
Chatzarakis and Jadlovská Journal of Inequalities and Applications  (2017) 2017:173 
DOI 10.1186/s13660-017-1450-8

R E S E A R C H Open Access

Oscillations in deviating difference
equations using an iterative technique
George E Chatzarakis1 and Irena Jadlovská2*

*Correspondence:
irena.jadlovska@tuke.sk
2Department of Mathematics and
Theoretical Informatics, Faculty of
Electrical Engineering and
Informatics, Technical University of
Košice, Letná 9, Košice, 042 00,
Slovakia
Full list of author information is
available at the end of the article

Abstract
The paper deals with the oscillation of the first-order linear difference equation with
deviating argument and nonnegative coefficients. New sufficient oscillation
conditions, involving lim sup, are given, which essentially improve all known results,
based on an iterative technique. We illustrate the results and the improvement over
other known oscillation criteria by examples, numerically solved in Matlab.
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1 Introduction
Consider the difference equation with a variable retarded argument of the form

�x(n)+p(n)x
(
τ (n)

)
= , n ∈N, (E)

and the (dual) difference equation with a variable advanced argument of the form

∇x(n)–q(n)x
(
σ (n)

)
= , n ∈ N,

(
E′)

where N and N are the sets of nonnegative integers and positive integers, respectively.
Equations (E) and (E′) are studied under the following assumptions: everywhere

(p(n))n≥ and (q(n))n≥ are sequences of nonnegative real numbers, (τ (n))n≥ is a sequence
of integers such that

τ (n) ≤ n – , ∀n ∈ N and lim
n→∞ τ (n) = ∞ (.)

and (σ (n))n≥ is a sequence of integers such that

σ (n) ≥ n + , ∀n ∈ N. (.)

Here, � denotes the forward difference operator �x(n) = x(n+)–x(n) and ∇ corresponds
to the backward difference operator ∇x(n) = x(n) – x(n – ).

Set w = – minn≥ τ (n). Clearly, w is a finite positive integer if (.) holds.
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By a solution of (E), we mean a sequence of real numbers (x(n))n≥–w which satisfies (E)
for all n ≥ . It is clear that, for each choice of real numbers c–w, c–w+, . . . , c–, c, there
exists a unique solution (x(n))n≥–w of (E) which satisfies the initial conditions x(–w) = c–w,
x(–w + ) = c–w+, . . . , x(–) = c–, x() = c. When the initial data is given, we can obtain a
unique solution to (E) by using the method of steps.

By a solution of (E′), we mean a sequence of real numbers (x(n))n≥ which satisfies (E′)
for all n ≥ .

A solution (x(n))n≥–w (or (x(n))n≥) of (E) (or (E′)) is called oscillatory, if the terms x(n)
of the sequence are neither eventually positive nor eventually negative. Otherwise, the
solution is said to be nonoscillatory. An equation is oscillatory if all its solutions oscillate.

In the last few decades, the oscillatory behavior and the existence of positive solutions
of difference equations with deviating arguments have been extensively studied; see, for
example, papers [–] and the references cited therein. Most of these papers concern
the special case where the arguments are nondecreasing, while a small number of these
papers are dealing with the general case where the arguments are non-monotone. See,
for example, [–, , , ] and the references cited therein. The consideration of non-
monotone arguments of other than pure mathematical interest can be justified by the fact
that it approximates (in a more accurate way) the natural phenomena described by an
equation of type (E) or (E′). That is because there are always natural disturbances (e.g. noise
in communication systems) that affect all the parameters of the equation and therefore the
fair (from a mathematical point of view) monotone arguments become non-monotone
almost always. In view of this, for the case of equation (E) (or (E′)) an interesting question
arising is whether we can state oscillation criteria considering the argument τ (n) (or σ (n))
to be not necessarily monotone. In the present paper, we achieve this goal by establishing
criteria which, up to our knowledge, essentially improve all other known results in the
literature.

Throughout this paper, we are going to use the following notations:

k–∑

i=k

A(i) =  and
k–∏

i=k

A(i) = , where A(i) ∈R+,

α = lim inf
n→∞

n–∑

j=τ (n)

p(j), (.)

β = lim inf
n→∞

σ (n)∑

j=n+

q(j), (.)

D(ω) :=

⎧
⎨

⎩
, if ω > /e,
–ω–

√
–ω–ω
 , if ω ∈ [, /e],

MD := lim sup
n→∞

n∑

j=h(n)

p(j),

MA := lim sup
n→∞

ρ(n)∑

j=n

q(j),
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where

h(n) = max
≤s≤n

τ (s) (.)

and

ρ(n) = min
s≥n

σ (s). (.)

Clearly, the sequences h(n) and ρ(n) are nondecreasing with τ (n) ≤ h(n) ≤ n –  for all
n ≥  and σ (n) ≥ ρ(n) ≥ n +  for all n ≥ , respectively.

1.1 Chronological review for retarded difference equations
In , Chatzarakis, Koplatadze and Stavroulakis [, ] proved that if

MD >  (.)

or

α >

e

, (.)

then all solutions of (E) oscillate.
It is obvious that there is a gap between the conditions (.) and (.) when the limit

lim
n→∞

n–∑

j=τ (n)

p(j)

does not exist. How to fill this gap is an interesting problem which has been investigated
by several authors. For example, in , Chatzarakis, Philos and Stavroulakis [] proved
that if

MD >  – D(α), (.)

then all solutions of (E) oscillate.
In , Braverman and Karpuz [] proved that if

lim sup
n→∞

n∑

j=h(n)

p(j)
h(n)–∏

i=τ (j)


 – p(i)

> , (.)

then all solutions of (E) oscillate, while, in , Stavroulakis [] improved (.) to

lim sup
n→∞

n∑

j=h(n)

p(j)
h(n)–∏

i=τ (j)


 – p(i)

>  – D(α). (.)

In , Braverman, Chatzarakis and Stavroulakis [] proved that if for some r ∈N

lim sup
n→∞

n∑

j=h(n)

p(j)a–
r

(
h(n), τ (j)

)
> , (.)
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or

lim sup
n→∞

n∑

j=h(n)

p(j)a–
r

(
h(n), τ (j)

)
>  – D(α), (.)

where

a(n, k) =
n–∏

i=k

[
 – p(i)

]
, ar+(n, k) =

n–∏

i=k

[
 – p(i)a–

r
(
i, τ (i)

)]
, (.)

then all solutions of (E) oscillate.
Recently, Asteris and Chatzarakis [], and Chatzarakis and Shaikhet [] proved that if

for some 	 ∈N

lim sup
n→∞

n∑

i=h(n)

p(i)
h(n)–∏

j=τ (i)


 – p	(j)

>  (.)

or

lim sup
n→∞

n∑

i=h(n)

p(i)
h(n)–∏

j=τ (i)


 – p	(j)

>  – D(α), (.)

where

p	(n) = p(n)

[

 +
n–∑

i=τ (n)

p(i)
h(n)–∏

j=τ (i)


 – p	–(j)

]

(.)

with p(n) = p(n), then all solutions of (E) oscillate.
Lately, Chatzarakis, Pournaras and Stavroulakis [] proved that if for some 	 ∈N

lim sup
n→∞

n∑

i=h(n)

p(i)
h(n)–∏

j=τ (i)


 – P	(j)

> , (.)

or

lim sup
n→∞

n∑

i=h(n)

p(i)
h(n)–∏

j=τ (i)


 – P	(j)

>  – D(α), (.)

or

lim sup
n→∞

n∑

i=h(n)

p(i)
n∏

j=τ (i)


 – P	(j)

>


D(α)
, (.)

where

P	(n) = p(n)

[

 +
n–∑

i=τ (n)

p(i) exp

( n–∑

j=τ (i)

p(j)
j–∏

m=τ (j)


 – P	–(m)

)]

(.)

with P(n) = p(n), then all solutions of (E) are oscillatory.
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1.2 Chronological review for advanced difference equations
In , Chatzarakis and Stavroulakis [] proved that if

MA > , (.)

or

MA >  – ( –
√

 – β), (.)

then all solutions of (E′) oscillate.
In , Braverman, Chatzarakis and Stavroulakis [] proved that if for some r ∈ N

lim sup
n→∞

ρ(n)∑

j=n

q(j)b–
r

(
ρ(n),σ (j)

)
> , (.)

or

lim sup
n→∞

ρ(n)∑

j=n

q(j)b–
r

(
ρ(n),σ (j)

)
>  – D(β), (.)

where

b(n, k) =
k∏

i=n+

[
 – q(i)

]
, br+(n, k) =

k∏

i=n+

[
 – q(i)b–

r
(
i,σ (i)

)]
(.)

then all solutions of (E′) oscillate.
Recently, Asteris and Chatzarakis [], and Chatzarakis and Shaikhet [] proved that if

for some 	 ∈N

lim sup
n→∞

ρ(n)∑

i=n

q(i)
σ (i)∏

j=ρ(n)+


 – q	(j)

> , (.)

or

lim sup
n→∞

ρ(n)∑

i=n

q(i)
σ (i)∏

j=ρ(n)+


 – q	(j)

>  – D(β), (.)

where

q	(n) = q(n)

[

 +
ρ(n)∑

i=n+

q(i)
σ (i)∏

j=ρ(n)+


 – q	–(j)

]

(.)

with q(n) = q(n), then all solutions of (E′) oscillate.

2 Main results and discussion
2.1 Main results
We study further (E) and (E′), and derive new sufficient oscillation conditions, involving
lim sup, which essentially improve all the previous results.
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.. Retarded difference equations
The following simple result is stated to explain why we can consider only the case

p(n) <

λ

, ∀n ≥ , (.)

where λ >  is the smaller root of the transcendental equation λ = eαλ with  < α ≤ /e.

Theorem  Assume that there exists a subsequence θ (n), n ∈ N of positive integers such
that

p
(
θ (n)

) ≥ 
λ

, ∀n ∈N. (.)

Then all solutions of (E) are oscillatory.

Proof Assume, for the sake of contradiction, that (x(n))n≥–w is a nonoscillatory solution
of (E). Then it is either eventually positive or eventually negative. As (–x(n))n≥–w is also a
solution of (E), we may restrict ourselves only to the case where x(n) >  for all large n. Let
n ≥ –w be an integer such that x(n) >  for all n ≥ n. Then there exists n ≥ n such that
x(τ (n)) > , ∀n ≥ n. In view of this, equation (E) becomes

�x(n) = –p(n)x
(
τ (n)

) ≤ , ∀θ (n) ≥ n,

which means that the sequence (x(n)) is eventually nonincreasing.
Taking into account the fact that (.) holds, equation (E) gives

x
(
θ (n) + 

)
= x

(
θ (n)

)
– p

(
θ (n)

)
x
(
τ
(
θ (n)

))

≤ 
λ

x
(
θ (n)

)
– p

(
θ (n)

)
x
(
τ
(
θ (n)

))

≤ 
λ

x
(
θ (n)

)
– x

(
θ (n)

)
p
(
θ (n)

)

= x
(
θ (n)

)( 
λ

– p
(
θ (n)

)) ≤ , for all θ (n) ≥ n,

where θ (n) → ∞ as n → ∞, which contradicts the assumption that x(n) >  for all
n ≥ n. �

The proofs of our main results are essentially based on the following lemmas.
The first lemma is taken from []. For the sake of completeness, we cite its proof here.

Lemma  ([], Lemma ) Assume that (.) holds and α is defined by (.) with α > . Then

lim inf
n→∞

n–∑

j=h(n)

p(j) = lim inf
n→∞

n–∑

j=τ (n)

p(j) = α, (.)

where h(n) is defined by (.).
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Proof Since h(n) is nondecreasing and τ (n) ≤ h(n) ≤ n –  for all n ≥ , we have

n–∑

j=h(n)

p(j) ≤
n–∑

j=τ (n)

p(j).

Therefore

lim inf
n→∞

n–∑

j=h(n)

p(j) ≤ lim inf
n→∞

n–∑

j=τ (n)

p(j).

If (.) does not hold, then there exist α′ >  and a subsequence (θ (n)) such that θ (n) → ∞
as n → ∞ and

lim
n→∞

θ (n)–∑

j=h(θ (n))

p(j) ≤ α′ < α.

But h(θ (n)) = max≤s≤θ (n) τ (s), hence there exists θ ′(n) ≤ θ (n), θ ′(n) ∈ N, such that
h(θ (n)) = τ (θ ′(n)), and consequently

θ (n)–∑

j=h(θ (n))

p(j) =
θ (n)–∑

j=τ (θ ′(n))

p(j) ≥
θ ′(n)–∑

j=τ (θ ′(n))

p(j).

It follows that (
∑θ ′(n)–

j=τ (θ ′(n)) p(j))∞n= is a bounded sequence having a convergent subsequence,
say

θ ′(nk )–∑

j=τ (θ ′(nk ))

p(j) → c ≤ α′, as k → ∞,

which implies that

lim inf
n→∞

n–∑

j=τ (n)

p(j) ≤ α′ < α.

This contradicts (.).
The proof of the lemma is complete. �

Lemma  ([], Lemma .) Assume that (.) holds, h(n) is defined by (.),  < α ≤ /e
and x(n) is an eventually positive solution of (E). Then

lim inf
n→∞

x(n + )
x(h(n))

≥ D(α). (.)

Lemma  Assume that (.) holds, h(n) is defined by (.),  < α ≤ /e and x(n) is an even-
tually positive solution of (E). Then

lim inf
n→∞

x(h(n))
x(n)

≥ λ, (.)

where λ is the smaller root of the transcendental equation λ = eαλ.
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Proof Assume that (x(n))n≥–w is an eventually positive solution of (E). Then there exists
n ≥ –w such that x(n), x(τ (n)) >  for all n ≥ n. In view of this, equation (E) becomes

�x(n) = –p(n)x
(
τ (n)

) ≤ , ∀n ≥ n,

which means that (x(n)) is an eventually nonincreasing sequence of positive numbers.
Taking into account that  < α ≤ /e, it is clear that there exists ε ∈ (,α) such that

n–∑

j=h(n)

p(j) ≥ α – ε for n ≥ n(ε) ≥ n.

We will show that

lim inf
n→∞

x(h(n))
x(n)

≥ λ(ε), (.)

where λ(ε) is the smaller root of the equation

e(α–ε)λ = λ.

Assume, for the sake of contradiction, that (.) is incorrect. Then there exists ε >  such
that

e(α–ε)γ

γ
≥  + ε, (.)

where

γ = lim inf
n→∞

x(h(n))
x(n)

< λ(ε). (.)

On the other hand, for any δ >  there exists n(δ) such that

x(h(n))
x(n)

≥ γ – δ for n ≥ n(δ). (.)

Dividing (E) by x(n) we obtain

�x(n)
x(n)

= –p(n)
x(τ (n))

x(n)

≤ –
x(h(n))

x(n)
p(n) ≤ –(γ – δ)p(n),

or

�x(n)
x(n)

≤ –(γ – δ)p(n).

Summing up last inequality from h(n) to n – , we get

n–∑

j=h(n)

�x(j)
x(j)

≤ –(γ – δ)
n–∑

j=h(n)

p(j) ≤ –(γ – δ)(α – ε). (.)
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But, since ex ≥ x + , ∀x >  we have

n–∑

j=h(n)

�x(j)
x(j)

=
n–∑

j=h(n)

(
x(j + )

x(j)
– 

)

=
n–∑

j=h(n)

exp

(
ln

x(j + )
x(j)

)
–

(
n – h(n)

)

≥
n–∑

j=h(n)

(
 + ln

x(j + )
x(j)

)
–

(
n – h(n)

)

=
(
n – h(n)

)
+

n–∑

j=h(n)

ln
x(j + )

x(j)
–

(
n – h(n)

)

=
n–∑

j=h(n)

ln
x(j + )

x(j)
= ln

x(n)
x(h(n))

,

or

n–∑

j=h(n)

�x(j)
x(j)

≥ ln
x(n)

x(h(n))
. (.)

Combining (.) and (.), we have

ln
x(n)

x(h(n))
≤ –(γ – δ)(α – ε),

i.e.,

x(h(n))
x(n)

≥ e(γ –δ)(α–ε) for n ≥ n(δ).

Therefore,

γ = lim inf
t→∞

x(h(n))
x(n)

≥ e(γ –δ)(α–ε),

which, as δ → , implies

γ ≥ eγ (α–ε).

Combining the last inequality with (.), we obtain

eγ (α–ε)

 + ε
≥ eγ (α–ε),

which is impossible since ε > . Therefore (.) is true. Since λ(ε) → λ as ε → , (.)
implies (.).

The proof of the lemma is complete. �
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Theorem  Assume that (.) and (.) hold, and h(n) is defined by (.). If for some 	 ∈N

lim sup
n→∞

n∑

i=h(n)

p(i) exp

(h(n)–∑

j=τ (i)

p(j)
j–∏

m=τ (j)


 – P̃	(m)

)

> , (.)

where

P̃	(n) = p(n)

[

 +
n–∑

i=τ (n)

p(i) exp

( n–∑

j=τ (i)

p(j)
j–∏

m=τ (j)


 – P̃	–(m)

)]

(.)

with P̃(n) = λp(n) and λ is the smaller root of the transcendental equation λ = eαλ, then
all solutions of (E) are oscillatory.

Proof Assume that (x(n))n≥–w is an eventually positive solution of (E). Then there exists
n ≥ –w such that x(n), x(τ (n)) >  for all n ≥ n. In view of this, equation (E) becomes

�x(n) = –p(n)x
(
τ (n)

) ≤ , ∀n ≥ n,

which means that (x(n)) is an eventually nonincreasing sequence of positive numbers.
Taking this into account along with the fact that τ (n) ≤ h(n), (E) implies

�x(n) + p(n)x
(
h(n)

) ≤ , n ≥ n. (.)

Observe that (.) implies that for each ε >  there exists a n(ε) such that

x(h(n))
x(n)

> λ – ε, for all n ≥ n(ε) ≥ n. (.)

Combining the inequalities (.) and (.) we obtain

�x(n) + p(n)(λ – ε)x(n) < , n ≥ n(ε),

or

�x(n) + P̃(n, ε)x(n) < , n ≥ n(ε), (.)

where

P̃(n, ε) = (λ – ε)p(n).

Applying the discrete Grönwall inequality, we obtain

x(k) > x(n)
n–∏

i=k


 – P̃(i, ε)

, for all n ≥ n(ε). (.)

Dividing (E) by x(n) and summing up from k to n – , we take

n–∑

j=k

�x(j)
x(j)

= –
n–∑

j=k

p(j)
x(τ (j))

x(j)
. (.)
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Also, since ex ≥ x + , x >  we have

n–∑

j=k

�x(j)
x(j)

=
n–∑

j=k

(
x(j + )

x(j)
– 

)

=
n–∑

j=k

[
exp

(
ln

x(j + )
x(j)

)
– 

]

≥
n–∑

j=k

[
ln

x(j + )
x(j)

+  – 
]

=
n–∑

j=k

ln
x(j + )

x(j)
= ln

x(n)
x(k)

,

or

n–∑

j=k

�x(j)
x(j)

≥ ln
x(n)
x(k)

. (.)

Combining (.) and (.), we obtain

–
n–∑

j=k

p(j)
x(τ (j))

x(j)
≥ ln

x(n)
x(k)

,

or

ln
x(k)
x(n)

≥
n–∑

j=k

p(j)
x(τ (j))

x(j)
. (.)

Since τ (j) < j, (.) implies

x
(
τ (j)

)
> x(j)

j–∏

i=τ (j)


 – P̃(i, ε)

. (.)

In view of (.), (.) gives

ln
x(k)
x(n)

>
n–∑

j=k

p(j)
j–∏

i=τ (j)


 – P̃(i, ε)

,

or

x(k) > x(n) exp

( n–∑

j=k

p(j)
j–∏

i=τ (j)


 – P̃(i, ε)

)

. (.)

Summing up (E) from τ (n) to n – , we have

x(n) – x
(
τ (n)

)
+

n–∑

i=τ (n)

p(i)x
(
τ (i)

)
= . (.)
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Setting k = τ (i) in (.) implies

x
(
τ (i)

)
> x(n) exp

( n–∑

j=τ (i)

p(j)
j–∏

m=τ (j)


 – P̃(m, ε)

)

, (.)

so, combining (.) and (.), we find

x(n) – x
(
τ (n)

)
+ x(n)

n–∑

i=τ (n)

p(i) exp

( n–∑

j=τ (i)

p(j)
j–∏

m=τ (j)


 – P̃(m, ε)

)

< .

Multiplying the last inequality by p(n), we get

p(n)x(n) – p(n)x
(
τ (n)

)
+ p(n)x(n)

n–∑

i=τ (n)

p(i) exp

( n–∑

j=τ (i)

p(j)
j–∏

m=τ (j)


 – P̃(m, ε)

)

< ,

which, in view of (E), becomes

�x(n) + p(n)x(n) + p(n)x(n)
n–∑

i=τ (n)

p(i) exp

( n–∑

j=τ (i)

p(j)
j–∏

m=τ (j)


 – P̃(m, ε)

)

< ,

i.e.,

�x(n) + p(n)

[

 +
n–∑

i=τ (n)

p(i) exp

( n–∑

j=τ (i)

p(j)
j–∏

m=τ (j)


 – P̃(m, ε)

)]

x(n) < .

Therefore

�x(n) + P̃(n, ε)x(n) < , (.)

where

P̃(n, ε) = p(n)

[

 +
n–∑

i=τ (n)

p(i) exp

( n–∑

j=τ (i)

p(j)
j–∏

m=τ (j)


 – P̃(m, ε)

)]

.

Repeating the above argument leads to a new estimate,

�x(n) + P̃(n, ε)x(n) < ,

where

P̃(n, ε) = p(n)

[

 +
n–∑

i=τ (n)

p(i) exp

( n–∑

j=τ (i)

p(j)
j–∏

m=τ (j)


 – P̃(m, ε)

)]

.

Continuing by induction, for sufficiently large n we get

�x(n) + P̃	(n, ε)x(n) < , (.)
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where

P̃	(n, ε) = p(n)

[

 +
n–∑

i=τ (n)

p(i) exp

( n–∑

j=τ (i)

p(j)
j–∏

m=τ (j)


 – P̃	–(m, ε)

)]

and

x
(
τ (i)

)
> x

(
h(n)

)
exp

(h(n)–∑

j=τ (i)

p(j)
j–∏

m=τ (j)


 – P̃	(m, ε)

)

. (.)

Summing up (E) from h(n) to n, we have

x(n + ) – x
(
h(n)

)
+

n∑

i=h(n)

p(i)x
(
τ (i)

)
= . (.)

Combining (.) and (.), we have, for all sufficiently large n,

x(n + ) – x
(
h(n)

)

+ x
(
h(n)

) n∑

i=h(n)

p(i) exp

(h(n)–∑

j=τ (i)

p(j)
j–∏

m=τ (j)


 – P̃	(m, ε)

)

< . (.)

The inequality is valid if we omit x(n + ) >  in the left-hand side:

–x
(
h(n)

)
+ x

(
h(n)

) n∑

i=h(n)

p(i) exp

(h(n)–∑

j=τ (i)

p(j)
j–∏

m=τ (j)


 – P̃	(m, ε)

)

< .

Thus, as x(h(n)) > , for all sufficiently large n,

n∑

i=h(n)

p(i) exp

(h(n)–∑

j=τ (i)

p(j)
j–∏

m=τ (j)


 – P̃	(m, ε)

)

< ,

from which by letting n → ∞, we have

lim sup
n→∞

n∑

i=h(n)

p(i) exp

(h(n)–∑

j=τ (i)

p(j)
j–∏

m=τ (j)


 – P̃	(m, ε)

)

≤ .

Since ε may be taken arbitrarily small, this inequality contradicts (.).
The proof of the theorem is complete. �

Theorem  Assume that (.) and (.) hold, h(n) is defined by (.) and  < α ≤ /e. If
for some 	 ∈N

lim sup
n→∞

n∑

i=h(n)

p(i) exp

(h(n)–∑

j=τ (i)

p(j)
j–∏

m=τ (j)


 – P̃	(m)

)

>  – D(α), (.)

where P̃	(n) is defined by (.), then all solutions of (E) are oscillatory.
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Proof Assume, for the sake of contradiction, that (x(n))n≥–w is an eventually positive so-
lution of (E). Then, as in the proof of Theorem , for sufficiently large n, (.) is satisfied,
i.e.,

x(n + ) – x
(
h(n)

)
+ x

(
h(n)

) n∑

i=h(n)

p(i) exp

(h(n)–∑

j=τ (i)

p(j)
j–∏

m=τ (j)


 – P̃	(m, ε)

)

< .

That is,

n∑

i=h(n)

p(i) exp

(h(n)–∑

j=τ (i)

p(j)
j–∏

m=τ (j)


 – P̃	(m, ε)

)

<  –
x(n + )
x(h(n))

,

which gives

lim sup
n→∞

n∑

i=h(n)

p(i) exp

(h(n)–∑

j=τ (i)

p(j)
j–∏

m=τ (j)


 – P̃	(m, ε)

)

≤  – lim inf
n→∞

x(n + )
x(h(n))

.

By Lemma , inequality (.) holds. So the last inequality leads to

lim sup
n→∞

n∑

i=h(n)

p(i) exp

(h(n)–∑

j=τ (i)

p(j)
j–∏

m=τ (j)


 – P̃	(m, ε)

)

≤  – D(α).

Since ε may be taken arbitrarily small, this inequality contradicts (.).
The proof of the theorem is complete. �

Remark  It is clear that the left-hand sides of both conditions (.) and (.) are iden-
tical, also the right-hand side of condition (.) reduces to (.) in the case that α = . So
it seems that Theorem  is the same as Theorem  when α = . However, one may notice
that condition  < α ≤ /e is required in Theorem  but not in Theorem .

Theorem  Assume that (.) and (.) hold, h(n) is defined by (.) and  < α ≤ /e. If
for some 	 ∈N

lim sup
n→∞

n∑

i=h(n)

p(i) exp

( n∑

j=τ (i)

p(j)
j–∏

m=τ (j)


 – P̃	(m)

)

>


D(α)
– , (.)

where P̃	(n) is defined by (.), then all solutions of (E) are oscillatory.

Proof Assume, for the sake of contradiction, that (x(n))n≥–w is an eventually solution of
(E). Then, as in the proof of Theorem , for sufficiently large n, (.) is satisfied. Therefore

x
(
τ (i)

)
> x(n + ) exp

( n∑

j=τ (i)

p(j)
j–∏

m=τ (j)


 – P̃	(m, ε)

)

. (.)

Summing up (E) from h(n) to n, we have

x(n + ) – x
(
h(n)

)
+

n∑

i=h(n)

p(i)x
(
τ (i)

)
= ,
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which, in view of (.), gives

x(n + ) – x
(
h(n)

)
+

n∑

i=h(n)

p(i)x(n + ) exp

( n∑

j=τ (i)

p(j)
j–∏

m=τ (j)


 – P̃	(m, ε)

)

< ,

or

x(n + ) – x
(
h(n)

)
+ x

(
h(n)

) n∑

i=h(n)

p(i)
x(n + )
x(h(n))

exp

( n∑

j=τ (i)

p(j)
j–∏

m=τ (j)


 – P̃	(m, ε)

)

< .

Thus, for all sufficiently large n,

n∑

i=h(n)

p(i) exp

( n∑

j=τ (i)

p(j)
j–∏

m=τ (j)


 – P̃	(m, ε)

)

<
x(h(n))
x(n + )

– .

Letting n → ∞, we take

lim sup
n→∞

n∑

i=h(n)

p(i) exp

( n∑

j=τ (i)

p(j)
j–∏

m=τ (j)


 – P̃	(m, ε)

)

≤ lim sup
n→∞

x(h(n))
x(n + )

– ,

which, in view of (.), gives

lim sup
n→∞

n∑

i=h(n)

p(i) exp

( n∑

j=τ (i)

p(j)
j–∏

m=τ (j)


 – P̃	(m, ε)

)

≤ 
D(α)

– .

Since ε may be taken arbitrarily small, this inequality contradicts (.).
The proof of the theorem is complete. �

Remark  If P̃	(n) ≥  then (.) guarantees that all solutions of (E) are oscillatory. In
fact, (.) gives

�x(n) + x(n) ≤ ,

which means that x(n+) ≤ . This contradicts x(n) >  for all n ≥ n. Thus, in Theorems ,
 and  we consider only the case P̃	(n) < . Another conclusion that can be drawn from
the above, is that if at some point through the iterative process, we get a value of 	, for
which P̃	(n) ≥ , then the process terminates, since in any case, all solutions of (E) will
be oscillatory. The value of 	, that is, the number of iterations, obviously depends on the
coefficient p(n) and the form of the non-monotone argument τ (n).

.. Advanced difference equations
Similar oscillation theorems for the (dual) advanced difference equation (E′) can be de-
rived easily. The proofs of these theorems are omitted, since they are quite similar to the
proofs for a retarded equation.
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The following simple result is stated to explain why we can consider only the case

q(n) <

λ

, ∀n ∈N, (.)

where λ >  is the smaller root of the transcendental equation λ = eβλ with  < β ≤ /e.

Theorem  Assume that there exists a subsequence θ (n), n ∈ N of positive integers such
that

q
(
θ (n)

) ≥ 
λ

, ∀n ∈N. (.)

Then all solutions of (E′) are oscillatory.

Theorem  Assume that (.) and (.) hold, and ρ(n) is defined by (.). If for some
	 ∈N

lim sup
n→∞

ρ(n)∑

i=n

q(i) exp

(
σ (i)∑

j=ρ(n)+

q(j)
σ (j)∏

m=j+


 – Q̃	(m)

)

> , (.)

where

Q̃	(n) = q(n)

[

 +
σ (n)∑

i=n+

q(i) exp

(
σ (i)∑

j=n+

q(j)
σ (j)∏

m=j+


 – Q̃	–(m)

)]

(.)

with Q̃(n) = λq(n) and λ is the smaller root of the transcendental equation λ = eβλ, then
all solutions of (E′) are oscillatory.

Theorem  Assume that (.) and (.) hold, ρ(n) is defined by (.) and  < β ≤ /e. If
for some 	 ∈N

lim sup
n→∞

ρ(n)∑

i=n

q(i) exp

(
σ (i)∑

j=ρ(n)+

q(j)
σ (j)∏

m=j+


 – Q̃	(m)

)

>  – D(β), (.)

where Q̃(n) is defined by (.), then all solutions of (E′) are oscillatory.

Remark  It is clear that the left-hand sides of both conditions (.) and (.) are iden-
tical, also the right hand side of condition (.) reduces to (.) in the case that β = . So
it seems that Theorem  is the same as Theorem  when β = . However, one may notice
that condition  < β ≤ /e is required in Theorem  but not in Theorem .

Theorem  Assume that (.) and (.) hold, ρ(n) is defined by (.) and  < β ≤ /e. If
for some 	 ∈N

lim sup
n→∞

ρ(n)∑

i=n

q(i) exp

(
σ (i)∑

j=n

q(j)
σ (j)∏

m=j+


 – Q̃	(m)

)

>


D(β)
– , (.)

where Q̃(n) is defined by (.), then all solutions of (E′) are oscillatory.
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Remark  Similar comments to those in Remark  can be made for Theorems ,  and ,
concerning equation (E′).

.. Difference inequalities
A slight modification in the proofs of Theorems - and - leads to the following results
about deviating difference inequalities.

Theorem  Assume that all conditions of Theorem  [] or  [] or  [] hold. Then
(i) the retarded [advanced] difference inequality

�x(n) + p(n)x
(
τ (n)

) ≤ , n ∈N
[∇x(n) – q(n)x

(
σ (n)

) ≥ , n ∈N
]
,

has no eventually positive solutions;
(ii) the retarded [advanced] difference inequality

�x(n) + p(n)x
(
τ (n)

) ≥ , n ∈N
[∇x(n) – q(n)x

(
σ (n)

) ≤ , n ∈N
]
,

has no eventually negative solutions.

2.2 Discussion
In the present paper we are concerned with the oscillation of a linear delay or advanced
difference equation with non-monotone argument. New sufficient conditions have been
established for the oscillation of all solutions of (E) and (E′). These conditions include
(.), (.), (.), (.), (.) and (.) of Theorems , , , ,  and , respectively,
and are based on an iterative method.

The main advantage of these conditions is that they improve all the oscillation condi-
tions in the literature. Conditions (.) and (.) improve the non-iterative conditions
that are listed in the introduction, namely conditions (.), (.) and (.), respectively.
This conclusion becomes evident immediately by inspecting the left-hand side of (.),
(.) and the left-hand side of (.), (.) and (.).

The improvement of (.) and (.) as to the other iterative conditions, namely (.)
(for r > ), (.) (for 	 > ), (.) (for 	 > ) and (.) (for r > ), (.) (for 	 > ), is that
they require far fewer iterations to establish oscillation, than the other conditions. This
advantage can easily be verified computationally, by running the Matlab programs and
comparing the number of iterations required by each condition to establish oscillation
(see Section ).

Similar observations and comments can be made for conditions (.) and (.). It
is to be pointed out that conditions (.) and (.) are of a type different from all the
known oscillation conditions. Nevertheless, in Example , it is shown that (.) implies
oscillation, while other known ones fail.

3 Examples and comments
In this section, examples illustrate cases when the results of the present paper imply oscil-
lation while previously known results fail. The examples not only illustrate the significance
of main results, but also serve to indicate the high degree of improvement, compared to
the previous oscillation criteria in the literature. All the calculations were made in Matlab.
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Figure 1 The graphs of τ (n) and h(n).

Example  (Taken and adapted from []) Consider the retarded difference equation

�x(n) +


,
x
(
τ (n)

)
= , n ∈ N, (.)

with (see Figure (a))

τ (n) =

⎧
⎪⎪⎨

⎪⎪⎩

n – , if n = μ,

n – , if n = μ + ,

n – , if n = μ + ,

μ ∈N.

By (.), we see (Figure (b)) that

h(n) = max
≤s≤n

τ (s) =

⎧
⎪⎪⎨

⎪⎪⎩

n – , if n = μ,

n – , if n = μ + ,

n – , if n = μ + ,

μ ∈ N.

It is easy to see that

α = lim inf
n→∞

n–∑

j=τ (n)

p(j) = lim inf
μ→∞

μ–∑

j=μ–


,

= .

and, therefore, the smaller root of e.λ = λ is λ = ..
Clearly, p(n) = 

, = . < /λ � ., i.e., (.) is satisfied.
Observe that the function F	 : N →R+ defined as

F	(n) =
n∑

i=h(n)

p(i) exp

(h(n)–∑

j=τ (i)

p(j)
j–∏

m=τ (j)


 – P̃	(m)

)
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attains its maximum at n = μ + , μ ∈N, for every 	 ∈N. Specifically,

F(μ + ) =
μ+∑

i=μ–

p(i) exp

(μ–∑

j=τ (i)

p(j)
j–∏

m=τ (j)


 – P̃(m)

)

with

P̃(m) = p(m)

[

 +
m–∑

k=τ (m)

p(k) exp

( m–∑

w=τ (k)

p(w)
w–∏

v=τ (w)


 – λp(v)

)]

.

By using an algorithm on Matlab software, we obtain

F(μ + ) � .

and therefore

lim sup
n→∞

F(n) � . > .

That is, condition (.) of Theorem  is satisfied for 	 = . Therefore, all solutions of
equation (.) are oscillatory.

Observe, however, that

MD = lim sup
μ→∞

μ+∑

j=μ–

p(j) =  · 
,

= . < ,

α = . <

e

,

. <  – D(α) � .,

lim sup
n→∞

n∑

j=h(n)

p(j)
h(n)–∏

i=τ (j)


 – p(i)

= lim sup
μ→∞

μ+∑

j=μ–


,

μ–∏

i=τ (j)


 – 

,

=


,
· lim sup

μ→∞

{ μ–∏

i=τ (μ–)


 – 

,
+

μ–∏

i=τ (μ)


 – 

,

+
μ–∏

i=τ (μ+)


 – 

,
+

μ–∏

i=τ (μ+)


 – 

,

}

=


,
· lim sup

μ→∞

{ μ–∏

i=μ–


 – 

,
+

μ–∏

i=μ–


 – 

,

+
μ–∏

i=μ–


 – 

,
+

μ–∏

i=μ–


 – 

,

}

=


,
· lim sup

μ→∞

{(


 – 
,

)

+  +  +


 – 
,

}
� . < ,



Chatzarakis and Jadlovská Journal of Inequalities and Applications  (2017) 2017:173 Page 20 of 24

. <  – D(α) � .,

lim sup
n→∞

n∑

i=h(n)

p(i)
h(n)–∏

j=τ (i)


 – p(j)

� .,

. <  – D(α) � .,

lim sup
n→∞

n∑

i=h(n)

p(i)
h(n)–∏

j=τ (i)


 – P(j)

� .,

. <  – D(α) � .,

lim sup
n→∞

n∑

i=h(n)

p(i)
n∏

j=τ (i)


 – P(j)

� . <


D(α)
� ..

That is, none of conditions (.), (.), (.), (.) ≡ (.) (for r = ), (.) ≡ (.) (for
r = ), (.) (for 	 = ), (.) (for 	 = ), (.) (for 	 = ), (.) (for 	 = ) and (.) (for
	 = ) is satisfied.

Notation. It is worth noting that the improvement of condition (.) to the correspond-
ing condition (.) is significant, approximately .%, if we compare the values on the
left-side of these conditions. Also, the improvement compared to conditions (.), (.)
and (.) is very satisfactory, around .%, .% and .%, respectively.

Finally, observe that the conditions (.)-(.), (.)-(.) and (.)-(.) do not lead
to oscillation for the first iteration. On the contrary, condition (.) is satisfied from the
first iteration. This means that our condition is better and much faster than (.)-(.),
(.)-(.) and (.)-(.).

Example  Consider the advanced difference equation

∇x(n) –


,
x
(
σ (n)

)
= , n ∈N, (.)

with (see Figure (a))

σ (n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

n + , if n = μ + ,

n + , if n = μ + ,

n + , if n = μ + ,

n + , if n = μ + ,

n + , if n = μ + ,

μ ∈N.

By (.), we see (Figure (b)) that

ρ(n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

n + , if n = μ + ,

n + , if n = μ + ,

n + , if n = μ + ,

n + , if n = μ + ,

n + , if n = μ + ,

μ ∈N.
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Figure 2 The graphs of σ (n) and ρ(n).

It is easy to see that

β = lim inf
n→∞

σ (n)∑

j=n+

q(j) = lim inf
μ→∞

μ+∑

j=μ+

q(j) =


,
= ..

Therefore, the smaller root of e.λ = λ is λ = . and


D(β)

–  � ..

Clearly, q(n) = 
, = . < /λ � ., i.e., (.) is satisfied.

Observe that the function F	 : N →R+ defined as

F	(n) =
ρ(n)∑

i=n

q(i) exp

(
σ (i)∑

j=n

q(j)
σ (j)∏

m=j+


 – Q̃	(m)

)

,

attains its maximum at n = μ + , μ ∈N, for every 	 ∈ N. Specifically,

F(μ + ) =
μ+∑

i=μ+

q(i) exp

(
σ (i)∑

j=μ+

q(j)
σ (j)∏

m=j+


 – Q̃(m)

)

with

Q̃(m) = q(m)

[

 +
σ (m)∑

k=m+

q(k) exp

(
σ (k)∑

w=m+

q(w)
σ (w)∏

v=w+


 – λq(v)

)]

.

By using an algorithm on Matlab software, we obtain

F(μ + ) � .
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and therefore

lim sup
n→∞

F(n) � . >


D(β)
–  � ..

That is, condition (.) of Theorem  is satisfied for 	 = . Therefore, all solutions of
equation (.) are oscillatory.

Observe, however, that

MA = lim sup
n→∞

ρ(n)∑

j=n

q(j) = lim sup
μ→∞

μ+∑

j=μ+

q(j) = . < ,

. <  – ( –
√

 – β) � .,

lim sup
n→∞

ρ(n)∑

j=n

q(j)b–


(
ρ(n),σ (j)

)

= lim sup
μ→∞

μ+∑

j=μ+

q(j)b–


(
μ + ,σ (j)

)

=


,
· lim sup

μ→∞
[
b–


(
μ + ,σ (μ + )

)
+ b–


(
μ + ,σ (μ + )

)

+ b–


(
μ + ,σ (μ + )

)
+ b–


(
μ + ,σ (μ + )

)]

=


,
· lim sup

μ→∞

[
b–

 (μ + , μ + ) + b–
 (μ + , μ + )

+ b–
 (μ + , μ + ) + b–

 (μ + , μ + )
]

=


,
·
[


( – 

, )
+  +  +


( – 

, )

]
� . < ,

. <  – D(β) � .,

lim sup
n→∞

ρ(n)∑

i=n

q(i)
σ (i)∏

j=ρ(n)+


 – q(j)

� . < ,

. <  – D(β) � ..

That is, none of conditions (.), (.), (.) (for r = ), (.) (for r = ), (.) (for 	 = )
and (.) (for 	 = ) is satisfied.

Notation. It is worth noting that the conditions (.), (.), (.) and (.) do not
lead to oscillation for the first iteration. On the contrary, condition (.) is satisfied from
the first iteration. This means that our condition is better and much faster than (.),
(.), (.) and (.).

Remark  Similarly, one can construct examples, illustrating the other main results stated
in the paper.
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4 Conclusions
In this paper, new sufficient oscillation conditions for all solutions of (E) and (E′) have been
established. These conditions have been derived using an iterative technique. As a result,
the conditions in this paper significantly improve on the previously reported conditions
that are reviewed in the introduction. The results are illustrated by two examples, showing
that our conditions achieve a significant improvement over the known conditions. That
improvement gets even greater by appropriately selecting the coefficients p(n) and q(n)
and the non-monotone arguments τ (n) and σ (n).

The conditions in this paper involve lim sup. Thus, an apparent research objective for
future work can be establishing similar iterative techniques, for oscillation conditions, in-
volving lim inf.
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