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Abstract
A novel construction of compactly supported orthogonal scaling functions and
wavelets with spline functions is presented in this paper. LetMn be the center
B-spline of order n, except for the case of order one, we knowMn is not orthogonal.
But by the formula of orthonormalization procedure, we can construct an orthogonal
scaling function corresponding toMn. However, unlikeMn itself, this scaling function
no longer has compact support. To induce the orthogonality while keeping the
compact support ofMn, we put forward a simple, yet efficient construction method
that uses the formula of orthonormalization procedure and the weighted average
method to construct the two-scale symbol of some compactly supported orthogonal
scaling functions.
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1 Introduction
It is well known that B-splines have many useful properties, and they are widely used in
practical problems. But except for the case of order one, B-splines of other orders are
not orthogonal []. Thus, in order to get the property of orthogonality, many researchers
are interested in the study of constructing orthogonal wavelets with B-splines [–]. For
instance, Franklin wavelet and Battle-Lemarié wavelets [, ], but these wavelets are not
compactly supported. In [] Goodman gave a construction, for any n ≥ , of a space S of
spline functions of degree n– with simple knots in 

Z which is generated by a triple of re-
finable, orthogonal functions with compact support. Subsequently, Cho and Lai simplified
Goodman’s constructive steps for compactly supported orthonormal scaling functions
and provided an inductive method for constructing compactly supported orthonormal
wavelets []. In [] Nguyen and He presented a method to construct orthogonal spline-
type scaling functions with B-splines. They multiplied a class of polynomial function fac-
tors to the two-scale symbol of the B-splines so that they become the two-scale symbol of
a spline-type orthogonal compactly supported function. Different from above, firstly, we
use orthonormalization procedure so that splines become orthogonal scaling functions.
Unfortunately, the orthogonal scaling functions are not compactly supported. So, in order
to make them have the property of compact support, we use the weighted average method
to eliminate the denominator of the two-scale symbol, which is the corresponding orthog-
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onal scaling function. And from examples in Section , we found that this method is simple
and flexible.

The goal of this section is to prepare for the next chapter of theorem proving. For this
reason, we need the following auxiliary results.

Definition . ([]) A Multiresolution Analysis (MRA) comprises a sequence of closed
subspaces Vj, j ∈ Z, of L(R) satisfying

(i) (Nested) Vj ⊂ Vj+ for all j ∈ Z;
(ii) (Density)

⋃
j∈Z Vj = L(R);

(iii) (Separation)
⋂

j∈Z Vj = {};
(iv) (Scaling) f (x) ∈ Vj if and only if f (x) ∈ Vj+ for all j ∈ Z;
(v) (Basis) There exists a function φ ∈ V such that {φ(x – k) : k ∈ Z} is an orthonormal

basis or a Riesz basis for V.

The function φ defined as in Definition . is called the scaling function of the given
MRA. From (iv), we know that φ ∈ V is also in V. Since {φ,k := /φ(x – k) : k ∈ Z} is
a Riesz basis of V, then there exists a unique l-sequence {pk} satisfying the ‘two-scale
relation’

φ(x) =
∞∑

k=–∞
pkφ(x – k). (.)

This sequence {pk} is called the ‘two-scale sequence’ of φ. With this l-sequence, we define

P(ω) =



∞∑

k=–∞
pke–iωk . (.)

Then the Fourier transform formulation of identity (.) can be written as

φ̂(ω) = P
(

ω



)

φ̂

(
ω



)

. (.)

We call P(ω) the two-scale symbol of the scaling function φ. Noticing that {φ(x–k) : k ∈ Z}
is an orthonormal basis, we have the following equivalent statements of orthogonality, see
also in [, –].

Theorem . Suppose that P(ω) = 

∑

k pke–iωk is a polynomial satisfying the following
conditions:

P() = , (.)
∣
∣P(ω)

∣
∣ +

∣
∣P(ω + π )

∣
∣ = , (.)

∣
∣P(ω)

∣
∣ > , ∀ – π/ < ω < π/. (.)

Then P(ω) is the two-scale symbol of an orthogonal scaling function.
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Riesz lemma Let a, . . . , aN be real numbers and aN �=  such that

A(ω) :=
a


+

N∑

k=

ak cos(kω) ≥ , ∀ω ∈R. (.)

Then there exists a polynomial

B(z) =
N∑

k=

bkzk (.)

with real coefficients and exact degree N satisfying

∣
∣B(z)

∣
∣ = A(ω), z = e–iω. (.)

2 Constructing compactly supported orthogonal scaling functions
In this section we will give a new method to construct compactly supported orthogonal
scaling functions and wavelets by a center cardinal B-spline. The mth order center cardinal
B-spline Mm is defined as follows, see also [, ].

Mm(x) =


(m – )!

m∑

k=

(–)k

(
m
k

)(

x +
m


– k
)m–

+
. (.)

It is well known that Mm(x) is symmetric with respect to the origin and supp Mm =
[–m/, m/].

Denote

�m(ω) =
∑

k∈Z

∣
∣M̂m(ω + kπ )

∣
∣. (.)

Then, for any m ≥ , there exists a positive constant Am such that

Am ≤ �m(ω) ≤ , ∀ω ∈R. (.)

Furthermore, it is easy to verify that

�m(ω) =  – 
m–∑

k=

Mm(k) sin
(

kω



)

. (.)

Note that the scaling function Mm(x) is semi-orthogonal for m ≥ . Next, we give a
method to obtain the orthogonal scaling function through the B-spline Mm. We define a
function ϕm(x) through its Fourier transform

ϕ̂m(ω) =
M̂m(ω)

(
∑

k∈Z |M̂m(ω + kπ )|)/
. (.)

Since �m(ω) =
∑

k∈Z |M̂m(ω + kπ )|, then

ϕ̂m(ω) = �m(ω)–/M̂m(ω). (.)
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By (.) and (.), we can obtain Pm(ω),

Pm(ω) =
ϕ̂m(ω)
ϕ̂m(ω)

=
(

�m(ω)
�m(ω)

)/

cosm(ω/), (.)

which is the two-scale symbol of the scaling function ϕm(x). It is well known that the scal-
ing function ϕm(x) determined by (.) is orthogonal but not compactly supported. So next
we concentrate our effort on the study of constructing compactly supported orthogonal
scaling functions.

Note that the presence of the denominator in (.) can bring about scaling functions
which are not compactly supported. Therefore, we multiply a function factor to the two-
scale symbol Pm(ω) and obtain the following Theorem . and some corollaries.

Theorem . For i = , . . . , N , suppose that hi(ω) is the two-scale symbol of an orthogonal
scaling function, and let

∣
∣H(ω)

∣
∣ =

N∑

i=

λi(ω)
∣
∣hi(ω)

∣
∣, (.)

where λi(ω) is a π -periodic function and satisfies the following conditions:

⎧
⎨

⎩

 ≤ λi(ω) ≤ ,
∑N

i= λi(ω) = .

Then H(ω) is the two-scale symbol of an orthogonal scaling function.

Proof It is easy to observe that H(ω) satisfies statements (.) and (.) in Theorem .,
now we only need to prove that H(ω) also satisfies |H(ω)| + |H(ω + π )| = . Since hi(ω)
is the two-scale symbol of an orthogonal scaling function, we have

∣
∣hi(ω)

∣
∣ +

∣
∣hi(ω + π )

∣
∣ = , for i = , . . . , N .

Thus

∣
∣H(ω)

∣
∣ +

∣
∣H(ω + π )

∣
∣ =

N∑

i=

λi(ω)
∣
∣hi(ω)

∣
∣ +

N∑

i=

λi(ω + π )
∣
∣hi(ω + π )

∣
∣

=
N∑

i=

λi(ω)
∣
∣hi(ω)

∣
∣ +

N∑

i=

λi(ω)
∣
∣hi(ω + π )

∣
∣

=
N∑

i=

λi(ω) = ,

which by Theorem . implies that H(ω) is the two-scale symbol of an orthogonal scaling
function. �
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Corollary . Let m ≥  be any integer, λ(ω) = �m(ω), λ(ω) =  – �m(ω), Pm(ω) be
defined as in (.). Suppose

∣
∣̃Pm(ω)

∣
∣ =

(

 – 
m–∑

k=

Mm(k) sin
(

kω



))

cosm(ω/)

+ 
m–∑

k=

Mm(k) sin(kω) (.)

and

∣
∣Hm(ω)

∣
∣ = λ(ω)

∣
∣Pm(ω)

∣
∣ + λ(ω)

∣
∣̃Pm(ω)

∣
∣. (.)

Then Hm(ω) is a two-scale symbol of some compactly supported orthogonal scaling function.

Proof By (.) and (.), we have

Pm(ω) =
(  – 

∑m–
k= Mm(k) sin( kω

 )
 – 

∑m–
k= Mm(k) sin(kω)

)/

cosm(ω/), (.)

therefore

∣
∣Pm(ω)

∣
∣ =

(  – 
∑m–

k= Mm(k) sin( kω
 )

 – 
∑m–

k= Mm(k) sin(kω)

)

cosm(ω/). (.)

Since Pm(ω) is a two-scale symbol of some orthogonal scaling function, we obtain

 =
∣
∣Pm(ω)

∣
∣ +

∣
∣Pm(ω + π )

∣
∣

=

((

 – 
m–∑

k=

Mm(k) sin
(

kω



))

cosm
(

ω



)

+

(

 – 
m–∑

k=

Mm(k) sin
(

k(ω + π )


))

sinm
(

ω



))

/
(

 – 
m–∑

k=

Mm(k) sin(kω)

)

.

Multiplying  – 
∑m–

k= Mm(k) sin(kω) on both sides in the above equation, we obtain

 – 
m–∑

k=

Mm(k) sin(kω)

=

(

 – 
m–∑

k=

Mm(k) sin kω



)

cosm ω



+

(

 – 
m–∑

k=

Mm(k) sin k(ω + π )


)

sinm ω


,
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it means that

 =

(

 – 
m–∑

k=

Mm(k) sin kω



)

cosm ω


+

(

 – 
m–∑

k=

Mm(k) sin k(ω + π )


)

sinm ω



+ 
m–∑

k=

Mm(k) sin(kω). (.)

Therefore

∣
∣̃Pm(ω)

∣
∣ +

∣
∣̃Pm(ω + π )

∣
∣ = . (.)

By Theorem . and the Riesz lemma, we know that Hm(ω) is a two-scale symbol of some
compactly supported orthogonal scaling function. �

Corollary . Let m, . . . , mN ≥  be any integer. Define hi(ω) = Pmi (ω) as in (.) and
|̃Pmi (ω)| as in (.) for i = , . . . , N . Assume that

hN+(ω) =

√
√
√
√

( N∑

i=

∣
∣̃Pmi (ω)

∣
∣

)
/

N

and

∣
∣h(ω)

∣
∣ =

N+∑

i=

λi(ω)
∣
∣hi(ω)

∣
∣, (.)

where λi(ω) satisfies the following conditions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λi(ω) = aig(ω) (i = , . . . , N),
∑N

i= ai(ω) = ,  ≤ ai ≤ ,

g(ω) = �m (ω) × �m (ω) × · · · × �mN (ω),

λN+(ω) =  – g(ω).

Then h(ω) is the two-scale symbol of a compactly supported orthogonal scaling function.

The proof is analogous to that of Corollary ..

Corollary . Define

λ(ω) =
(
a + b sin ω + c sin(ω)

)
(

 –



sin ω

)

and

λ(ω) =
(
d + e sin ω

)
(

 –



sin ω –



sin(ω)

)

,
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where the real numbers a, b, c, d, e satisfy

 ≤ a ≤ , b =



–



a, c =



–
a


, d =  – a, e =




a – .

Moreover, let

∣
∣P(ω)

∣
∣ = λ(ω)

∣
∣P(ω)

∣
∣ + λ(ω)

∣
∣P(ω)

∣
∣, (.)

where P(ω) and P(ω) are defined as in (.). Then P(ω) is the two-scale symbol of a com-
pactly supported orthogonal scaling function.

To facilitate our proof of Corollary ., we need the following result.

Lemma . Define

λ(ω) =
(
a + b sin ω + c sin(ω)

)
(

 –



sin ω

)

and

λ(ω) =
(
d + e sin ω

)
(

 –



sin ω –



sin(ω)

)

,

where a, b, c, d and e are real numbers. Then there exist real numbers a, b, c, d and e
satisfying

λ(ω) + λ(ω) = . (.)

Proof By (.) we obtain

 = a + d +
{

b –



a –



d + e –
[(




d – c
)

cos ω +
(




b +



e
)

sin ω

]

–
(




c +
e



)

sin ω

}

sin ω.

Now, consider the system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a + d = ,

b – 
 a – 

 d + e = 
 b + 

 e,

 b + 

 e = 
 d – c,


 c + e

 = .

(.)

It is easy to check that the pair number (a, b, c, d, e) satisfying

b =



–



a, c =



–
a


, d =  – a, e =




a – 

is the solution of (.), also the solution of (.). �
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Lemma . Let  ≤ x ≤  and  ≤ a ≤ . Then

 + x +
(




–
a


)

x +
(

a


–



)

x +
(

 –
a


)

x +
(

a


–



)

x

> . (.)

Proof Define

f (a) =  + x +



x –



x + x –



x

+
(

–



x +



x –



x +



x
)

a, (.)

one obtains f ′(a) = – 
 x + 

 x – 
 x + 

 x, then

⎧
⎨

⎩

f ′(a) ≤ , x ∈ [, .],

f ′(a) ≥ , x ∈ [., ].
(.)

Now define
⎧
⎨

⎩

g(x) =  + x + 
 x – 

 x + x – 
 x,

g(x) = – 
 x + 

 x – 
 x + 

 x,

then
⎧
⎨

⎩

g ′
(x) =  + 

 x – 
 x + x – 

 x,

g ′
(x) = – 

 x + 
 x – 

 x + 
 x.

(.)

Therefore

g(x) ≥ , g(x) > –., ∀x ∈ [, .].

This means that f (a) > . for all x ∈ [, .] and a ∈ [, ].
Similarly, one can obtain f (a) > . × – for all x ∈ [., ] and a ∈ [, ]. This

completes the proof. �

Proof of Corollary . By calculation, we have

∣
∣P(ω)

∣
∣ =

[

 +  sin ω


+

(



–
a


)

sin ω


+

(
a


–



)

sin ω



+
(

 –
a


)

sin ω


+

(
a


–



)

sin ω



]

cos ω


.

Denote

A(ω) =  +  sin ω


+

(



–
a


)

sin ω


+

(
a


–



)

sin ω



+
(

 –
a


)

sin ω


+

(
a


–



)

sin ω


,
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and note that A(ω) is an even and π-periodic function. We obtain from Lemma .

A(ω) > , ∀ω ∈R.

Therefore, |P(ω)| > .
Noticing that P(ω) and P(ω) are the two-scale symbols of orthogonal scaling functions

and λ(ω) + λ(ω) = , we have

∣
∣P(ω)

∣
∣ +

∣
∣P(ω + π )

∣
∣ = .

Now applying Theorem . and the Riesz lemma, we know that P(ω) is a two-scale sym-
bol of some compactly supported orthogonal scaling function. �

3 Examples
In this section, we give three examples to show our construction scheme introduced in
the above section.

Example . For m = , from (.) and (.), we have

�(ω) =  – 
∑

k=

M(k) sin
(

kω



)

=  –



sin ω


–




sin ω

and

∣
∣P(ω)

∣
∣ =

(  – 
 sin ω

 – 
 sin ω

 – 
 sin ω – 

 sin(ω)

)

cos(ω/), (.)

respectively.
Moreover, we have

∣
∣̃P(ω)

∣
∣ =

(

 –



sin ω


–




sin ω

)

cos(ω/) +



sin ω +



sin(ω).

Now, we obtain from (.) that

∣
∣H(ω)

∣
∣ =

(

 –



sin ω


–




sin ω

)

cos(ω/) +
(




sin ω +



sin(ω)

)

×
((

 –



sin ω


–




sin ω

)

cos(ω/) +



sin ω +



sin(ω)

)

.

Therefore, by the Riesz lemma, we have

H(z) = –. – .z – .z – .z – .z

– .z + .z + .z + .z + .z.
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Figure 1 φ3(x) and ψ3(x) from Example 3.1.

By (.) and (.) we obtain the two-scale relation

φ(x) = –.φ(x) – .φ(x – )

– .φ(x – ) – .φ(x – )

– .φ(x – ) – .φ(x – )

+ .φ(x – ) + .φ(x – )

+ .φ(x – ) + .φ(x – ),

and the corresponding wavelet

ψ(x) = .φ(x + ) – .φ(x + )

+ .φ(x + ) – .φ(x + )

– .φ(x + ) + .φ(x + )

– .φ(x + ) + .φ(x + )

– .φ(x) + .φ(x – ).

In Figure , we show the graphs of φ(x) and ψ(x), respectively.

Example . Consider m = , m = , a = 
 and a = 

 , then by Corollary ., we have

∣
∣h(ω)

∣
∣ =




(

 –



sin ω –



sin(ω)

)(

 –



sin ω



)

cos ω



+



(

 –



sin ω

)(

 –



sin ω


–




sin ω

)

cos ω



+



(



sin ω +



sin(ω) –




sin ω –



sin ω sin(ω)

)

×
((

 –



sin ω



)

cos ω


+




sin ω

+
(

 –



sin ω


–




sin ω

)

cos ω


+




sin ω +



sin(ω)

)

.
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Figure 2 φ(x) and ψ (x) from Example 3.2.

Similar to the discussion of Example ., we obtain h(z), φ(x) and ψ(x)

h(z) = –. + .z – .z

+ .z – .z + .z

– .z + .z – .z

+ .z + .z + .z,

φ(x) = –.φ(x) + .φ(x – )

– .φ(x – ) + .φ(x – )

– .φ(x – ) + .φ(x – )

– .φ(x – ) + .φ(x – )

– .φ(x – ) + .φ(x – )

+ .φ(x – ) + .φ(x – )

and

ψ(x) = .φ(x + ) – .φ(x + )

+ .φ(x + ) + .φ(x + )

+ .φ(x + ) + .φ(x + )

+ .φ(x + ) + .φ(x + )

+ .φ(x + ) + .φ(x + )

+ .φ(x) + .φ(x – ),

respectively (see Figure ).

Example . Let a = , then, by Corollary ., b = –, c = , d = –, e = . By (.), we
have

∣
∣P(ω)

∣
∣ =

(
 – sin ω

)
(

 –



sin ω



)

cos ω


– 

(

 –



sin ω


–




sin ω

)

cos ω


.
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Figure 3 φ(x) and ψ (x) from Example 3.3.

Now from the Riesz lemma, we have

P(z) = . – .z – .z + .z + .z + .z.

Then we obtain from (.) and (.) the two-scale relation

φ(x) = .φ(x) – .φ(x – ) – .φ(x – ) + .φ(x – )

+ .φ(x – ) + .φ(x – ),

and the corresponding wavelet ψ(x) (see Figure )

ψ(x) = .φ(x + ) – .φ(x + ) + .φ(x + ) + .φ(x + )

– .φ(x) – .φ(x – ).

4 Conclusion
A simple and flexible method for constructing compactly supported orthogonal scaling
functions is presented in this paper. Using this method, we can construct orthonormal
compactly supported scaling functions from B-splines. Note that the change of λi (i =
, . . . , N ) can cause the change of the scaling functions corresponding to two-scale symbol
H(ω) in (.). Therefore we can provide the user with different scaling functions with
the same compact support. Similarly, then we can obtain different compactly supported
scaling functions by changing the parameters in (.).
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