t ∈ I has a unique solu-
tion on [s – δ, s + δ], where L is a positive constant and δ = min{a, b

Lb+M , ρ

L } with M =
sup(t,y)∈R ‖f (t, y)‖ < ∞, ρ ∈ (, ).

3 Main results
In this section, we prove the existence and uniqueness of solutions of the β-Cauchy prob-
lem of second order β-difference equations in a neighborhood of s. Furthermore, we
construct a fundamental set of solutions for the second order linear homogeneous β-
difference equations when the coefficients are constants and study the different cases of
the roots of their characteristic equations. Finally, we derive the Euler-Cauchy β-difference
equation.

3.1 Existence and uniqueness of solutions
Theorem . Let fi(t, y, y) : I × ∏

i= Si(xi, bi) → X, s ∈ I , such that the following condi-
tions are satisfied:

(i) for yi ∈ Si(xi, bi), i = , , fi(t, y, y) are continuous at t = s,
(ii) there is a positive constant A such that, for t ∈ I , yi, ỹi ∈ Si(xi, bi), i = , , the following

Lipschitz condition is satisfied:

∥∥fi(t, y, y) – fi(t, ỹ, ỹ)
∥∥ ≤ A

∑
i=

‖yi – ỹi‖.

Then there exists a unique solution of the β-initial value problem, β-IVP,

Dβyi(t) = fi
(
t, y(t), y(t)

)
, yi(s) = xi ∈X, i = , , t ∈ I. (.)
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Proof Let y = (x, x)T and b = (b, b)T , where (·, ·)T stands for vector transpose. Define
the function f : I ×∏

i= Si(xi, bi) →X×X by f (t, y, y) = (f(t, y, y), f(t, y, y))T . It is easy
to show that system (.) is equivalent to the β-IVP

Dβy(t) = f
(
t, y(t)

)
, y(s) = y. (.)

Since each fi is continuous at t = s, f is continuous at t = s. The function f satisfies the
Lipschitz condition because for y, ỹ ∈ ∏

i= Si(xi, bi),

∥∥f (t, y) – f (t, ỹ)
∥∥ =

∥∥f (t, y, y) – f (t, ỹ, ỹ)
∥∥

=
∑

i=

∥∥fi(t, y, y) – fi(t, ỹ, ỹ, )
∥∥

≤ A
∑

i=

‖yi – ỹi‖ = A‖y – ỹ‖.

Applying Theorem ., see the proof in [], there exists δ >  such that (.) has a unique
solution on [s, s + δ]. Hence, the β-IVP (.) has a unique solution on [s, s + δ]. �

Corollary . Let f (t, y, y) be a function defined on I × ∏
i= Si(xi, bi) such that the fol-

lowing conditions are satisfied:
(i) for any values of yi ∈ Si(xi, bi), i = , , f is continuous at t = s,

(ii) f satisfies the Lipschitz condition

∥∥f (t, y, y) – f (t, ỹ, ỹ)
∥∥ ≤ A

∑
i=

‖yi – ỹi‖,

where A > , yi, ỹi ∈ Si(xi, bi), i = ,  and t ∈ I . Then

D
βy(t) = f

(
t, y(t), Dβy(t)

)
, Di–

β y(s) = xi, i = ,  (.)

has a unique solution on [s, s + δ].

Proof Consider equation (.). It is equivalent to (.), where {φi(t)}
i= is a solution of (.)

if and only if φ(t) is a solution of (.). Here,

fi(t, y, y) =

{
y, i = ,
f (t, y, y), i = .

Hence, by Theorem ., there exists δ >  such that system (.) has a unique solution on
[s, s + δ]. �

The following corollary gives us the sufficient conditions for the existence and unique-
ness of the solutions of the β-Cauchy problem (.).

Corollary . Assume the functions aj(t) : I → C, j = , , , and b(t) : I → X satisfy the
following conditions:
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(i) aj(t), j = , ,  and b(t) are continuous at s with a(t) �=  for all t ∈ I ,
(ii) aj(t)/a(t) is bounded on I , j = , . Then

a(t)D
βy(t) + a(t)Dβy(t) + a(t)y(t) = b(t),

Di–
β y(s) = xi, xi ∈X, i = , ,

(.)

has a unique solution on subinterval J ⊆ I , s ∈ J .

Proof Dividing by a(t), we get

D
βy(t) = A(t)Dβy(t) + A(t)y(t) + B(t), (.)

where Aj(t) = –aj(t)/a(t) and B(t) = b(t)/a(t). Since Aj(t) and B(t) are continuous at t = s,
the function f (t, y, y), defined by

f (t, y, y) = A(t)y + A(t)y + B(t),

is continuous at t = s. Furthermore, Aj(t) is bounded on I . Consequently, there is A > 
such that |Aj(t)| ≤ A for all t ∈ I . We can see that f satisfies the Lipschitz condition with
Lipschitz constant A. Thus, f (t, y, y) satisfies the conditions of Corollary .. Hence, there
exists a unique solution of (.) on J . �

3.2 Fundamental solutions of linear homogeneous β-difference equations
The second order homogeneous linear β-difference equation has the form

a(t)D
βy(t) + a(t)Dβy(t) + a(t)y(t) = , t ∈ I, (.)

where the coefficients a(t) �= , aj(t), j = ,  are assumed to satisfy the conditions of Corol-
lary ..

Lemma . If the function y is a solution of the homogeneous equation (.), such that
y(s) =  and Dβy(s) = , s ∈ I , then y(t) = , for all t ∈ J .

Proof By Corollary ., if xi = , i = ,  in the β-IVP (.), which has a unique solution
on J , then y such that y(t) =  for all t ∈ J is a unique solution of the β-difference equation
(.), which satisfies the given initial conditions y(s) = , Dβy(s) = . Hence we have the
desired result. �

Theorem . The linear combination cy + cy of any two solutions y and y of the
homogeneous linear β-difference equation (.) is also a solution of it in J , where c and c

are arbitrary constants.

Proof The proof is straightforward. �

Theorem . Let y and y be any two linearly independent solutions of the β-difference
equation (.) in J . Then every solution y of (.) can be expressed as a linear combination
y = cy + cy.
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Proof Let

φ =

(
y

Dβy

)
, φ =

(
y

Dβy

)
, φ =

(
y

Dβy

)
,

be the solutions of the linear system Dβyi(t) = ai(t)yi(t), i = , , corresponding, respec-
tively, to the solutions y, y of homogeneous linear β-difference equation (.). Since y, y

are linearly independent in J , then φ, φ are linearly independent in J . Then there exist
two constants c, c such that φ = cφ + cφ. The first component of this is y = cy + cy.
Thus the results hold. �

Definition . A set of two linearly independent solutions of the second order homoge-
neous linear β-difference equation (.) is called a fundamental set of it.

Theorem . There exists a fundamental set of solutions of the second order homogeneous
linear β-difference equation (.).

Proof By Corollary ., there exist unique solutions y and y of equation (.), such that
y(s) = , Dβy(s) =  and y(s) = , Dβy(s) = .

Suppose that y and y are linear dependent, so there exist constants c and c not both
zero, such that

cy(t) + cy(t) = , for all t ∈ J ,

cDβy(t) + cDβy(t) = , for all t ∈ J .

We have c = c =  at t = s, which is a contradiction. Thus the solutions y and y are
linearly independent in J . Then there exists a fundamental set of the two solutions y and
y of equation (.). �

Definition . Let y, y be β-differentiable functions. Then we define the β-Wronskian
of the functions y, y, defined on I , by

Wβ (y, y)(t) =

∣∣∣∣∣ y(t) y(t)
Dβy(t) Dβy(t)

∣∣∣∣∣ , t ∈ I.

Lemma . Let y(t), y(t) be functions defined on I . Then, for any t ∈ I , t �= s,

DβWβ (y, y)(t) =

∣∣∣∣∣y(β(t)) y(β(t))
D

βy(t) D
βy(t).

∣∣∣∣∣ . (.)

Proof Since Wβ (y, y)(t) = y(t)Dβy(t) – y(t)Dβy(t), then

DβWβ (y, y)(t) = y
(
β(t)

)
D

βy(t) – y
(
β(t)

)
D

βy(t),

which is the desired result. �
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Theorem . Assume that y(t) and y(t) are two solutions of equation (.). Then their
β-Wronskian, Wβ ,

Wβ (y, y)(t) = e–r(t)+r(t)(β(t)–t),βWβ (y, y)(s), t ∈ I,

where r(t) = a(t)
a(t) and r(t) = a(t)

a(t) satisfy the conditions of Corollary ..

Proof Since y and y are solutions of equation (.), from (.) we have

DβWβ (y, y)(t) =

∣∣∣∣∣ y(β(t)) y(β(t))
– a(t)

a(t) Dβy(t) – a(t)
a(t) Dβy(t)

∣∣∣∣∣ +

∣∣∣∣∣ y(β(t)) y(β(t))
– a(t)

a(t) y(t) – a(t)
a(t) y(t)

∣∣∣∣∣
= –

a(t)
a(t)

∣∣∣∣∣ y(t) y(t)
Dβy(t) Dβy(t)

∣∣∣∣∣ +
a(t)
a(t)

(
β(t) – t

) ∣∣∣∣∣ y(t) y(t)
Dβy(t) Dβy(t)

∣∣∣∣∣
=

[
–r(t) + r(t)

(
β(t) – t

)]
Wβ (y, y)(t),

which has the solution

Wβ (y, y)(t) = Wβ (y, y)(s)e–r(t)+r(t)(β(t)–t),β , t ∈ I. �

Using Theorem . and Lemma ., we can prove the following corollaries.

Corollary . Two solutions y and y of β-difference equation (.) are linearly depen-
dent in J if and only if Wβ (y, y)(t) = , for all t ∈ J .

Corollary . The value of Wβ (y, y)(t) of β-difference equation (.) either is zero or
unequal to zero for all t ∈ J .

3.3 Homogeneous equations with constant coefficients
Equation (.) can be written as

Ly(t) = aD
βy(t) + bDβy(t) + cy(t) = , (.)

where a, b, and c are constants. The characteristic polynomial of equation (.) is

P(λ) = aλ + bλ + c = , (.)

where y(t) = eλ,β (t) is a solution of equation (.). Since equation (.) is a quadratic equa-
tion with real coefficients, it has two roots, which may be real and different, real but re-
peated, or complex conjugates.

Case : real and different roots of the characteristic equation (.).
Let λ and λ be real roots with λ �= λ, then y(t) = eλ,β (t) and y(t) = eλ,β (t) are two

solutions of equation (.). Therefore,

y(t) = ceλ,β (t) + ceλ,β (t)
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is a general solution of equation (.), with

c =
Dβy – yλ

λ – λ
e–λ,β (s) and c =

yλ – Dβy

λ – λ
e–λ,β (s).

Example . Find the solution of the β-initial value problem

D
βy(t) + Dβy(t) + y(t) = , y(s) = , Dβy(s) = .

By assuming that y(t) = eλ,β (t), we obtain the solution

y(t) = e–,β (t) – e–,β (t).

Case : complex roots of the characteristic equation (.).
Let λ = ν + iμ and λ = ν – iμ, where ν and μ are real numbers. Then y(t) =

e(ν+iμ),β (t) and y(t) = e(ν–iμ),β (t) are two solutions of equation (.). By Theorems ., .,
e(ν+iμ),β (t) = eν,β (t)e iμ

+ν(β(t)–t) ,β (t). So,

e(ν+iμ),β (t) = eν,β (t)
(
cos μ

+ν(β(t)–t) ,β (t) + i sin μ
+ν(β(t)–t) ,β (t)

)
.

We have

y(t) + y(t) = eν,β (t) cos μ
+ν(β(t)–t) ,β (t)

and

y(t) – y(t) = ieν,β (t) sin μ
+ν(β(t)–t) ,β (t).

Therefore,

u(t) = eν,β (t) cos μ
+ν(β(t)–t) ,β (t) and v(t) = eν,β (t) sin μ

+ν(β(t)–t) ,β(t)

are two solutions of equation (.). If the β-Wronskian of u and v is not zero, then u and
v form a fundamental set of solutions. The general solution of equation (.) is

y(t) = ceν,β (t) cos μ
+ν(β(t)–t) ,β (t) + ceν,β (t) sin μ

+ν(β(t)–t) ,β (t),

where c and c are arbitrary constants.

Example . Find the general solution of

D
βy(t) + Dβy(t) + y(t) = . (.)

The characteristic equation is λ + λ +  = , and its roots are

λ, =
–


± i
√




.



Faried et al. Journal of Inequalities and Applications  (2017) 2017:198 Page 10 of 13

Thus, the general solution of equation (.) is

y(t) = ce–/,β (t) cos √
/

–/(β(t)–t) ,β
(t) + ce–/,β (t) sin √

/
–/(β(t)–t) ,β

(t).

Case : repeated roots.
Consider the case that the two roots λ and λ are equal, so

λ = λ = –b/a.

Therefore, the solution y(t) = e–b/a,β (t) is one solution of the β-difference equation (.),
and we give the second solution by the following example:

Example . Solve the β-difference equation

D
βy(t) + Dβy(t) + y(t) = . (.)

The characteristic equation is (λ+) = , so λ = λ = –. Therefore, y(t) = e–,β (t) is a so-
lution of equation (.). To find the second solution, let y(t) = v(t)e–,β(t). Then D

βv(t) = .
Therefore, v(t) = ct +c, where c and c are arbitrary constants. Then the general solution
is

y(t) = cte–,β (t) + ce–,β (t),

where the two solutions y(t) = e–,β (t) and y(t) = te–,β (t) form a fundamental set of so-
lutions of equation (.).

3.4 Euler-Cauchy β-difference equation
The Euler-Cauchy β-difference equation takes the form

tβ(t)D
βy(t) + atDβy(t) + by(t) = , t ∈ I, t �= s, (.)

where a, b are constants. The characteristic equation of (.) is given by

λ + (a – )λ + b = . (.)

Theorem . If the characteristic equation (.) has two distinct roots λ and λ, then
a fundamental set of solutions of (.) is given by eλ/t,β(t) and eλ/t,β (t).

Proof Let y(t) = eλ/t,β(t), where λ is a root of equation (.). It follows that

Dβy(t) =
λ

t
y(t), D

βy(t) =
λ – λ

tβ(t)
y(t).

Consequently, we have

tβ(t)D
βy(t) + atDβy(t) + by(t) =

(
λ + (a – )λ + b

)
y(t) = .
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Assume that λ and λ are distinct roots of the characteristic equation (.). Then, we
have

λ + λ =  – a, λλ = b.

Moreover, Wβ (eλ/t,β , eλ/t,β)(t) �= , since λ �= λ. Hence, eλ/t,β(t) and eλ/t,β (t) form a fun-
damental set of solutions of (.). �

The following theorem gives us the general solution of the Euler-Cauchy β-difference
equation in the double root case.

Theorem . Assume that /β(t) is bounded on I and  /∈ I . Then the general solution of
the Euler-Cauchy β-difference equation

tβ(t)D
βy(t) + ( – γ )tDβy(t) + γ y(t) = , t ∈ I, (.)

is given by

y(t) = ce γ
t ,β (t) + ce γ

t ,β (t)
∫ t

s

e –
β(τ ) ,β

 + γ

τ
(β(τ ) – τ )

dβτ .

Proof The characteristic equation of (.) is

λ – γ λ + γ  = .

Then the characteristic roots are λ = λ = γ . Hence one linearly independent solution of
equation (.) is y(t) = e γ

t ,β (t). To obtain the second linearly independent solution, we
can rewrite equation (.) in the form

D
βy(t) + r(t)Dβy(t) + r(t)y(t) = , (.)

where r(t) = –γ

β(t) and r(t) = γ 

tβ(t) . Consequently,

–r(t) + r(t)
(
β(t) – t

)
=

γ 

t
–

(γ – )

β(t)
.

Let u be a solution of equation (.) such that u(s) = , Dβu(s) = . Then

Wβ (e γ
t ,β , u)(t) = e–r(t)+r(t)(β(t)–t),β(t) = e γ 

t – (γ –)
β(t) ,β

(t).

By Theorem ., we find that u satisfies the following β-difference equation:

Dβ

(
u

e γ
t ,β

)
(t) =

Wβ (e γ
t ,β , u)(t)

e γ
t ,β(t)e γ

β(t) ,β (β(t))

=
e γ 

t – (γ –)
β(t) ,β

(t)

e
γ
t ,β(t)( + γ

t (β(t) – t))
.
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Then

u(t) = e γ
t

(t)
∫ t

s

e α
τ – (γ –)

β(τ ) ,β
(τ )

e
γ
τ ,β (τ )( + γ

τ
(β(τ ) – τ ))

dβτ .

Also,

e γ 
t – (γ –)

β(t) ,β
(t)

e
γ
t ,β (t)

= e –
β(t) ,β (t).

Therefore,

y(t) = ce γ
t ,β (t) + ce γ

t ,β (t)
∫ t

s

e –
β(τ ) ,β (τ )

 + γ

τ
(β(τ ) – τ )

dβτ

is the general solution of equation (.). �

4 Conclusion
In this paper, the existence and uniqueness of solutions of the β-Cauchy problem of sec-
ond order β-difference equations were proved. Moreover, a fundamental set of solutions
for second order linear homogeneous β-difference equations when the coefficients are
constants was constructed. Also, the different cases of the roots of the characteristic equa-
tions of these equations were studied. Finally, the Euler-Cauchy β-difference equation was
derived.
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