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Abstract
In this study, we devote ourselves to establishing a stabilized mixed finite element
(MFE) reduced-order extrapolation (SMFEROE) model holding seldom unknowns for
the two-dimensional (2D) unsteady conduction-convection problem via the proper
orthogonal decomposition (POD) technique, analyzing the existence and uniqueness
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the correctness and dependability of the SMFEROE model by means of numerical
simulations.
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1 Introduction
Let � ⊂ R

 be an interconnected bounded domain. We are concerned with the following
two-dimensional (D) unsteady conduction-convection problem (see, e.g., [–]).

Problem I Seek u = (u, uy)τ , p, and Q that satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut – μ�u + (u · ∇)u + ∇p = Qj, (x, y, t) ∈ � × (, T),

∇ · u = , (x, y, t) ∈ � × (, T),

Qt – γ –
 �Q + (u · ∇)Q = , (x, y, t) ∈ � × (, T),

u(x, y, t) = f (x, y, t), Q(x, y, t) = � (x, y, t), (x, y, t) ∈ ∂� × (, T),

u(x, y, ) = g(x, y), Q(x, y, ) = ω(x, y), (x, y) ∈ �,

()

where u = (ux, uy)τ represents the unknown velocity vector, p represents the unknown
pressure, Q represents the unknown heat energy, T is the final moment, j = (, )τ , μ =√

Pr/Re, Pr is the Prandtl number, Re is the Reynolds, γ =
√

RePr, and f (x, y, t), g(x, y),
� (x, y, t) and ω(x, y) are four known functions. In order to facilitate theoretical analysis
and not to lose universality, we assume that f (x, y, t)=g(x, y) = 0 and � (x, y, t) =  in the
following study.
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Because the D unsteady conduction-convection problem is a system of nonlinear PDEs,
it usually has no analytic solution so as to have to depend on approximate solutions. Un-
til present, there have been many numerical methods for the D unsteady conduction-
convection problem (see, e.g., [–]), but the stabilized mixed finite element (SMFE)
method based on a parameter-free and two local Gauss integrals in [] is considered as
one of the most efficient approaches to solving the D unsteady conduction-convection
problem. However, the SMFE method includes a lot of unknowns so as to amass a lot of
truncated errors and bear very large computational load in the real-world engineering ap-
plications. Thus, a key issue is how to decrease the unknowns of the SMFE method so
as to ease the truncated error amassing and save the consuming time in the numerical
computation but keeping sufficiently high accuracy of numerical solutions.

A number of numerical experiments (see, e.g., [–]) have shown that the proper or-
thogonal decomposition (POD) is a very useful approach to decrease the unknowns for
numerical models and ease the truncated error amassing in the numerical computations.
But the now available reduced-order numerical methods as stated above were built by
means of the POD basis formulated by the classical numerical solutions on all time nodes,
before calculating the reduced-order numerical solutions on the same time nodes, which
are some vain reduplicated computations. Since , the reduced-order extrapolation
MFE models based on POD for the D hyperbolic equations, unsteady parabolized Navier-
Stokes (NS) equations, and viscoelastic wave equation have been proposed by Luo’s team
(see, e.g., [–]) to avert the vain reduplicated calculations.

However, as far as we know, there has not been any study where the POD technique is
used to establish the SMFE reduced-order extrapolation (SMFEROE) model for the D
unsteady conduction-convection problem. Therefore, in this article, we devote ourselves
to establishing the SMFEROE model via the POD method for the D unsteady conduction-
convection problem, analyzing the existence and uniqueness and the stability as well as the
convergence of the SMFEROE solutions and validating the correctness and dependability
of the SMFEROE model by means of numerical simulations.

The major differences between the SMFEROE model and the now available reduced-
order extrapolation MFE models based on POD, as stated above, consist in the fact that
the conduction-convection problem not only includes the unknown velocity and the un-
known pressure, but also has the unknown heat energy coupled nonlinearly with the un-
known velocity vector so that it is more complicated than the hyperbolic equations, un-
steady parabolized NS equations, and viscoelastic wave equation. Thus, both the modeling
of the SMFEROE method and the demonstration of the existence and uniqueness and the
stability as well as the convergence of the SMFEROE solutions encounter more difficulties
and require more techniques than the now available reduced-order extrapolation MFE
models as stated above, but the SMFEROE model has some specific applications. Espe-
cially, the SMFEROE model is built by means of the POD basis generated by the SMFE
solutions on the initial seldom time nodes, before finding out the SMFEROE solutions at
all time nodes by means of the extrapolation iteration so that it does not have reduplicated
computation. Consequently, it is development and improvement over the existing models
as mentioned above.

The rest of the article is scheduled as follows. In Section , we review the SMFE model
and the corresponding results for the D unsteady conduction-convection problem. In
Section , we constitute the POD basis by means of the SMFE solutions on the initial sel-
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dom time nodes and build the SMFEROE model including seldom unknowns for the D
unsteady conduction-convection problem by means of the POD basis. Section  offers
the demonstration of the existence and uniqueness and the stability as well as the con-
vergence of the SMFEROE solutions and the algorithm process for the SMFEROE model.
In Section , some numerical simulations are supplied to validate the correctness and de-
pendability of the SMFEROE model. Section  generalizes the main conclusions.

2 Review the fully discrete SMFE model
The following arisen Sobolev spaces as well as their norms are well known (see []).

The weak form for the D unsteady conduction-convection problem is stated as follows.

Problem II Seek (u, p, Q) ∈ H(, T ; X) × L(, T ; M) × H(, T ; W ) that satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(ut ,ψ) + A(u,ψ) + A(u, u,ψ) – B(p,ψ) = (Qj,ψ), ∀ψ ∈ X,

B(q, u) = , ∀q ∈ M,

(Qt ,ϕ) + D(Q,ϕ) + A(u, Q,ϕ) = , ∀ϕ ∈ W ,

u(x, y, ) = 0, Q(x, y, ) = ω(x, y), (x, y) ∈ �,

()

where X = H
(�), M = L

(�) = {q ∈ L(�);
∫

�
q dx dy = }, W = H

(�), (·, ·) denotes the
scalar product of L(�) or L(�), and

A(u,ψ) = μ(∇u,∇ψ), ∀u,ψ ∈ X; B(q,ψ) = (q, divψ), ∀ψ ∈ X, q ∈ M,

A(u,ψ ,φ) = .
[(

(u∇ψ),φ
)

–
(
(u∇φ),ψ

)]
, ∀u,ψ ,φ ∈ X,

A(u, Q,ϕ) = .
[(

(u · ∇Q),ϕ
)

–
(
(u · ∇ϕ), Q

)]
, ∀u ∈ X,∀Q,ϕ ∈ W ,

D(Q,ϕ) = γ –
 (∇Q,∇ϕ), ∀Q,ϕ ∈ W .

They have the following properties (see, e.g., [–, ]):

A(u,ψ ,φ) = –A(u,φ,ψ); A(u,ψ ,ψ) = , ∀u,ψ ,φ ∈ X, ()

A(u, Q,ϕ) = –A(u,ϕ, Q); A(u,ϕ,ϕ) = , ∀u ∈ X,∀Q,ϕ ∈ W , ()

A(ψ ,ψ) ≥ μ|ψ | ;
∣
∣A(u,ψ)

∣
∣ ≤ μ|u||ψ |, ∀u,ψ ∈ X, ()

D(ϕ,ϕ) ≥ γ –
 |ϕ| ;

∣
∣D(Q,ϕ)

∣
∣ ≤ γ –

 |Q||ϕ|, ∀Q,ϕ ∈ W , ()

sup
ψ∈X

b(q,ψ)
|ψ | ≥ β‖q‖, ∀q ∈ M, ()

here β is a positive real number. Define

N = sup
u,ψ ,φ∈X

A(u,ψ ,φ)
|u| · |ψ | · |φ| , Ñ = sup

u∈X,(Q,ϕ)∈W×W

A(u, Q,ϕ)
|u| · |Q| · |ϕ| . ()

The following conclusions about Problem II were proved in [].
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Theorem  When ω ∈ L(�) satisfies ‖ω‖
 ≤ μT/(NT– exp(T) +μγÑ

 ), then Prob-
lem II has a unique solution that satisfies

‖u‖
 + μ‖∇u‖

L(L) ≤ T‖ω‖
 exp(T), ‖Q‖

 + γ –
 ‖∇Q‖

L(L) ≤ ‖ω‖
.

For the integer N > , let k = T/N represent the time step, 
h = {K} represent the quasi-
uniformity triangle partition of � (see [, ]), P(K) denote the linear polynomial space
on K , and (un

h, pn
h, Qn

h) be the SMFE solutions of (u(t), p, Q) at the time nodes tn = nk ( ≤
n ≤ N ). Then the SMFE model including the parameter-free and two local Gauss integrals
can be stated as follows.

Problem III Seek (un
h, pn

h, Qn
h) ∈ Uh × Mh × Wh (n = , , . . . , N ) that satisfy

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(∂̄tun
h,ψh) + A(un

h,ψh) + A(un
h, un

h,ψh) – B(pn
h,ψh) = (Qn

hj,ψh), ∀ψh ∈ Xh,

B(qh, un
h) + D(pn

h, qh) = , ∀qh ∈ Mh,

(∂̄tQn
h,ϕh) + D(Qn

h,ϕh) + A(un
h, Qn

h,ϕh) = , ∀ϕh ∈ Wh,

u
h = 0, Q

h = Rhω(x, y), (x, y) ∈ �,

()

where Xh = {ψh ∈ [H
(�) ∩ C(�)];ψh|K ∈ [P(K)],∀K ∈ 
h}, Mh = {φh ∈ M;φh|K ∈

P(K),∀K ∈ 
h}, Wh = {ϕh ∈ H
(�) ∩ C(�);ϕh|K ∈ P(K),∀K ∈ 
h}, ∂̄tun = (un – un–)/k,

∂̄tTn = (Qn – Qn–)/k, D(pn
h, qh) = ε

∑
K∈
h

{∫K , pn
hqh dx dy –

∫

K , pn
hqh dx dy} (ph, qh ∈ Mh), ε

is a positive parameter-free real,
∫

K ,j g(x, y) dx dy (j = , ) represent the Gauss integrals on
K that are exact for i degree polynomial g(x, y) = phqh (j = , ), and Rh is the Ritz projection
from W onto Wh (see []).

Note that, ∀qh ∈ Mh, the function ph ∈ Mh should be piecewise constant as j = . If Ŵh ⊂
L(�) is the piecewise constant space on 
h and the operator h : L(�) → Ŵh is defined
as follows, ∀p ∈ L(�),

(p, qh) = (hp, qh), ∀qh ∈ Ŵh, ()

then the bilinear functional D(·, ·) can be denoted by

D(ph, qh) = ε(ph – hph, qh) = ε(ph – hph, qh – hqh). ()

Furthermore, the operator h satisfies the following inequalities (see [, , ]):

‖hp‖ ≤ C‖p‖, ∀p ∈ L(�), ()

‖p – hp‖ ≤ Ch‖p‖, ∀p ∈ H(�), ()

where C >  in this context denotes the constant independent of h and k that is possibly
not the same at different places.

The following conclusions of the existence and uniqueness and the stability as well as
the convergence of the SMFE solutions to Problem III have been deduced in [].
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Theorem  Under the conditions of Theorem , the SMFE model has only a set of solutions
{(un

h, pn
h, Qn

h)}N
n= that satisfies

∥
∥un

h
∥
∥

 +
∥
∥Qn

h
∥
∥

 + k
n∑

i=

(∥
∥∇ui

h
∥
∥

 +
∥
∥∇Qi

h
∥
∥

 +
∥
∥pi

h
∥
∥



) ≤ C‖ω‖, ()

which implies that the set of SMFE solutions {(un
h, pn

h, Qn
h)}N

n= is stable. Furthermore, if
ω ∈ H(�), Nμ

–‖∇un
h‖ ≤ /, and h = O(k), the set of SMFE solutions {(un

h, pn
h, Qn

h)}N
n=

satisfies the error estimations

k
n∑

i=

[∥
∥u(ti) – ui

h
∥
∥

 +
∥
∥Q(ti) – Qi

h
∥
∥

 +
∥
∥p(ti) – pi

h
∥
∥



]

+
∥
∥u(tn) – un

h
∥
∥

 +
∥
∥Q(tn) – Qn

h
∥
∥

 ≤ C
(
k + h), n = , , . . . , N , ()

where (u, p, T) represents the generalized solution of Problem II.

Remark  If only ω, k, h, the Reynolds Re, the Prandtl number Pr, and the subspaces Xh,
Mh, and Wh are given, a set of SMFE solutions {un

h, pn
h, Qn

h}n
n= is acquired by Problem III.

We choose the initial L solutions (un
h, pn

h, Qn
h) ( ≤ n ≤ L, usually, L  N and

√
L < , e.g.,

L = , N = , in the numerical simulations of Section ) from N solutions (un
h, pn

h, Qn
h)

( ≤ n ≤ N ) as snapshots.

3 Constitute the POD basis and build the SMFEROE model
For the extracted snapshots (un

h, pn
h, Qn

h) ( ≤ n ≤ L) in Section , set Ui = (un
h, pn

h, Qn
h) (n =

, , . . . , L) with rank l and define the snapshot matrix Ã = (Ãij)L×L ∈ RL×L, where Ãij =
[(∇ui

h,∇uj
h) + (pi

h, pj
h) + (∇Qi

h,∇Qj
h)]/L. Thus, the matrix Ã is positive semi-definite and

has rank l, the POD basis {ωj}d
j= can be found and has the following results (see, e.g., [,

, ]).

Lemma  Suppose that the rank of Ã is l, λ ≥ λ ≥ · · · ≥ λl >  are the positive eigenvalues
of Ã, and ψ , ψ, . . . , ψ l are the corresponding orthonormal eigenvectors. Then the POD
bases are denoted by

ωi =
√
Lλi

(U, U, . . . , UL) · ψ i,  ≤ i ≤ d ≤ l ()

and satisfy the following formula:


L

L∑

i=

∥
∥
∥
∥
∥

Ui –
d∑

j=

(Ui,ωj)X̂ωj

∥
∥
∥
∥
∥



X̂

=
l∑

j=d+

λj, ()

where X̂ = X × M × W .

Let ωj = (ωuj,ωpj,ωQj) (j = , , . . . , d), Xd = span{ωu,ωu, . . . ,ωud}, Md = span{ωp,ωp,
. . . ,ωpd}, and W d = span{ωQ,ωQ, . . . ,ωQd}. For uh ∈ Xh, ph ∈ Mh, and Qh ∈ Wh, define,
respectively, three projections Pd : Xh → Xd , Zd : Mh → Md , and Rd : Wh → W d as fol-



Xia and Luo Journal of Inequalities and Applications  (2017) 2017:124 Page 6 of 17

lows:

(∇Pduh,∇wd
)

= (∇uh,∇wd), ∀wd ∈ Xd; ()
(
Zdph, pd

)
= (ph, qd), ∀qd ∈ Md; ()

(∇RdQh,∇�d
)

= (∇Qh,∇�d), ∀�d ∈ W d. ()

Then it is easily known from functional analysis principles (see, e.g., []) that there are
three extensions Ph: X → Xh, Zh: M → Mh, and Rh: W → Wh of Pd , Zd , and Rd such that
Ph|Xh = Pd : Xh → Xd , Zh|Mh = Zd : Mh → Md , and Rh|Wh = Rd : Wh → W d are defined,
respectively, by

(∇Phu,∇wh
)

= (∇u,∇wh), ∀wh ∈ Xh, ()
(
Zhp, ph

)
= (p, qh), ∀qh ∈ Mh, ()

(∇RhQ,∇�h
)

= (∇Q,∇�h), ∀�h ∈ Wh, ()

where (u, p, Q) ∈ X × M × W . Thanks to (), (), and (), the projections Ph, Zh, and
Rh all are bounded

∥
∥∇(

Phu
)∥
∥

 ≤ ‖∇u‖, ∀u ∈ X; ()
∥
∥Zhp

∥
∥

 ≤ ‖p‖, ∀p ∈ M; ()
∥
∥∇(

RhQ
)∥
∥

 ≤ ‖∇Q‖, ∀Q ∈ W . ()

Moreover, there are the following results (see [, , ]):

∥
∥u – Phu

∥
∥

 ≤ Ch
∥
∥∇(

u – Phu
)∥
∥

, ∀u ∈ X; ()
∥
∥u – Phu

∥
∥

– ≤ Ch
∥
∥u – Phu

∥
∥

, ∀u ∈ X; ()
∥
∥Q – RhQ

∥
∥

 ≤ Ch
∥
∥∇(

Q – RhQ
)∥
∥

, ∀T ∈ W ; ()
∥
∥Q – RhQ

∥
∥

– ≤ Ch
∥
∥Q – RhQ

∥
∥

, ∀T ∈ W . ()

In addition, there are the following conclusions (see, e.g., [, –]).

Lemma  The projections Pd , Zd , and Rd ( ≤ d ≤ l) satisfy, respectively,


L

L∑

n=

[∥
∥un

h – Pdun
h
∥
∥

+h∥∥∇(
un

h – Pdun
h
)∥
∥



] ≤ Ch
l∑

j=d+

λj; ()


L

L∑

n=

∥
∥pn

h – Zdpn
h
∥
∥

 ≤
l∑

j=d+

λj; ()


L

L∑

n=

[∥
∥Qn

h – RdQn
h
∥
∥

 + h∥∥∇(
Qn

h – RdQn
h
)∥
∥



] ≤ Ch
l∑

j=d+

λj, ()
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where (un
h, pn

h, Qn
h) ∈ Xh × Mh × Wh ( ≤ n ≤ L) are the initial L solutions of Problem III.

Furthermore, the projections Ph, Zh, and Rh hold, respectively, the following properties:

∥
∥un – Phun∥∥

– + h
∥
∥un – Phun∥∥

 + h∥∥∇(
un – Phun)∥∥



≤ Ch, n = , , . . . , N ; ()
∥
∥pn – Zhpn∥∥

s ≤ Chm–s, n = , , . . . , N , s = –, , m = , ; ()
∥
∥Qn – RhQn∥∥

– + h
∥
∥Qn – RhQn∥∥

 + h∥∥∇(
Qn – RhQn)∥∥



≤ Ch, n = , , . . . , N , ()

where (u, p, Q) ∈ H(�) × Hm(�) × H(�) represents the generalized solution for the D
unsteady conduction-convection problem.

Thus, based on Xd × Md × W d , the SMFEROE formulation for the D unsteady
conduction-convection problem is set up as follows.

Problem IV Find (un
d, pn

d, Qn
d) ∈ Xd × Md × W d (n = , , . . . , N ) such that

(
un

d, pn
d, Qn

d
)

=
d∑

j=

((∇ωuj,∇un
h
)
ωuj,

(
ωpj, pn

h
)
ωpj,

(∇ωTj,∇Qn
h
)
ωTj

)
, n = , , . . . , L; ()

(
∂̄tun

d,ψd
)

+ A
(

un
d,ψd

)
+ A

(
un

d, un
d,ψd

)
– B

(
pn

d,ψd
)

=
(
Qn

dj,ψd
)
,∀ψd ∈ Xd, L +  ≤ n ≤ N , ()

B
(

un
d, qd

)
+ D

(
pn

d, qd
)

= , ∀qd ∈ Md, L +  ≤ n ≤ N , ()
(
∂̄tQn

d,�h
)

+ D
(
Qn

d,�d
)

+ A
(

un
d, Qn

d,�d
)

= , ∀�d ∈ W d, L +  ≤ n ≤ N , ()

where (un
h, pn

h, Qn
h) ∈ Xh × Mh × Wh (n = , , . . . , L) are the initial L SMFE solutions for

Problem III.

Remark  It is easily known that Problem III at each time node contains Nh (here Nh

represents the number of vertices of triangles in 
h, see []) unknowns, but Problem IV
at the same time node only has d (d  l ≤ L  N  Nh) unknowns. For the real-world
engineering issues, the number Nh of vertices of triangles in 
h exceeds thousands or even
millions; whereas d only is the number of the initial seldom eigenvalues and is quite small
(for instance, in Section , d = , but Nh =  ×  × ). Therefore, Problem IV is the
SMFEROE model for the D unsteady conduction-convection problem. Especially, Prob-
lem IV only uses the initial few known L solutions of Problem III to seek other (N – L)
solutions and does not have reduplicated calculations. In other words, the initial L POD-
based SMFEROE solutions are gained by means of projecting the initial L SMFE solutions
into POD basis, while other (N – L) SMFEROE solutions are gained by means of extrap-
olation and iterating equations (), (), and (). Therefore, it is thoroughly different
from the now available reduced-order models (see, e.g., [–, , ]).
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4 The existence and uniqueness and the stability as well as the convergence of
SMFEROE solutions and the algorithm process for the SMFEROE model

4.1 The existence and uniqueness and the stability as well as the convergence of
the SMFEROE solutions

The existence and uniqueness and the stability as well as the convergence of the solutions
for the SMFEROE formulation of the D unsteady conduction-convection problem have
the following main conclusions.

Theorem  Under the conditions of Theorem , Problem IV has only a set of solutions
(un

d, pn
d, Qn

d) ∈ Xd × Md × W d such that

∥
∥un

d
∥
∥

 +
∥
∥Qn

d
∥
∥

 + k
n∑

i=L+

(∥
∥∇ui

d
∥
∥

 +
∥
∥pi

d
∥
∥

 +
∥
∥∇Qi

d
∥
∥



) ≤ C‖ω‖,  ≤ n ≤ N , ()

which implies that the SMFEROE solutions (un
d, pn

d, Qn
d) ( ≤ n ≤ N ) of Problem IV are sta-

ble. When k = O(h) and Nμ
–‖∇un

d‖ ≤ / (L +  ≤ n ≤ N ), we have the error estimations

∥
∥un

h – un
d
∥
∥

 +
∥
∥Qn

h – Qn
d
∥
∥

 + k
∥
∥∇(

un
h – un

d
)∥
∥

 + k
∥
∥∇(

Qn
h – Qn

d
)∥
∥



+
√

k
∥
∥pn

h – pn
d
∥
∥

 ≤ CLk

( l∑

j=d+

λj

)/

,  ≤ n ≤ L; ()

∥
∥un

h – un
d
∥
∥

 +
∥
∥Qn

h – Qn
d
∥
∥

 + k
∥
∥∇(

un
h – un

d
)∥
∥

 + k
∥
∥∇(

Qn
h – Qn

d
)∥
∥



+
√

k
∥
∥pn

h – pn
d
∥
∥

 ≤ C
(
k + h) + CLk

( l∑

j=d+

λj

)/

, L +  ≤ n ≤ N . ()

Proof When  ≤ n ≤ L, from (), we immediately gain unique (un
d, pn

d, Qn
d) ∈ Xd × Md ×

W d ( ≤ n ≤ L). When L +  ≤ n ≤ N , by using the same approaches as proving Theorem 
in [], from ()-() we can gain unique (un

d, pn
d, Qn

d) ∈ Xd × Md × W d (L +  ≤ n ≤ N ).
Thus, Problem IV has only a set of solutions (un

d, pn
d, Qn

d) ∈ Xd × Md × W d ( ≤ n ≤ N ).
Next, we devote ourselves to proving that () holds.
When  ≤ n ≤ L, by ()–() and Theorem , there holds ().
When L +  ≤ n ≤ N , by choosing ψd = un

d in () and qd = pn
d in (), noting that there

hold (ρhpd, pd) = ‖ρhpd‖
 and (pd – ρhpd, pd – ρhpd) = ‖pd‖

 – ‖ρhpd‖
 ≥  from (), and

using () and Hölder’s and Cauchy’s inequalities, we obtain

∥
∥un

d
∥
∥

 + kμ
∥
∥∇un

d
∥
∥

 + kε
(∥
∥pn

d
∥
∥

 –
∥
∥hpd

h
∥
∥



)

=
(

un–
d , un

d
)

+
(
Qn

dj, un
d
)

≤ 

(∥
∥un

d
∥
∥

 +
∥
∥un–

d
∥
∥



)
+ Ck

∥
∥Qn

d
∥
∥

– +
kμ


∥
∥∇un

d
∥
∥

. ()

It follows from () that

∥
∥un

d
∥
∥

 –
∥
∥un–

d
∥
∥

 + kμ
∥
∥∇un

d
∥
∥

 + kε
(∥
∥pn

d
∥
∥

 –
∥
∥hpd

h
∥
∥



) ≤ Ck
∥
∥Qn

d
∥
∥

–. ()

If pn
d �= , then it is easily known from () that ‖pn

d‖
 > ‖hpn

d‖
. Thus, there is a positive

real number δ ∈ (, ) that satisfies δ‖pn
d‖

 ≥ ‖hpn
d‖

. By summing () from L +  to n
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simplified, we have

∥
∥un

d
∥
∥

 + k
n∑

i=L+

(∥
∥∇ui

d
∥
∥

 +
∥
∥pi

d
∥
∥



) ≤ C
∥
∥uL

d
∥
∥

 + Ck
n∑

i=L+

∥
∥Qi

d
∥
∥

–. ()

Taking a square root for () and utilizing (
∑n

i= a
i )/ ≥ ∑n

i= |ai|/√n yield

∥
∥un

d
∥
∥

 + k
n∑

i=L+

(∥
∥∇ui

d
∥
∥

 +
∥
∥pi

d
∥
∥



) ≤ C

(
∥
∥uL

d
∥
∥

 + k
n∑

i=L+

∥
∥Qi

d
∥
∥

–

)/

. ()

By choosing ϕd = Qn
d in () and by making use of () and Hölder ’s and Cauchy’s in-

equalities, we obtain

∥
∥Qn

d
∥
∥

 +
k
γ

∥
∥∇Qn

d
∥
∥

 ≤ ∥
∥Qn–

d
∥
∥

. ()

Summing () from L+ to n yields

∥
∥Qn

d
∥
∥

 +
k
γ

n∑

i=L+

∥
∥∇Qi

d
∥
∥

 ≤ ∥
∥QL∥∥

. ()

By extracting a square root for (), making use of (
∑n

i= a
i )/ ≥ ∑n

i= |ai|/√n and ()
when n = L, and then simplifying, we obtain

∥
∥Qn

d
∥
∥

 + k
n∑

i=L+

∥
∥∇Qi

d
∥
∥

 ≤ C‖ω‖. ()

By noting that ‖ · ‖– ≤ C‖ · ‖ and by using () when n = L, from () and (), we obtain

∥
∥un

d
∥
∥

 + k
n∑

i=L+

(∥
∥∇ui

d
∥
∥

 +
∥
∥pi

d
∥
∥



) ≤ C‖ω‖. ()

Combining () with () yields that () holds when L +  ≤ n ≤ N . If pn
d = , () is

distinctly correct.
When  ≤ n ≤ L, with Lemma  and (), we immediately obtain ().
When L +  ≤ n ≤ N , by subtracting Problem IV from Problem III choosing ψh = ψd ,

qh = qd , and ϕh = ϕd , we acquire

(
un

h – un
d,ψd

)
+ kA

(
un

h – un
d,ψd

)
+ kA

(
un

h, un
h,ψd

)
– kA

(
un

d, un
d,ψd

)

– kB
(
pn

h – pn
d,ψd

)
= k

((
Qn

h – Qn
d
)

j,ψd
)

+
(

un–
h – un–

d ,ψd
)
, ∀ψd ∈ Xd, ()

b
(
qd, un

h – un
d
)

+ ε
(
pn

h – pn
d – h

(
pn

h – pn
d
)
, qd – hqd

)
= , ∀qd ∈ Md, ()

(
Qn

h – Qn
d,ϕd

)
+ kD

(
Qn

h – Qn
d,ϕd

)
+ kA

(
un

h, Qn
h,ϕd

)
– kA

(
un

d, Qn
d,ϕd

)

=
(
Qn–

h – Qn–
d ,ϕd

)
, ∀ϕd ∈ W d, L +  ≤ n ≤ N . ()
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Let en = Pdun
h – un

d , f n = un
h – Pdun

h , ηn = Zdpn
h – pn

d , and ξn = pn
h – Zdpn

h . First, from (),
(), and (), we obtain

∥
∥en∥∥

 + kμ
∥
∥∇en∥∥



=
(
Pdun

h – un
d, en) + kA

(
Pdun

h – un
d, en)

= –
(

f n, en) +
(

un
h – un

d, en) + kA
(

un
h – un

d, en)

=
(

f n– – f n, en) + kB
(
pn

h – pn
d, en) – kA

(
un

h, un
h, en)

+ kA
(

un
d, un

d, en) +
(

en–, en) + k
((

Qn
h – Qn

d
)

j, en)

=
(

f n– – f n, en) – kA
(

un
h, un

h, en) + kA
(

un
d, un

d, en)

+ k
((

Qn
h – Qn

d
)

j, en) +
(

en–, en) + kB
(
ξn, en) + kB

(
η, en)

– kε
(
pn

h – pn
d – h

(
pn

h – pn
d
)
,ηn – hη

)

≤ C
(
k–∥∥f n– – f n∥∥

–

)
+ kμ–∥∥ηn∥∥

 + Ck
∥
∥ξn∥∥



+
kμ


∥
∥∇en∥∥

 +


∥
∥en–∥∥

 +


∥
∥en∥∥

 – kε
(∥
∥ηn∥∥

 – ‖hη‖

)

– kA
(

un
h, un

h, en) + kA
(

un
d, un

d, en) + k
((

Qn
h – Qn

d
)

j, en). ()

Next, when Nμ
–‖∇un

h‖ ≤ / and Nμ
–‖∇un

d‖ ≤ / (L +  ≤ n ≤ N ), with the prop-
erties of A(·, ·, ·), Hölder’s and Cauchy’s inequalities, and Lemma , we gain

kA
(

un
d, un

d, en) – kA
(

un
h, un

h, en) ≤ Ck
∥
∥∇f n∥∥

 +
kμ


∥
∥∇en∥∥

. ()

And then, with Hölder’s and Cauchy’s inequalities, we gain

k
((

Qn
h – Qn

d
)

j, en) ≤ Ck
∥
∥Qn

h – Qn
d
∥
∥

– +
kμ


∥
∥∇en∥∥

. ()

If ηn �= , it is accessible to get ‖ηn‖
 > ‖hη‖

 from (). Thus, there exists a positive real
number δ ∈ (, ) that satisfies δ‖ηn‖

 ≥ ‖hη‖
. When k = O(h), by choosing ε = μ–( –

δ)–, combining () with () and (), using (), and then simplifying, we acquire

∥
∥en∥∥

 –
∥
∥en–∥∥

 + k
∥
∥∇en∥∥

 + k
∥
∥ηn∥∥



≤ Ck
(∥
∥∇f n∥∥

 +
∥
∥f n–∥∥

 +
∥
∥ξn∥∥



)
+ Ck

∥
∥Qn

h – Qn
d
∥
∥

–. ()

Summing () from L +  to n yields

∥
∥en∥∥

 + k
n∑

i=L+

(∥
∥∇ei∥∥

 +
∥
∥ηn∥∥



)

≤ C
∥
∥eL∥∥

 + Ck
n∑

i=L

(∥
∥∇f i∥∥

 +
∥
∥ξ i∥∥

 +
∥
∥Qi

h – Qi
d
∥
∥

–

)
. ()
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By extraction of a square root to () and making use of (
∑n

i= a
i )/ ≥ ∑n

n= |ai|/√n, we
gain

∥
∥en∥∥

 + k
n∑

i=L+

(∥
∥∇ei∥∥

 +
∥
∥ηi∥∥



)

≤ C

[
∥
∥eL∥∥

 + k
n∑

i=L

(∥
∥∇f i∥∥

 +
∥
∥ξ i∥∥

 +
∥
∥Qi

h – Qi
d
∥
∥

–

)
]/

. ()

Moreover, from Lemma  as well as Theorem , we acquire

k
n∑

i=L

∥
∥∇f i∥∥

 ≤ k
n∑

i=L

[∥
∥∇(

ui
h – u(ti)

)∥
∥

 +
∥
∥∇(

u(ti) – ui)∥∥


+
∥
∥∇(

ui – Phui)∥∥
 +

∥
∥∇(Ph(ui – ui

h
)∥
∥



]

≤ C
(
h + k

)
, ()

k
n∑

i=L

∥
∥ξ i∥∥

 ≤ k
n∑

i=L

[∥
∥pi

h – p(ti)
∥
∥

 +
∥
∥p(ti) – pi∥∥



+
∥
∥pi – Zhpi∥∥

 +
∥
∥Zh(pi – pi

h
)∥
∥



]

≤ C
(
h + k

)
. ()

Combining () and () with () and using Lemma  and () when n = L yield

∥
∥en∥∥

 + k
n∑

i=L+

(∥
∥∇ei∥∥

 +
∥
∥ηi∥∥



)

≤ C
(
k + h) + CLk

( l∑

j=d+

λj

)/

+ C

[

k
n∑

i=L

∥
∥Qi

h – Qi
d
∥
∥

–

]/

. ()

Let Fn = Qn
h – ZdQn

h , En = ZdQn
h – Qn

d . First, by making use of () and Lemma , we ac-
quire

‖En‖
 + kγ –

 ‖∇En‖


= (En, En) + kD(En, En)

= –(Fn, En) + kD
(
ZdQn

h – Qn
h, En

)
+

[(
Qn

h – Qn
d, En

)
+ kD

(
Qn

h – Qn
d, En

)]

= –(Fn, En) + kA
(

un
d, Qn

d, En
)

– kA
(

un
h, Qn

h, En
)

+
(
Qn–

h – Qn–
d , En

)

= (Fn– – Fn, En) + kA
(

un
d, Qn

d, En
)

– kA
(

un
h, Qn

h, En
)

+ (En–, En)

≤ Ck–(‖Fn‖
– + ‖Fn–‖

–
)

+ Ck‖Fn‖
) +

k
γ

‖∇En‖


+ kA
(

un
d, Qn

d, En
)

– kA
(

un
h, Qn

h, En
)

+


‖En–‖

 +


‖En‖

. ()
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And then, when Nμ
–‖∇un

d‖ ≤ / (n = , , . . . , N ), with Lemma , (), and Hölder’s and
Cauchy’s inequalities, we have

kA
(

un
d, Qn

d, En
)

– kA
(

un
h, Qn

h, En
) ≤ k

γ
‖∇En‖

 + Ck‖∇Fn‖
. ()

Combining () with () and using Lemma , Theorems  and , the same technique as
() yield that

‖En‖
 + kγ –

 ‖∇En‖
 ≤ Ck

(
h + k) + ‖En–‖

. ()

Summing () from L +  to n yields that

‖En‖
 + kγ –



n∑

i=L+

‖∇Ei‖
 ≤ Cnk

(
h + k) + C‖EL‖

. ()

By extraction of a square root to () and making use of (
∑n

i= a
i )/ ≥ ∑n

i= |ai|/√n and
(), we acquire

‖En‖ + k
n∑

i=L+

‖∇Ei‖ ≤ C
(
h + k

)
+ CLk

( l∑

j=d+

λj

)/

. ()

With the triangle inequality of norm, (), and Lemma , we acquire

∥
∥Qn

h – Qn
d
∥
∥

 + k
n∑

i=L+

∥
∥∇(

Qi
h – Qi

d
)∥
∥

 ≤ C
(
h + k

)
+ CLk

( l∑

j=d+

λj

)/

. ()

By combining () with () and making use of Lemma , we acquire

∥
∥un

h – un
d
∥
∥

 + k
n∑

i=L+

(∥
∥∇(

ui
h – ui

d
)∥
∥

 +
∥
∥pi

h – pi
d
∥
∥



)

≤ C
(
k + h) + CLk

( l∑

j=d+

λj

)/

. ()

Combining () with () yields (). When ηn = , () is distinctly correct. Thus, the
argument of Theorem  is accomplished. �

By combining Theorem  with Theorem , we immediately acquire the following con-
clusion.

Theorem  Under the conditions of Theorems  and , the SMFEROE solutions (un
d, pn

d, Qn
d)

for Problem IV hold the error estimations

k
n∑

i=

[∥
∥∇(

u(ti) – ui
d
)∥
∥

 +
∥
∥∇(

Q(ti) – Qi
d
)∥
∥



]
+

∥
∥p(ti) – pi

d
∥
∥

]

+
∥
∥u(tn) – un

d
∥
∥

 +
∥
∥Q(tn) – Qn

d
∥
∥

 ≤ C
(
k + h) + CLk

( l∑

j=d+

λj

)/

,
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where (u, p, T) represents the generalized solution for the D unsteady conduction-
convection problem.

Remark  The factor Lk(
∑l

j=d+ λj)/ in Theorems  and  is caused by reduced-order for
Problem II, it can be used as a suggestion choosing the amount of POD basis, that is, we
only need to choose d that satisfies kL ∑l

j=d+ λj = O(k, h), we can acquire the SMFROE
solutions satisfying the accuracy requirement.

4.2 The algorithm process for the SMFEROE model
The algorithm process for the SMFEROE model can be carried out according to the next
seven steps.

Step  Extract the snapshots Un(x, y) = (un
h, pn

h, Qi
h) ( ≤ n ≤ L and L  N ) from the initial

L SMFE solutions.
Step  Compile the snapshot matrix Ã = (Ãij)L×L, where Ãij = [(∇ui

h,∇uj
h) + (pi

h, pj
h) +

(∇Qi
h,∇Qj

h)]/L.
Step  Find the positive eigenvalues λ ≥ λ ≥ · · · ≥ λl >  (l = dim{U, U, . . . , UL}) of Ã

and the corresponding eigenvectors vj = (aj
, aj

, . . . , aj
L)τ (j = , , . . . , l).

Step  For h, k, and error ν needed, determine the amount d of POD basis that satisfies
k + h + Lk ∑l

j=d+ λj ≤ ν.
Step  Constitute the POD basis ωj(x, y) = (ωuj(x, y),ωpj(x, y),ωQj(x, y)) =

∑L
j= aj

i(ui
h, pi

h,
Qi

h)/
√

Lλj ( ≤ j ≤ d).
Step  Let Xd = span{ωu(x, y),ωu(x, y), . . . ,ωud(x, y)}, Md = span{ωp(x, y),ωp(x, y), . . . ,

ωpd(x, y)}, and W d = span{ωQ(x, y),ωQ(x, y), . . . ,ωQd(x, y)}. Solving Problem IV
gives the SMFEROE solutions (un

d, pn
d, Qn

d) ( ≤ n ≤ N ).
Step  If ‖un–

d – un
d‖ ≥ ‖un

d – un+
d ‖, ‖pn–

d – pn
d‖ ≥ ‖pn

d – pn+
d ‖, and ‖Qn–

d – Qn
d‖ ≥

‖Qn
d – Qn+

d ‖ (L ≤ n ≤ N – ), then (un
d, pn

d, Qn
d) ( ≤ n ≤ N ) are the SMFEROE solu-

tions satisfying the accuracy requirement. Else, namely, if ‖un–
d –un

d‖ < ‖un
d –un+

d ‖

or ‖pn–
d –pn

d‖ < ‖pn
d –pn+

d ‖ or ‖Qn–
d –Qn

d‖ < ‖Qn
d –Qn+

d ‖ (n = L, L+, . . . , N –),
put Un+j–L = (uj

d, pj
d, Qj

d) (j = , , . . . , L – ), return to Step .

5 Numerical simulations
In the following, we use the numerical simulations to validate the correctness and depend-
ability of the SMFEROE model for the D unsteady conduction-convection problem.

The computational domain �̄ is composed of the channel of width  and length 
holding two same rectangular cavities of width  and length  at the top and bottom of the
channel (see Figure ). We first partition �̄ into several quadrates whose side length equals
�x = �y = .. Then we partition each quadrate into two triangles by linking diagonal
in the same orientation and form the triangularizations 
h with h =

√
 × –. Choose

ε = , Pr = , and Re = ,. Besides the inflow velocity u = (.(y – )( – y), )T (x = 
and  ≤ y ≤ ) on the left boundary, the other initial and boundary values are chosen as .
We choose k = . in order to satisfy the condition k = O(h).

We first extracted  SMFE solutions (un
h, pn

h, Qn
h) (n = , , . . . , ) from the SMFE model

to constitute snapshots Un = (un
h, pn

h, Qn
h) ( ≤ n ≤ ). Next, we sought out  eigenvectors

and  eigenvalues arrayed in a non-increasing order according to Step  in Section ..
It was achieved by calculation that Lk(

∑
j= λj)/ ≤  × – when k = . and L = ,

which implies that it is only necessary to choose the initial  eigenvectors (ωuj,ωpj,ωQj)
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Figure 1 The computational domain and the initial boundary values.

Figure 2 The numerical solutions of the velocity. (a) The SMFE solution of the velocity u at t = 40 when
Re = 1,000 and Pr = 7. (b) The SMFEROE solution of the velocity u with 6 POD bases at time t = 40 when
Re = 1,000 and Pr = 7.

( ≤ j ≤ ) to generate subspaces Xd × Md × W d . And then, we found the SMFEROE so-
lutions (un

d, pn
d, Qn

d) (n = ,, i.e., at t = ) by means of the SMFEROE model according
to seven steps in Section ., which are drawn in (b) graphs of Figures -, but the cor-
responding SMFE solutions of the velocity, pressure, and heat energy obtained from the
SMFE model are drawn in (a) graphs of Figures - at t = , i.e., n = ,, respectively.
Every pair of graphs in Figures - are basically identical, respectively, but because the
SMFEROE model eases the truncated error amassing in the calculating procedure, the
SMFEROE solutions acquired from the SMFEROE model are better than the SMFE so-
lutions from the SMFE model. Especially, the numerical results of the pressure and heat
energy of the SMFEROE solutions are far better than those of the SMFE solutions.

Figure  exhibits the errors between the SMFEROE solutions acquired from the SM-
FEROE model adopting the different amount of the POD basis and the SMFE solutions
gained from the SMFE model when t = , i.e., n = ,, Pr = , and Re = ,. It is
shown that the numerical computational conclusions are accorded with the theoretical
cases since the numerical and theoretical errors both do not exceed  × –.
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Figure 3 The numerical solutions of the pressure. (a) The SMFE solution of the pressure p at t = 40 when
Re = 1,000 and Pr = 7. (b) The SMFEROE solution of the pressure p with 6 POD bases at time t = 40 when
Re = 1,000 and Pr = 7.

Figure 4 The numerical solutions of the heat energy. (a) The SMFE solution of the heat energy Q at t = 40
when Re = 1,000 and Pr = 7. (b) The SMFEROE solution of the heat energy Q with 6 POD bases at time t = 40
when Re = 1,000 and Pr = 7.

Further, by comparing the SMFE model with the SMFEROE model with  POD bases
implementing the numerical simulations when t = , Pr = , and Re = ,, we find that
the SMFE model includes  ×  ×  unknowns on every time node and the elapsed
time is about  minutes, but the SMFEROE model with  POD bases only has  × 
unknowns at the same time node and the corresponding elapsed time is no more than 
seconds, i.e., the elapsed time of the SMFE model is  times more than that of the SM-
FEROE model with  POD bases. Thus, the SMFEROE model can immensely decrease the
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Figure 5 Absolute error for Re = 1,000 and Pr = 7
when POD basis is different and at the time level
t = 40.

elapsed time and ease the computational load so that it could immensely ease the trun-
cated error amassing in the calculation procedure. This implies that the SMFEROE model
is effective and dependable for solving the D unsteady conduction-convection problem.

6 Conclusions
In this article, we have established the SMFEROE model for the D unsteady conduction-
convection problem by means of the POD technique. We first extract the initial seldom
L (L  N ) SMFE solutions for the D unsteady conduction-convection problem and for-
mulate the snapshots. Next, we constitute the POD basis by the snapshots by means of the
POD technique. And then, the subspaces generated with the initial seldom POD basis sub-
stitute the MFE subspaces in the SMFE model in order to establish the SMFEROE model
for the D unsteady conduction-convection problem. Finally, we analyze the existence
and uniqueness and the stability as well as the convergence of the SMFEROE solutions
for the D unsteady conduction-convection problem and supply the algorithm process
for the SMFEROE model. Comparing the numerical simulation results of the SMFEROE
solutions with the SMFE solutions validates the dependability and correctness of the SM-
FEROE model.
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