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Abstract
LetM be a mixed graph and H(M) be its Hermitian-adjacency matrix. If we add a
Randić weight to every edge and arc inM, then we can get a new weighted
Hermitian-adjacency matrix. What are the properties of this new matrix? Motivated by
this, we define the Hermitian-Randić matrix RH(M) = (rh)kl of a mixed graphM, where
(rh)kl = –(rh)lk = i√

dkdl
(i =

√
–1) if (vk , vl) is an arc ofM, (rh)kl = (rh)lk = 1√

dkdl
if vkvl is an

undirected edge ofM, and (rh)kl = 0 otherwise. In this paper, firstly, we compute the
characteristic polynomial of the Hermitian-Randić matrix of a mixed graph.
Furthermore, we give bounds on the Hermitian-Randić energy of a general mixed
graph. Finally, we give some results about the Hermitian-Randić energy of mixed trees.
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1 Introduction
In this paper, we only consider simple graphs without multiedges and loops. A graph M
is said to be mixed if it is obtained from an undirected graph MU by orienting a subset of
its edges. We call MU the underlying graph of M. Clearly, a mixed graph concludes both
possibilities of all edges oriented and all edges undirected as extreme cases.

Let M be a mixed graph with vertex set V (M) = {v, v, . . . , vn} and edge set E(M). For
vi, vj ∈ V (M), we denote an undirected edge joining two vertices vi and vj of M by vivj (or
vi ↔ vj). Denote a directed edge (or arc) from vi to vj by (vi, vj) (or vi → vj). In addition,
let E(M) denote the set of all undirected edges and E(M) denote all the directed arcs
set. Clearly, E(M) is the union of E(M) and E(M). A mixed graph is called mixed tree
(or mixed bipartite graph) if its underlying graph is a tree (or bipartite graph). In gen-
eral, the order, size, number of components and degree of a vertex of M are the same to
those in MU . We use Bondy and Murty [] for terminologies and notations not defined
here.

Let G be a simple graph with vertex set {v, v, . . . , vn}. The adjacency matrix of a sim-
ple graph G of order n is defined as the n × n symmetric square matrix A = A(G) = (aij),
where aij =  if vivj is an edge of G, otherwise aij = . We denote by di = d(vi) = dG(vi)
(i = , , . . . , n) the degree of vertex vi. In addition, for a mixed graph M, if vi ∈ V (M), then
we also denote di = d(vi) = dMU (vi). The energy of the graph G (see the survey of Gutman,
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Li and Zhang [] and the book of Li, Shi and Gutman []) is defined as EA(G) =
∑n

i= |ρi|,
where ρ,ρ, . . . ,ρn are all eigenvalues of A(G).

A convenient parameter of G is the general Randić index Rα(G) defined as Rα(G) =
∑

uv∈E(G)(dudv)α , where the summation is over all (unordered) edges uv in G. The molecu-
lar structure-descriptor, first proposed by Randić [] in , is defined as the sum of √

dudv

over all edges uv of G (with α = – 
 ). Nowadays, R = R(G) =

∑
uv∈E(G)

√
dudv

of G is referred
to as the Randić index. Countless chemical applications, the mathematical properties and
mathematical chemistry of the Randić index were reported in [–].

Gutman et al. [] pointed out that the Randić-index-concept is purposeful to asso-
ciate the graph G with a symmetric square matrix of order n, named Randić matrix
R(G) = (rij), where rij = √

didj
if vivj is an edge of G, otherwise rij = . Let D(G) be

the diagonal matrix of vertex degrees of G. If G has no isolated vertices, then R(G) =
D(G)– 

 A(G)D(G)– 
 .

The concept of Randić energy of a graph G, denoted by ER(G), was introduced in [] as
ER(G) =

∑n
i= |γi|, where γi is the eigenvalues of R(G), i = , , . . . , n. Some basic properties

of the Randić index, Randić matrix and Randić energy were determined in the papers [–
].

An oriented graph Gσ is a digraph which assigns each edge of G a direction σ . The skew
adjacency matrix associated to Gσ is the n × n matrix S(Gσ ) = (sij), where sij = –sji =  if
(vi, vj) is an arc of Gσ , otherwise sij = sji = . The skew energy of Gσ , denoted by ES(Gσ ),
is defined as the sum of the norms of all the eigenvalues of S(Gσ ). For more details about
skew energy, we can refer to [, ].

In , Gu, Huang and Li [] defined the skew Randić matrix Rs(Gσ ) = ((rs)ij) of an
oriented graph Gσ of order n, where (rs)ij = –(rs)ji = √

didj
if (vi, vj) is an arc of Gσ , other-

wise (rs)ij = (rs)ji = . Let D(G) be the diagonal matrix of vertex degrees of G. If Gσ has no
isolated vertices, then Rs(Gσ ) = D(G)– 

 S(Gσ )D(G)– 
 .

The Hermitian-adjacency matrix of a mixed graph M of order n is the n × n ma-
trix H(M) = (hkl), where hkl = –hlk = i (i =

√
–) if (vk , vl) is an arc of M, hkl = hlk = 

if vkvl is an undirected edge of M, and hkl =  otherwise. Obviously, H(M) = H(M)∗ :=
H(M)

T
. Thus all its eigenvalues are real. This matrix was introduced by Liu and Li in

[] and independently by Guo and Mohar in []. The Hermitian energy of a mixed
graph M is defined as EH (M) =

∑n
i= |λi|, where λ,λ, . . . ,λn are all eigenvalues of H(M).

Denote by SpH (M) = (λ,λ, . . . ,λn) the spectrum of H(M). For more details about the
Hermitian-adjacency matrix and the Hermitian energy of mixed graphs, we can refer to
[–].

From the above we can see that if we add a Randić weight to every edge in a simple
graph G, then we can get a Randić matrix R(G). If we add a Randić weight to every arc in
an oriented graph Gσ , then we can get a skew Randić matrix Rs(Gσ ). Let M be a mixed
graph and H(M) be its Hermitian-adjacency matrix. If we add a Randić weight to every
edge and arc in M, then we can get a new weighted Hermitian-adjacency matrix. What
are the properties of this new matrix? Motivated by this, we define the Hermitian-Randić
matrix of a mixed graph M.
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Let M be a mixed graph on the vertex set {v, v, . . . , vn}, then the Hermitian-Randić
matrix of M is the n × n matrix RH (M) = ((rh)kl), where

(rh)kl =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

√
dk dl

, if vk ↔ vl,
i√
dk dl

, if vk → vl,
–i√
dk dl

, if vl → vk ,

, otherwise.

Let D(MU ) be the diagonal matrix of vertex degrees of MU . If M has no isolated vertices,
then RH (M) = D(MU )– 

 H(M)D(MU )– 
 . For a mixed graph M, let RH (M) be its Hermitian-

Randić matrix. It is obvious that RH(M) is a Hermitian matrix, so all its eigenvalues
μ,μ, . . . ,μn are real. The spectrum of RH(M) is defined as SpRH (M) = (μ,μ, . . . ,μn). The
energy of RH (M), denoted by ERH (M), is called Hermitian-Randić energy, which is defined
as the sum of the absolute values of its eigenvalues of RH(M), that is, ERH (M) =

∑n
i= |μi|.

In this paper, we define the Hermitian-Randić matrix of a mixed graph M and study
some basic characteristics of the Hermitian-Randić matrix of mixed graphs. In Section ,
we give the characteristic polynomial of the Hermitian-Randić matrix of a mixed graph M.
In Section , we study some bounds on the Hermitian-Randić energy of mixed graphs with
different parameters and give the conditions under which mixed graphs can attain those
Hermitian-Randić energy bounds. In Section , we show that the Hermitian-Randić en-
ergy of a mixed tree is the same as the Randić energy of its underlying graph. In Section ,
we summarize the results of this paper and give some future works we will study.

2 Hermitian-Randić characteristic polynomial of a mixed graph
In this section, we will give the characteristic polynomial of a Hermitian-Randić matrix of
a mixed graph M, i.e., the RH -characteristic polynomial of M. At first, we will introduce
some basic definitions.

The value of a mixed walk W = vv · · · vl is rh(W ) = (rh)(rh)(rh)(l–)l . A mixed walk
W is positive (or negative) if rh(W ) = √

ddldd···d(l–)
(or rh(W ) = – √

ddldd···d(l–)
). Note

that for one direction the value of a mixed walk or a mixed cycle is α, then for the re-
versed direction its value is α. Thus, if the value of a mixed cycle C is

∏
vj∈V (C)


d(vj)

(resp.
–

∏
vj∈V (C)


d(vj)

) in a direction, then its value is
∏

vj∈V (C)


d(vj)
(resp. –

∏
vj∈V (C)


d(vj)

) for the
reversed direction. In these situations, we just term this mixed cycle a positive (resp. neg-
ative) mixed cycle without mentioning any direction.

If each mixed cycle is positive (resp. negative) in a mixed graph M, then M is positive
(resp. negative). A mixed graph M is called an elementary graph if every component of
M is an edge, an arc or a mixed cycle, where every edge-component in M is defined to
be positive. A real spanning elementary subgraph of a mixed graph M is an elementary
subgraph such that it contains all vertices of M and all its mixed cycles are real.

Now we will give two results which are similar to those in [, , ].
Let M be a mixed graph of order n with its Hermitian-Randić matrix RH (M). Denote

the RH -characteristic polynomial of RH (M) of M by

PRH (M, x) = det
(
xI – RH(M)

)
= xn + axn– + axn– + · · · + an.
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Theorem . Let RH(M) be the Hermitian-Randić matrix of a mixed graph M of order n.
Then

det RH (M) =
∑

M′
(–)r(M′)+l(M′)s(M′)W

(
M′),

where the summation is over all real spanning elementary subgraphs M′ of M, r(M′) =
n – c(M′), c(M′) denotes the number of components of M′, l(M′) denotes the number of
negative mixed cycles of M′, s(M′) denotes the number of mixed cycles with length ≥  in
M′, W (M′) =

∏
vi∈V (M′)


dMU (vi)

.

Proof Let M be a mixed graph of order n with vertex set {v, v, . . . , vn}. Then

det RH (M) =
∑

π∈Sn

sgn(π )(rh)π ()(rh)π () · · · (rh)nπ (n),

where Sn is the set of all permutations on {, , . . . , n}.
Consider a term sgn(π )(rh)π ()(rh)π () · · · (rh)nπ (n) in the expansion of det RH (M). If

vkvπ (k) is not an edge or arc of M, then (rh)kπ (k) = ; that is, this term vanishes. Thus, if the
term corresponding to a permutation π is non-zero, then π is fixed-point-free and can be
expressed uniquely as the composition of disjoint cycles of length at least . Consequently,
each non-vanishing term in the expansion of det RH (M) gives rise to an elementary mixed
graph M′ of M with V (M′) = V (M). That is, M′ is a spanning elementary subgraph of M
of order n.

A spanning elementary subgraph M′ of M with s(M′) number of mixed cycles
(length ≥ ) gives s(M′) permutations π since, for each mixed cycle-component in M′,
there are two ways of choosing the corresponding cycles in π . For a vertex vk ∈ V (M′),
we denote dk = d(vk) = dMU (vk). Furthermore, if for some direction of a permutation π ,
a mixed cycle-component C has value i

∏
vj∈V (C)


d(vj)

(or –i
∏

vj∈V (C)


d(vj)
), then for the

other direction C has value –i
∏

vj∈V (C)


d(vj)
(or i

∏
vj∈V (C)


d(vj)

) and vice versa. Thus,
they cancel each other in the summation. In addition, if for some direction of a permu-
tation π , C has value

∏
vj∈V (C)


d(vj)

(or –
∏

vj∈V (C)


d(vj)
), then for the other direction C

has the same value. For each edge-component (kl) corresponding to the factors (rh)kl(rh)lk

has value √
dk dl

√
dldk

= 
dk dl

. For each arc-component (kl) corresponding to the factors

(rh)kl(rh)lk has value i·(–i)√
dk dl

√
dldk

= 
dkdl

.

Since sgn(π ) = (–)n–c(M′) = (–)r(M′) and each real spanning elementary subgraph M′

contributes (–)r(M′)+l(M′)s(M′) ∏
vi∈V (M′)


dMU (vi)

to the determinant of RH (M). This com-
pletes the proof. �

Now, we shall obtain a description of all the coefficients of the characteristic polynomial
PRH (M, x) of a mixed graph M.

Theorem . For a mixed graph M, if the RH -characteristic polynomial of M is denoted
by PRH (M, x) = det(xI – RH(M)) = xn + axn– + axn– + · · · + an, then the coefficients of
PRH (M, x) are given by

(–)kak =
∑

M′
(–)r(M′)+l(M′)s(M′) ∏

vi∈V (M′)


dMU (vi)

,
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where the summation is over all real elementary subgraphs M′ with order k of M, r(M′) =
k – c(M′), c(M′) denotes the number of components of M′, l(M′) denotes the number of
negative mixed cycles of M′, s(M′) denotes the number of mixed cycles with length ≥ 
in M′.

Proof The proof follows from Theorem . and the fact that (–)kak is the summation of
determinants of all principal k × k submatrices of RH(M). �

Corollary . For a mixed graph M, let the RH -characteristic polynomial of M be denoted
by PRH (M, x) = det(xI – RH (M)) = xn + axn– + axn– + · · · + an.

() If M is a mixed tree, then (–)kak =
∑

M′ (–)r(M′) ∏
vi∈V (M′)


dMU (vi)

.
() If M is a mixed graph and its underlying graph MU is r regular (r 	= ), then

(–)kak =
∑

M′ (–)r(M′)+l(M′)s(M′) 
rk .

() If M is a mixed bipartite graph, then all coefficients of aodd are equal to , and its
spectrum is symmetry about .

Note that if M is a positive mixed graph, then for every real elementary subgraph M′ of
M, we have

(–)r(M′)+l(M′)s(M′) ∏

vi∈V (M′)


dMU (vi)

= (–)r(M′)s(M′) ∏

vi∈V (M′)


dMU (vi)

= (–)r(M′
U )s(M′

U )
∏

vi∈V (M′
U )


dMU (vi)

.

Then PRH (M, x) = PRH (MU , x), that is to say,

Theorem . If M is a positive mixed graph and MU be its underlying graph, then
SpRH (M) = SpRH (MU ).

3 Bounds on the Hermitian-Randić energy of mixed graphs
In this section, we will give some bounds on the Hermitian-Randić energy of mixed graphs.
First, we will give some properties of a Hermitian-Randić matrix of mixed graphs.

Lemma . Let M be a mixed graph of order n ≥ .
() ERH (M) =  if and only if M ∼= Kn.
() If M = M ∪ M ∪ · · · ∪ Mp, then ERH (M) = ERH (M) + ERH (M) + · · · + ERH (Mp).

From Lemma ., we can obtain the following theorem.

Theorem . Let M be a mixed graph with vertex set V (M) = {v, v, . . . , vn}, and dk is the
degree of vk , k = , , . . . , n. Let H(M) and RH (M) be the Hermitian-adjacency matrix and
the Hermitian-Randić matrix of M, respectively. If M has isolated vertices, then det H(M) =
det RH (M) = . If M has no isolated vertices, then

det RH (M) =


dd · · ·dn
det H(M).
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Proof If M has l isolated vertices, then M = M′ ∪ Kl , where M′ has no isolated vertices. By
Lemma ., we have SpRH (M) = SpRH (M′) ∪ {, l times} and an analogous relation holds
for Hermitian-adjacency spectrum of M. That is, H(M) and RH (M) have zero eigenvalues,
therefore their determinants are equal to zero.

If M has no isolated vertices, then RH(M) = D(MU )– 
 H(M)D(MU )– 

 is applicable,
where D(MU ) is the diagonal matrix of vertex degrees. The matrices RH (M) and
D(MU )– 

 RH (M)D(MU ) 
 are similar and thus have equal eigenvalues. We have

D(MU )– 
 RH (M)D(MU )


 = D(MU )–H(M),

therefore,

det RH (M) = det
[
D(MU )–H(M)

]
= det D(MU )– det H(M).

So,

det RH (M) =


dd · · ·dn
det H(M).

This completes the proof. �

Similar to Theorem ., we can obtain the following theorem.

Theorem . If M is a mixed graph with vertex set V (M) = {v, v, . . . , vn} and its under-
lying graph MU is r regular, then ERH (M) = 

rEH (M). In addition, if r = , then ERH (M) = .

Proof If r = , then M is the graph that has no edges. Then all the entries of RH (M) are
equal to , i.e., RH (M) = . Similarly, H(M) = . Since all eigenvalues of the zero matrix
are equal to , hence ERH (M) = EH (M) = .

If r > , i.e., M is regular of degree r > , then d = d = · · · = dn = r, where dk is the degree
of vk , k = , , . . . , n. Hence, (rh)sk = –(rh)ks = i

r if (vs, vk) is an arc of M, (rh)sk = (rh)ks = 
r if

vsvk is an undirected edge of M, and (rh)sk =  otherwise.
This implies that RH (M) = 

r H(M). Therefore, μi = 
r λi, where μi is the eigenvalue of

RH (M), and λi is the eigenvalue of H(M) for i = , , . . . , n. Then this theorem follows from
the definitions of ERH (M) and EH (M). �

Similar to the results about the skew Randić energy in [], we can establish the following
lower and upper bounds for the Hermitian-Randić energy. First, we need the following
theorem. Here and later, In denotes the unit matrix of order n.

Theorem . Let M be a mixed graph of order n and μ ≥ μ ≥ · · · ≥ μn be the Hermitian-
Randić spectrum of RH(M). Then |μ| = |μ| = · · · = |μn| if and only if there exists a constant
c = |μi| for all i such that R

H(M) = cIn.

Proof Let μ ≥ μ ≥ · · · ≥ μn be the Hermitian-Randić spectrum of RH (M). Then there
exists a unitary matrix U such that

U∗RH (M)U = U∗RH (M)∗U = diag{μ, . . . ,μn}.
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So,

|μ| = |μ| = · · · = |μn|
⇔ U∗RH(M)∗RH (M)U = cIn

⇔ U
(
U∗RH(M)∗RH (M)U

)
U∗ = cUU∗

⇔ RH(M)∗RH (M) = cIn

⇔ R
H(M) = cIn,

where c is a constant and c = |μi| for all i.
This completes the proof. �

Theorem . Let M be a mixed graph of order n and μ ≥ μ ≥ · · · ≥ μn be the Hermitian-
Randić spectrum of RH (M). Let MU be the underlying graph of M, p = |det RH (M)|. Then

√

R–(MU ) + n(n – )p 
n ≤ ERH (M) ≤ √

nR–(MU )

with equalities holding both in the lower bound and upper bound if and only if there exists
a constant c = |μi| for all i such that R

H (M) = cIn.

Proof Let {μ,μ, . . . ,μn} be the Hermitian-Randić spectrum of M, where μ ≥ μ ≥
· · · ≥ μn. Since

∑n
j= μ

j = tr(R
H (M)) =

∑n
j=

∑n
k=(rh)jk(rh)kj =

∑n
j=

∑n
k=(rh)jk(rh)jk =

∑n
j=

∑n
k= |(rh)jk| = R–(MU ), where R–(MU ) =

∑
vjvk∈E(MU )


djdk

(unordered).
Applying the Cauchy-Schwarz inequality, we have

ERH (M) =
n∑

j=

|μj| ≤
√
√
√
√

n∑

j=

|μj| · √n =
√

nR–(MU ).

On the other hand,

∣
∣ERH (M)

∣
∣ =

( n∑

j=

|μj|
)

=
n∑

j=

|μj| +
∑

≤i	=j≤n

|μi||μj|.

By using an arithmetic geometric average inequality, we can get that

∣
∣ERH (M)

∣
∣ =

n∑

j=

|μj| +
∑

≤i	=j≤n

|μi||μj| ≥ R–(MU ) + n(n – )p

n .

Therefore, we can obtain the lower bound on the Hermitian-Randić energy

ERH (M) ≥
√

R–(MU ) + n(n – )p 
n .

From the Cauchy-Schwarz inequality and the arithmetic geometric average inequality,
we know that the equalities hold both in the lower bound and upper bound if and only if
|μ| = |μ| = · · · = |μn|, i.e., there exists a constant c = |μi| for all i such that R

H (M) = cIn.
This completes the proof. �
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Corollary . Let M be a mixed graph and its underlying graph MU be r ( 	= ) regular and
E(MU ) = m. Let μ ≥ μ ≥ · · · ≥ μn be the Hermitian-Randić spectrum of RH (M). Then

√
n
r

+ n(n – )p 
n ≤ ERH (M) ≤ n

√
r

r
,

where p = |det RH (M)|, with equalities holding both in the lower bound and upper bound if
and only if 

r = |μi| for all i such that R
H (M) = 

r In.

Proof If M is a mixed graph and its underlying graph MU is r regular, then R–(MU ) = m
r

and m = nr. By Theorems . and ., we can obtain the results. �

Lemma . ([]) Let G be a graph of order n with no isolated vertices. Then

n
(n – )

≤ R–(G) ≤
⌊

n


⌋

,

with equality in the lower bound if and only if G is a complete graph, and equality in the
upper bound if and only if either

() n is even and G is the disjoint union of n/ paths of length , or
() n is odd and G is the disjoint union of (n – )/ paths of length  and one path of

length .

Combining Theorem . and Lemma ., we can get upper and lower bounds for the
Hermitian-Randić energy by replacing R–(MU ) with other parameters. We now give
bounds of the Hermitian-Randić energy of a mixed graph with respect to its order.

Theorem . Let M be a mixed graph of order n ≥  without isolated vertices and MU be
its underlying graph. Let μ ≥ μ ≥ · · · ≥ μn be the Hermitian-Randić spectrum of RH(M).
Then

√
n

n – 
≤ ERH (M) ≤ n.

The equality in the upper bound holds if and only if n is even and MU is the disjoint union of
n/ paths of length . The equality in the lower bound holds if and only if MU is a complete
graph and μ = –μn 	= , μj = , j = , . . . , n – .

Proof Let RH (M) be the Hermitian-Randić matrix of M and μ ≥ μ ≥ · · · ≥ μn be the
Hermitian-Randić spectrum of RH (M).

For the upper bound, combining Lemma . and ERH (M) ≤ √
nR–(MU ) of Theo-

rem ., we have

ERH (M) ≤ √
nR–(MU ) ≤

√

n
⌊

n


⌋

≤ n.

From Theorem . and Lemma ., we know that the equality in the upper bound holds
if and only if n is even, MU is the graph described in Lemma .(), and |μ| = |μ| = · · · =
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|μn|, that is, we can obtain the upper bound when n is even and MU is the disjoint union
of n/ paths of length .

For the lower bound, since the sum of the diagonal entries of RH (M) is , i.e.,
∑n

k= μk = ,
then

( n∑

k=

μk

)( n∑

l=

μl

)

=
n∑

k=

μ
k +

∑

≤k 	=l≤n

μkμl

=
n∑

k=

μ
k + 

∑

k<l

μkμl

= R–(MU ) + 
∑

k<l

μkμl

= .

Hence,
∑

k<l μkμl = –R–(MU ).
From the definition of the Hermitian-Randić energy of a mixed graph, we have

E
RH

(M) =

( n∑

k=

|μk|
)

=
n∑

k=

μ
k +

∑

≤k 	=l≤n

|μkμl|

= R–(MU ) + 
∑

k<l

|μkμl|

≥ R–(MU ) + 
∣
∣
∣
∣

∑

k<l

μkμl

∣
∣
∣
∣

= R–(MU ).

Combining this with Lemma ., we have

ERH (M) ≥ 
√

R–(MU ) ≥ 
√

n
(n – )

=
√

n
n – 

.

So,
√

n
n – 

≤ ERH (M) ≤ n.

From the proof above and Lemma ., we know that the equality in the lower bound
holds if and only if MU is a complete graph and μkμl ≥  or μkμl ≤  for all  ≤ k < l ≤ n.
Note that

∑n
k= μk =  and M has no isolated vertices, so the former case can not happen.

Hence, the equality in the lower bound holds if and only if MU is a complete graph and
μ = –μn 	= , μj = , j = , . . . , n – .

This completes the proof. �

Remark . It should be pointed out that when M is a complete mixed graph, its
Hermitian-Randić spectrum is not unique. For example, let MU = K, if all edges of E(M)
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are oriented, then we have μ = –μ =
√


 , μ = , then we can obtain the lower bound in

Theorem .. If some edges of E(M) are undirected, then we can not obtain the lower
bound in Theorem .. For example, if (rh) = (rh) = i

 , (rh) = 
 , then μ =  and

μ = μ = – 
 . Hence, the problem of determining all complete mixed graphs for which

the lower bound in Theorem . is attained appears to be somewhat more difficult.

To deduce more bounds on ERH (M), the following lemma is needed.

Lemma . ([]) Let x, y ∈ R
n and let A(x) = 

n
∑n

i= xi, A(y) = 
n
∑n

i= yi. If φ ≤ xi ≤ 	

and γ ≤ yi ≤ 
, then

∣
∣
∣
∣
∣


n

n∑

i=

xiyi –


n

n∑

i=

xi

n∑

i=

yi

∣
∣
∣
∣
∣
≤

√(
	 – A(x)

)(
A(x) – φ

)(

 – A(y)

)(
A(y) – γ

)
.

Now we turn to new bounds on ERH (M).

Theorem . Let M be a mixed graph of order n and MU be its underlying graph. Let
μ ≥ μ ≥ · · · ≥ μn be the Hermitian-Randić spectrum of RH(M). Then

ERH (M) ≥ R–(MU ) + nαβ

α + β
, ()

where α = min≤i≤n{|μi|}, β = max{μ, |μn|}.

Proof Note that

E
RH

(M) =

( n∑

j=

|μj|
)

=
n∑

j=

|μj| +
∑

≤i	=j≤n

|μi||μj|

= R–(MU ) +
∑

≤i	=j≤n

|μi||μj|. ()

Let S =
∑

≤i	=j≤n |μi||μj|, xi = |μi| and yi = ERH (M) – |μi|, i = , , . . . , n. Then S =
∑n

i= xiyi.
From the definitions of α and β , we have α ≤ xi ≤ β and ERH (M) – β ≤ yi ≤ ERH (M) – α.

In addition, let A(x) = 
n
∑n

i= xi = ERH (M)
n and A(y) = 

n
∑n

i= yi = (n–)ERH (M)
n . Hence, by

Lemma ., we have

∣
∣
∣
∣
S
n

–
(n – )E

RH
(M)

n

∣
∣
∣
∣ ≤

√(

β –
ERH (M)

n

)(ERH (M)
n

– α

)

·
√[

ERH (M) – α –
(n – )ERH (M)

n

]

·
√[

(n – )ERH (M)
n

–
(
ERH (M) – β

)
]

=

√(

β –
ERH (M)

n

)(ERH (M)
n

– α

)

.
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It follows that

S ≥ E
RH

(M) + nαβ – (α + β)ERH (M).

This together with () implies that

E
RH

(M) = R–(MU ) + S ≥ R–(MU ) + E
RH

(M) + nαβ – (α + β)ERH (M).

So,

ERH (M) ≥ R–(MU ) + nαβ

α + β
.

This completes the proof. �

Note that the right-hand side of () is a non-decreasing function on α ≥ . Combining
this with Theorem ., we have the following corollary.

Corollary . Let M be a mixed graph of order n and MU be its underlying graph. Let
μ ≥ μ ≥ · · · ≥ μn be the Hermitian-Randić spectrum of RH(M). Then

ERH (M) ≥ R–(MU )
β

,

where β = max{μ, |μn|}. The equality holds if and only if R
H (M) = cIn, where c is a constant

such that |μi| = c for all i.

In particular, if M is a connected mixed bipartite graph, then we have the following
theorem.

Theorem . Let M be a connected mixed bipartite graph of order n and MU be its un-
derlying graph. Let μ ≥ μ ≥ · · · ≥ μn be the Hermitian-Randić spectrum of RH(M). Then

ERH (M) ≥ 
(R–(MU ) + � n

 �αμ

α + μ

)

, ()

where α = min≤i≤� n
 �{|μi|}.

Proof Note that MU is a bipartite graph. By Corollary .(), we have μi = –μn+–i and
μi ≥  for i = , , . . . , � n

 �. Therefore,

E
RH

(M) =

(


� n

 �∑

i=

μi

)

= 

( � n
 �∑

i=

μ
i +

∑

≤i	=j≤� n
 �

μiμj

)

= R–(MU ) + 
∑

≤i	=j≤� n
 �

μiμj. ()

Let T =
∑

≤i	=j≤� n
 � μiμj, xi = μi and yi = ERH (M)

 –μi, i = , , . . . , � n
 �. Then T =

∑� n
 �

i= xiyi.
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From the definition of α, we have α ≤ xi ≤ μ and ERH (M)
 – μ ≤ yi ≤ ERH (M)

 – α. In
addition, let A(x) = 

� n
 �

∑� n
 �

i= xi = ERH (M)
� n

 � and A(y) = 
� n

 �
∑� n

 �
i= yi = (� n

 �–)ERH (M)
� n

 � . Hence, by
Lemma ., we have

∣
∣
∣
∣

T
� n

 � –
(� n

 � – )E
RH

(M)
� n

 �

∣
∣
∣
∣ ≤

√(

μ –
ERH (M)

� n
 �

)(ERH (M)
� n

 � – α

)

.

It follows that

T ≥ E
RH

(M)


+
⌊

n


⌋

αμ – (α + μ)
ERH (M)


.

This together with () implies that

E
RH

(M) = R–(MU ) + T ≥ R–(MU ) + E
RH

(M) + 
⌊

n


⌋

αμ – (α + μ)ERH (M).

So,

ERH (M) ≥ 
(R–(MU ) + � n

 �αμ

α + μ

)

.

This completes the proof. �

Note that the right-hand side of () is a non-decreasing function on α ≥ . Combining
this with Theorem ., we have the following corollary.

Corollary . Let M be a connected mixed bipartite graph of order n and MU be its
underlying graph. Let μ ≥ μ ≥ · · · ≥ μn be the Hermitian-Randić spectrum of RH(M).
Then

ERH (M) ≥ R–(MU )
μ

,

the equality holds if and only if R
H (M) = cIn, where c is a constant such that |μi| = c for

all i.

4 Hermitian-Randić energy of trees
In [], the authors proved that the skew energy of a directed tree is independent of its
orientation. In [], the authors showed that the skew Randić energy of a directed tree has
the same result. In this section, we will show that the Hermitian-Randić energy also has
the same result. In the beginning of this section, we first characterize the mixed graphs
with cut-edge.

Theorem . Let M be a mixed graph of order n, and e = uv is an edge of M. If uv is a
cut-edge of MU , where MU is the underlying graph of M, then the spectrum and energy of
RH (M) are unchanged when the edge uv is replaced with a single arc uv or vu and vice versa.

Proof Let e = uv be a cut-edge of MU . Suppose that M is the graph obtained from M by
replacing the edge uv with the arc uv or vu. Let M′ and M′

 be real elementary subgraphs
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of order k of M and M, respectively. If M′ does not contain the cut-edge uv, then M′ is
also a real elementary subgraph of M, that is, M′ = M′

. By Theorem ., we have

(–)r(M′)+l(M′)s(M′) ∏

vi∈V (M′)


dMU (vi)

= (–)r(M′
)+l(M′

)s(M′
)

∏

vi∈V (M′
)


dMU (vi)

. ()

If M′ contains the cut-edge uv, then there is a real elementary subgraph M′
 of M only

different from M′ on uv. Since uv is a cut-edge of MU , uv is not contained in any cycles of
MU . Hence, by Theorem ., we have

(–)r(M′)+l(M′)s(M′) ∏

vi∈V (M′)


dMU (vi)

= (–)r(M′
)+l(M′

)s(M′
)

∏

vi∈V (M′
)


dMU (vi)

. ()

Combining () and (), we have ak(M) – ak(M) =  for any integer k.
Thus SpRH (M) = SpRH (M). Moreover, ERH (M) = ERH (M).
Similarly, we can prove that SpRH (M) = SpRH (M) and ERH (M) = ERH (M), where M is

the mixed graph obtained from M by replacing the arc uv or vu with the edge uv. �

Thus, the Hermitian-Randić spectrum and the Hermitian-Randić energy are invariants
when reversing the cut-arc’s orientation or unorienting it or orienting an undirected cut-
edge. By applying Theorem ., we can obtain the following corollaries.

Corollary . Let T be a mixed tree of order n and T ′ be the mixed tree obtained from
T by reversing the orientations of all the arcs incident with a particular vertex of T . Then
ERH (T) = ERH (T ′).

Corollary . Let T be a mixed tree and TU be its underlying graph. Then
() The Hermitian-Randić energy of T is independent of its orientation of the arc set.
() The Hermitian-Randić energy of T is the same as the Randić energy of TU .

5 Conclusions
In this paper, we define the Hermitian-Randić matrix of a mixed graph M and give the
definitions of Hermitian-Randić characteristic polynomial and Hermitian-Randić energy
of a mixed graph M. We give the bounds on the Hermitian-Randić energy of a mixed graph
M with respect to its order, the Hermitian-Randić spectrum and a general Randić index
(with α = –). We also obtain that the Hermitian-Randić energy of a mixed tree is the same
as the Randić energy of its underlying graph.

Our future work will focus more on the characterizations of the Hermitian-Randić ma-
trix of mixed graphs, such as the Hermitian-Randić spectrum of a complete mixed graph,
more bounds on the Hermitian-Randić energy of mixed graphs with other parameters and
mixed graphs that share the same Hermitian-Randić spectra with their underlying graphs.
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4. Randić, M: On characterization of molecular branching. J. Am. Chem. Soc. 97, 6609-6615 (1975)
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