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1 Introduction
Let W ,p

 (�) denote the usual Sobolev space, i.e., the completion of C∞
 (�) under the

Sobolev norm

‖u‖W ,p
 (�) =

(∫
�

|∇u|p + |u|p dx
) 

p
.

The classical Sobolev embedding theorem states W ,n
 (�) ⊂ Lq(�) for all  ≤ q < ∞ but

W ,n
 (�) � L∞(�). One can check this by choosing the function u(x) = ln(ln R

|x–x| ) for some
R > , where x is a fixed point in �. It is natural to ask whether there exists an optimal
embedding in this limiting case. Yudovic [], Pohozaev [] and Trudinger [] showed that,
for some α > , W ,n

 (�) is continuously embedded into an Orlicz space with the Young
function φα(t) = exp(α|t| n

n– – ). Moser in [] sharpened the exponent α and obtained the
following result.

Theorem A ([]) Let � be a bounded domain i n R
n (n ≥ ). Then there exists a positive

constant Cn and a sharp constant αn = nω


n–
n– such that


|�|

∫
�

exp
(
α|u| n

n–
)

dx ≤ Cn

for any α ≤ αn and u ∈ C∞
 (�) with

∫
�

|∇u|n dx ≤ , where ωn– is the area of the surface
of the unit ball.
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The above inequality is often referred as the Moser-Trudinger inequality. Carleson and
Chang [] employed a symmetrization and rearrangement arguments to obtain the ex-
tremals of the Moser-Trudinger inequality when � is a disk in R

. Later, the results of Car-
leson and Chang were extended by Flucher [] to arbitrary domains in R

, and by Lin []
for arbitrary domains in R

n. The existence of extremals of the Moser-Trudinger inequal-
ity was also extended to compact Riemannian manifold cases by Li in [, ]. Cohn and
Lu [] were concerned with the sharp constants for the Moser-Trudinger inequality on a
bounded domain on Heisenberg group H

n. The singular version of the Moser-Trudinger
inequality on the Heisenberg group was also proved by Lam, Lu and Tang in []. For more
results as regards the Moser-Trudinger inequalities and applications in partial differential
equations, please see [–] and the references therein.

A natural idea is to consider the Moser-Trudinger inequality in the whole space R
n.

Adachi and Tanaka in [] proved the following nice result.

Theorem B ([]) For  < α < αn, there exists a positive constant Cn such that

sup
u∈W ,n(Rn),

∫
Rn |∇u|n dx≤

∫
Rn

�
(
α
∣∣u(x)

∣∣ n
n–

)
dx ≤ Cn

∫
Rn

∣∣u(x)
∣∣n dx,

where �(t) := et –
∑n–

i=
ti

i! . Moreover, the constant αn is sharp in the sense that if α ≥ αn,
the supremum will become infinite.

They proved the sharpness of the exponent α by modifying a sequence of test functions
introduced by Moser. In order to obtain the Moser-Trudinger inequality in the critical
case α = αn, Ruf [] (in the dimension n = ) and Li and Ruf [] (in the dimension n ≥ )
replaced the Dirichlet norm with the standard Sobolev norm, i.e.

‖u‖W ,n
 (Rn) =

(∫
Rn

|∇u|n + |u|n dx
) 

n
,

and obtained the Moser-Trudinger inequality in the whole space R
n in the case of α = αn.

Masmoudi and Sani in their elegant papers [, ] kept the two conditions α = αn and∫
Rn |∇u|n dx ≤ . They proved the following.

Theorem C ([]) For n ≥ , there exists a positive constant Cn such that

∫
Rn

�(αn|u| n
n– )

( + |u|) n
n–

dx ≤ Cn

∫
Rn

∣∣u(x)
∣∣n dx, ∀u ∈ W ,n(

R
n) with

∫
Rn

|∇u|n dx ≤ .

Moreover, this inequality fails if the power n
n– in the denominator is replaced by any p < n

n– .

The above result was also extended by Chen and Liu [] to singular version through
the change of variables developed by Dong and Lu in [].

This paper is concerned with a singular version of Moser-Trudinger inequality with the
exact growth condition on hyperbolic space Hn. The hyperbolic space Hn (n ≥ ) is a com-
plete and simply connected Riemannian manifold and has constant curvature equal to –.
There exist many types of models for hyperbolic space H

n. However, the most important
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models are the half-space model, the ball model, and the hyperboloid (or Lorentz) model.
Throughout this paper, we are concerned about the ball model because we can use sym-
metry and rearrangement argument in this setting.

We define Bn = {x ∈ R
n : |x| < } as a pen unit ball in R

n equipped with the Riemannian
metric gij = ( 

–|x| )δij, which is referred to as the ball model of the hyperbolic space H
n.

A direct computation shows that the volume element of hyperbolic space H
n is given by

dV = ( 
–|x| )n dx and d(, x) = ln +|x|

–|x| , where dx denotes the Lebesgue measure in R
n and

d(, x) denotes the hyperbolic distance between the origin and x. It is well known that
the hyperbolic gradient ∇g is defined as the ∇g = ( –|x|

 )∇ , where ∇ denotes the general
gradient in R

n.
Let � be a domain with finite measure on hyperbolic space H

n. Denote ‖f ‖Ln(�) =
(
∫
�

|f |n dV ) 
n . A straightforward calculation yields

‖∇g f ‖Ln(�) =
(∫

�

〈∇g f ,∇g f 〉n/
g dV

) 
n

=
(∫

�

|∇f |n dV
) 

n

and

‖∇g f ‖Ln(Hn) =
(∫

Hn
〈∇g f ,∇g f 〉n/

g dV
) 

n
=

(∫
Bn

|∇f |n dV
) 

n
.

We also define W ,n(Hn) as the completion of C∞
 (Hn) with the norm

‖u‖W ,n(Hn) =
(∫

Hn
|∇gu|n + |u|n dV

) 
n

.

The Moser-Trudinger inequality on hyperbolic space was first established by Mancini
and Sandeep [], they proved the Moser-Trudiner inequality on conformal discs. Lu and
Tang in [] considered the subcritical Moser-Trudinger inequality on high dimensional
hyperbolic space. They proved the following result.

Theorem D For any u ∈ W ,n(Hn) satisfying
∫
Hn |∇gu|n dV ≤ , there exists a positive con-

stant Cn such that

∫
Hn

�(α( – β

n )|u| n
n– )

(d(, x))β
dV ≤ Cn

∫
Hn

|u(x)|n
(d(, x))β

dV

for any α < αn. Furthermore the constant αn is sharp in the sense that the inequality does
not hold if we replace the constant α with any α ≥ αn.

Recently, Lu and Tang in [] considered the sharp Moser-Trudinger inequality with the
exact growth condition on hyperbolic space, they proved the following results.

Theorem E For any u ∈ W ,n(Hn) satisfying
∫
Hn |∇gu|n dV ≤ , there exists a positive con-

stant Cn such that

∫
Hn

�(αn|u| n
n– )

( + u) n
n–

dV ≤ Cn

∫
Hn

∣∣u(x)
∣∣n dV . ()
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Furthermore, the power n
n– is sharp in the sense if the power n

n– is replaced by any p < n
n– ,

the () become infinite.

Motivated by the above results, we consider the singular version of the Moser-Trudinger
inequality with the exact growth condition on hyperbolic space. We state our results as
follows.

Theorem  For any radially decreasing function u ∈ W ,n(Hn) satisfying
∫
Hn |∇gu|n dV ≤

, there exists a positive constant Cn independent of u such that

∫
Hn

�(αn( – β

n )|u| n
n– )

( + u) n
n– (d(, x))β

dV ≤ Cn

∫
Hn

|u(x)|n
(d(, x))β

dV . ()

We verify that the power n
n– is optimal.

Theorem  If the power n
n– is replaced by any p < n

n– , there exists a sequence of functions
{uk} such that

∫
Hn |∇guk|n dV ≤ , but

∫
Hn

�(αn( – β

n )|uk| n
n– )

( + uk)p(d(, x))β
dV

(∫
Hn

|uk(x)|n
(d(, x))β

dV
)–

→ ∞.

This paper is organized as follows. In Section , we give some important lemmas which
will play key roles in the proof of Theorem . In Section , we establish a singular version
of Moser-Trudinger inequality with the exact growth condition on hyperbolic space (The-
orem ). In Section , we give the proof of the sharpness of the singular Moser-Trudinger
inequality with the exact growth condition in Theorem .

2 Some important lemmas
In this section, we give some key lemmas which play an important role in the proof of
Theorem .

Lemma  (see [, ]) Given any sequence a = {ak}k≥, let ‖a‖ =
∑+∞

k= |ak|, ‖a‖n =
(
∑+∞

k= |ak|n)/n, ‖a‖(e) = (
∑+∞

k= |ak|nek(– β
n ))/n and μ(h) = inf{‖a‖(e) : ‖a‖ = h,‖a‖n ≤ }.

Then, for any h > , we have

μn(h) ∼ e(– β
n )h

n
n–

h
n

n–
.

With the help of Lemma , one can obtain the following lemma.

Lemma  There exists a constant C such that for, any nonnegative decreasing function u
with u(R) > K 

n and ωn–
∫ ∞

R |u′|ntn– dt ≤ K for some R, K > ,

eαn(– β
n )K– 

n– u
n

n– (R)

u
n

n– (R)
Rn–β ≤ C

∫ ∞
R untn–β– dt

K
n

n–
.
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Proof By scaling, it suffices to show that, for any nonnegative decreasing function u satis-
fying u() >  and ωn–

∫ ∞
 |u′|ntn– dt ≤ ,

eαn(– β
n )u

n
n– ()

u
n

n– ()
�

∫ ∞


untn–α– dt.

Let hk = α
n–

n
n u(ek/n), ak = hk – hk+ and a = {ak}. Then ak ≥  and

∑
k≥

|ak| = h = α
n–

n
n u().

Since

hk – hk+ = α
n–

n
n

(
u
(
e

k
n
)

– u
(
e

k+
n

))

= α
n–

n
n

∫ e
k
n

e
k+

n
u′(t) dt

= α
n–

n
n

(∫ e
k+

n

e
k
n

∣∣u′(t)
∣∣ntn– dt

) 
n
(∫ e

k+
n

e
k
n


t

dt
) n–

n

=
(

ωn–

∫ ∞



∣∣u′(t)
∣∣ntn– dt

) 
n

,

we have

‖a‖n =
(∑

k≥

|ak|n
)/n

=
(∑

k≥

|hk – hk+|n
)/n

≤ .

Moreover,

∫ ∞


untn–β– dt =

∑
k≥

∫ e
k+

n

e
k
n

untn–β– dt

=
∑
k≥

(
u
(
e

k+
n

))n
∫ e

k+
n

e
k
n

tn–β– dt

�
∑
k≥

(
u
(
e

k+
n

))ne(– β
n )(k+)

=
∑
k≥

(
u
(
e

k
n
))ne(– β

n )k

�
∑
k≥

hn
k e(– β

n )k

�
∑
k≥

an
k e(– β

n )k .
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Therefore,

‖a‖(e) = an
 +

∑
k≥

an
k e(– β

n )k

≤ hn
 +

∑
k≥

an
k e(– β

n )k

� hn
 +

∫ ∞


untn–β– dt. ()

Next, we start to estimate h. Set  < r < e/n, then

h – α
n–

n
n u(r) = α

n–
n

n

∫ r



∣∣u′(t)
∣∣dt

= α
n–

n
n

(∫ r



∣∣u′(t)
∣∣ntn– dt

) 
n
(∫ r




t

dt
) n–

n

= – n–
n

(
ωn–

∫ r



∣∣u′(t)
∣∣ntn– dt

) 
n

≤ h



and

∫ ∞


untn–β– dt ≥

∫ e/n


untn–β– dt � hn

. ()

By () and (), we derive that

‖a‖(e) �
∫ ∞


untn–β– dt.

Then we apply Lemma  to conclude that

∫ ∞


untn–β– dt � e(– β

n )h
n

n–


h
n

n–


=
eαn(– β

n )u
n

n– ()

αnu n
n– ()

.

This completes the proof of Lemma . �

3 Singular Moser-Trudinger inequality with the exact growth condition
In this section, we shall establish a singular version of Moser-Trudinger inequality with the
exact growth condition on hyperbolic space. Namely, we will give the proof of Theorem .
By the density, we can assume that u(x) is compactly supported in H

n. We use the idea of
Moser []. Set d(, x) = t and u(x) = v(d(, x)) = v(t), then

∫
Hn

�(αn( – β

n )|u| n
n– )

( + u) n
n– (d(, x))β

dV = ωn–

∫ ∞



�(αn( – β

n )|v| n
n– )

( + v) n
n–

t–β (sinh t)n– dt,
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∫
Hn

∣∣∇gu(x)
∣∣n dV = ωn–

∫ ∞



∣∣v′(t)
∣∣n(sinh t)n– dt,

∫
Hn

|u(x)|n
(d(, x))β

dV = ωn–

∫ ∞



∣∣v(t)
∣∣n(sinh t)n–t–β dt.

Thus, it suffices to show that there exists a positive constant Cn such that

∫ ∞



�(αn( – β

n )|v| n
n– )

( + v) n
n–

t–β (sinh t)n– dt ≤ Cn

∫ ∞



∣∣v(t)
∣∣n(sinh t)n–t–β dt

for any v(t) satisfying v(t) ≥ , v′(t) ≤ , v(t) =  for some t ∈R and

ωn–

∫ ∞



∣∣v′(t)
∣∣n(sinh t)n– dt ≤ .

Set R = sup{t ∈R : v(t) ≥ }. We can use v(t) ∈ (, ) for t ∈ (R,∞) to obtain

�

(
αn

(
 –

β

n

)
|v| n

n–

)
≤ Cn

∣∣v(t)
∣∣n

for any t ≥ R. It follows that

∫ ∞

R

�(αn( – β

n )|v| n
n– )

( + v) n
n–

t–β (sinh t)n– dt

≤
∫ ∞

R
�

(
αn

(
 –

β

n

)
|v| n

n–

)
t–β (sinh t)n– dt

≤ Cn

∫ ∞

R

∣∣v(t)
∣∣nt–β (sinh t)n– dt. ()

Next, we focus on the integral over (, R]. Set  < ε <  and let R(u) >  such that

ωn–

∫ R



∣∣v(t)
∣∣n(sinh t)n– dt ≤ ρε

and

ωn–

∫ ∞

R

∣∣v(t)
∣∣n(sinh t)n– dt ≤ ρ( – ε),

where  < ρ ≤ .
In order to estimate the integral over (, R], we need to consider two cases: R ≥ R and

R ≤ R.
First, we consider the case that R ≥ R. For  < t ≤ R, we can write

v(t) = v(R) +
∫ t

R
v′(s) ds

≤ v(R) +
(∫ R

t

∣∣v′(s)
∣∣n(sinh s)n– ds

) 
n
(∫ R

t


sinh s

ds
) n–

n

≤  +
(

ρε

wn–

) 
n
(

ln

(
eR – 
eR + 

et + 
et – 

)) n–
n

.
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For any ε > , one can apply the following well-known inequality:

 + s
n–

n ≤ (
( + ε)s + Cε

) n–
n ()

to obtain

∣∣v(t)
∣∣ n

n– ≤ ( + ε)
(

ρε

wn–

) 
n–

(
ln

(
eR – 
eR + 

et + 
et – 

))
+ Cε .

Pick ε sufficiently small such that ( + ε)n–ε < , then

∣∣v(t)
∣∣ n

n– ≤
(

ρ( + ε)n–ε

wn–

) 
n–

(
ln

(
eR – 
eR + 

et + 
et – 

))
+ Cε .

Denote c = (n – β)(ρ( + ε)n–ε) 
n– . It follows that  < c < n – β and

∫ R



�(αn( – β

n )|v| n
n– )

( + v) n
n–

t–β (sinh t)n– dt

≤
∫ R


�

(
αn

(
 –

β

n

)
|v| n

n–

)
t–β (sinh t)n– dt

≤
∫ R


�

(
αn

(
 –

β

n

)((
ρ( + ε)n–ε

wn–

) 
n–

ln

(
eR – 
eR + 

et + 
et – 

)
+ Cε

))

× t–β (sinh t)n– dt

≤ exp

(
αn

(
 –

β

n

)
Cε

)(
eR – 
eR + 

)c ∫ R



(et + )c+n–

(et – )c–n+
t–β

(et)n– dt.

For R → , it is easy to check that

exp

(
αn

(
 –

β

n

)
Cε

)(
eR – 
eR + 

)c ∫ R



(et + )c+n–

(et – )c–n+
t–β

(et)n– dt ∼ Rn–β .

For R → +∞, one can calculate

exp

(
αn

(
 –

β

n

)
Cε

)(
eR – 
eR + 

)c ∫ R



(et + )c+n–

(et – )c–n+
t–β

(et)n– dt

∼
∫ R



(et + )c+n–

(et – )c–n+
t–β

(et)n– dt.

On the other hand,

∫ R



∣∣v(t)
∣∣n(sinh t)n–t–β dt ≥

∫ R


(sinh t)n–t–β dt.

Therefore, for R → ,

∫ R


(sinh t)n–t–β dt ∼ Rn–β .
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Thus,

lim
R→

∫ R
 |v(t)|n(sinh t)n–t–β dt

∫ R


�(αn(– β
n )|v| n

n– )

(+v)
n

n–
t–β (sinh t)n– dt

≥ lim
R→

∫ R
 (sinh t)n–t–β dt

exp(αn( – β

n )Cε )( eR–
eR+ )c

∫ R


(et+)c+n–

(et–)c–n+
t–β

(et )n– dt

≥ C ()

and

lim
R→+∞

∫ R
 |v(t)|n(sinh t)n–t–β dt

∫ R


�(αn(– β
n )|v| n

n– )

(+v)
n

n–
t–β (sinh t)n– dt

≥ lim
R→+∞

∫ R
 (sinh t)n–t–β dt

exp(αn( – β

n )Cε )( eR–
eR+ )c

∫ R


(et+)c+n–

(et–)c–n+
t–β

(et )n– dt

≥ lim
R→+∞

(sinh R)n–R–β

exp(αn( – β

n )Cε )R–β(eR)n–(eR)–n

= C. ()

We can combine () and () to derive that

∫ R



�(αn( – β

n )|v| n
n– )

( + v) n
n–

t–β (sinh t)n– dt

≤ Cn

∫ R



∣∣v(t)
∣∣n(sinh t)n–t–β dt. ()

Then by () and (), we obtain the desired inequality of Theorem  for R ≥ R.
Now, we consider the case R < R. First, we consider the integral over (R, R). By

ωn–
∫ ∞

R
|v(t)|n(sinh t)n– dt ≤ ρε, we have

v(t) = v(R) +
∫ t

R
v′(s) ds

≤ v(R) +
(∫ ∞

R

∣∣v′(s)
∣∣n(sinh s)n– ds

) 
n
(∫ R

t


sinh s

ds
) n–

n

≤  +
(

ρε

wn–

) 
n
(

ln

(
eR – 
eR + 

et + 
et – 

)) n–
n

,

where R < t < R. Set ε = ( + ε) 
n– – . It is easy to check that

∣∣v(t)
∣∣ n

n– ≤
(

ρ( – ε
)

wn–

) 
n–

(
ln

(
eR – 
eR + 

et + 
et – 

))
+ Cε
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by (). Denote c = (n – β)(ρ( – ε
)) 

n– , then  < c < n – β and

∫ R

R

�(αn( – β

n )|v| n
n– )

( + v) n
n–

t–β (sinh t)n– dt

≤
∫ R

R

�

(
αn

(
 –

β

n

)
|v| n

n–

)
t–β (sinh t)n– dt

≤
∫ R


�

(
αn

(
 –

β

n

)(
ρ( – ε

)
wn–

) 
n–

(
ln

(
eR – 
eR + 

et + 
et – 

))
+ Cε

)
t–β (sinh t)n– dt

≤ exp

(
αn

(
 –

β

n

)
Cε

)(
eR – 
eR + 

)c ∫ R



(et + )c+n–

(et – )c–n+
t–β

(et)n– dt.

Using the same calculation as we did in the case R ≥ R, we can derive

∫ R

R

�(αn( – β

n )|v| n
n– )

( + v) n
n–

t–β (sinh t)n– dt ≤ Cn

∫ R



∣∣v(t)
∣∣n(sinh t)n–t–β dt. ()

Now, we only need to consider the integral on [, R). Set w(t) = v(t) – v(R), then

ωn–

∫ R



∣∣w′(t)
∣∣n(sinh t)n– dt ≤ ρε.

One can employ the equality () to derive that

∣∣v(t)
∣∣ n

n– = ( + ε)w(t)
n

n– + Cεv(R)
n

n– .

Then we obtain

∫ R



�(αn( – β

n )|v| n
n– )

( + v) n
n–

t–β (sinh t)n– dt

≤
∫ R



�(αn( – β

n )|v| n
n– )

(v(R)) n
n–

t–β (sinh t)n– dt

≤ exp(αn( – β

n )Cεv(R) n
n– )

(v(R)) n
n–

×
∫ R


exp

(
αn

(
 –

β

n

)
( + ε)w

n
n–

)
t–β (sinh t)n– dt. ()

Set ε = ε


–n
 – , then

Cε =
(

 –


( + ε)n–

) 
–n

= ( – ε)


–n .

Since

ωn–

∫ ∞

R

∣∣v′(t)
∣∣n(sinh t)n– dt ≤ ρ( – ε) ≤  – ε.
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We can apply Lemma  to obtain

exp(αn( – β

n )Cεv(R) n
n– )

(v(R)) n
n–

≤ Cε

∫ ∞
R

|v|ntn– dt

( – ε) n
n– (R)n–β

. ()

Let � = {x : d(, x) < R} and v(x) = ( + ε) n–
n w(d(, x)) in �, then

∫
Hn

|∇gv|n dV = ωn–

∫ R


( + ε)n–∣∣w′(t)

∣∣n(sinh t)n– dt ≤ ρ ≤ .

We can apply the singular Moser-Trudinger inequality on a bounded domain to obtain

∫
�

exp

(
αn

(
 –

β

n

)
|v| n

n–

)(
d(, x)

)–β dV ≤ C
∫

�

(
d(, x)

)–β dV . ()

That is,

∫ R


exp

(
αn

(
 –

β

n

)
( + ε)|w| n

n–

)
t–β (sinh t)n– dt ≤ C

∫ R


t–β (sinh t)n– dt.

Since sinh t
t is monotone increasing on (,∞), by (), () and () we derive

∫ R



�(αn( – β

n )|v| n
n– )

( + v) n
n–

t–β (sinh t)n– dt

≤ Cε

∫ ∞
R

|v|ntn––β dt
(R)n–β

∫ R


t–β (sinh t)n– dt

≤ Cε

∫ ∞
R

|v|n(sinh t)n–( t
sinh t )n–t–β dt

(R)n–β

∫ R


tn––β

(
sinh t

t

)n–

dt

≤ Cε

∫ ∞

R

|v|n(sinh t)n–t–β dt. ()

Combining () with (), we obtain the desired inequality of Theorem  for R ≤ R. This
accomplishes the proof of Theorem .

4 Sharpness
In this section, we show that the desired inequality in Theorem  does not hold if the power

n
n– is replaced by any p < n

n– .
We choose {uk}∞k= as follows:

uk(x) = ω
– 

n
n–Ck

⎧⎪⎪⎨
⎪⎪⎩

k n–
n , if  ≤ d(, x) ≤ e–k ,

| ln d(, x)|k– 
n , if e–k < d(, x) ≤ ,

, if d(, x) > ,
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where Ck = (k– ∫ 
e–k t–n(sinh t)n– dt)– 

n . It is easy to check that Ck →  and C
n

n–
k k – k → 

as k → ∞. Let vk(d(, x)) = uk(x), then

vk(t) = ω
– 

n
n–Ck

⎧⎪⎪⎨
⎪⎪⎩

k n–
n , if  ≤ t ≤ e–k ,

| ln t|k– 
n , if e–k < t ≤ ,

, if t > .

By calculation, we derive that

∫
Hn

|∇guk|n dV = ωn–

∫ ∞



∣∣vk(t)
∣∣n(sinh t)n– dt

=
(Ck)n

k

∫ 

e–k
t–n(sinh t)n– dt

= 

and
∫
Hn

|uk(x)|n
(d(, x))β

dV

= ωn–

∫ ∞



∣∣vk(t)
∣∣n(sinh t)n–t–β dt

= (Ck)n
∫ e–k


kn–(sinh t)n–t–β dt

+ (Ck)n
∫ 

e–k
k–| ln t|n(sinh t)n–t–β dt

= O
(

kn–

e(n–β)k

)
+ O

(

k

)

= O
(


k

)
. ()

It follows that

∫
Hn

�(αn( – β

n )|uk| n
n– )

( + uk)p(d(, x))β
dV

= ωn–

∫ ∞



�(αn( – β

n )|vk| n
n– )

( + vk)p t–β (sinh t)n– dt

≥ �(αn( – β

n )|ω– 
n

n–Ckk n–
n | n

n– )

( + |ω– 
n

n–Ckk n–
n |)p

∫ e–k


(sinh t)n–t–β dt

∼ �((n – β)kC
n

n–
k )

( + |ω– 
n

n–Ckk n–
n |)p

e–(n–β)k

∼ k–p n–
n ()

as k → ∞.
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When p < n
n– , we can apply () and () to obtain

∫
Hn

�(αn( – β

n )|uk| n
n– )

( + uk)p(d(, x))β
dV

(∫
Hn

|uk(x)|n
(d(, x))α

dV
)–

≥ k–p n–
n

→ ∞. ()

Thus, we accomplish the proof of Theorem .

5 Conclusions
In this paper, we prove a singular version of Moser-Trudinger inequality with the exact
growth condition in the n-dimension hyperbolic spaceHn. It is well known that the Moser-
Trudinger inequality plays an important role in nonlinear analysis and can be applied to
study the ground state solutions of N-Laplacian equation with critical exponential growth.
Our results represent very good progress on modern analysis and geometric inequalities.
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