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Abstract
In this article, the complete moment convergence for the partial sum of moving
average processes {Xn =∑∞

i=–∞ aiYi+n,n ≥ 1} is established under some mild
conditions, where {Yi , –∞ < i <∞} is a doubly infinite sequence of random variables
satisfying the Rosenthal type maximal inequality and {ai , –∞ < i <∞} is an absolutely
summable sequence of real numbers. These conclusions promote and improve the
corresponding results given by Ko (J. Inequal. Appl. 2015:225, 2015).
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1 Introduction
We first introduce the definition of the Rosenthal type maximal inequality, which is one
of the most interesting inequalities in probability theory and mathematical statistics. Sup-
pose that {Yn, n ≥ } is a sequence of random variables satisfying E|Yi|r < ∞ for r ≥ , then
there exists a positive constant C(r) depending only on r such that

E max
≤j≤n

∣
∣
∣
∣
∣

j∑

k=

(Yk – EYk)

∣
∣
∣
∣
∣

r

≤ C(r)

[ n∑

k=

E|Yk – EYk|r +

( n∑

k=

E|Yk – EYk|
)r/]

. (.)

Equation (.) can be satisfied by many dependent or mixing sequences. Peligrad [],
Zhou [], Wang and Lu [], Utev and Peligrad [] established the above inequality for
ρ-mixing sequence, ϕ-mixing sequence, ρ–-mixing sequence, and ρ̃-mixing sequence, re-
spectively. We also refer to Shao [], Stoica [], Shen [], Yuan and An [] for negatively
associated sequence (NA), martingale difference sequence, extended negatively depen-
dent sequence (END), and asymptotically almost negatively associated random sequence
(AANA), respectively.

The following definitions will be useful in this paper. The first one can be found in Kucz-
maszewska [].
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Definition . A sequence {Yi, –∞ < i < ∞} of random variables is said to satisfy a weak
dominating condition with a dominating random variable Y if

j+n∑

i=j+

P
{|Yi| > x

} ≤ CnP
{|Y | > x

}
, x ≥ , –∞ < j < ∞, n ≥ ,

where C is a positive constant.

Definition . A real valued function l(x), positive and measurable on [,∞), is said to
be slowly varying at infinity if for each λ > , limx→∞ l(λx)

l(x) = .

Throughout the paper, let {Yi, –∞ < i < ∞} be a sequence of random variables with
zero means and {ai, –∞ < i < ∞} be a sequence of real numbers with

∑∞
i=–∞ |ai| < ∞,

and the moving average process {Xn, n ≥ } is defined by Xn =
∑∞

i=–∞ aiYi+n. The complete
moment convergence of moving average process {Xn, n ≥ } has been widely investigated
by many authors. We list some results as follows.

Li and Zhang [] established the following complete moment convergence of moving
average processes under NA assumptions.

Theorem A Suppose that {Xn =
∑∞

i=–∞ aiεi+n, n ≥ }, where {ai, –∞ < i < ∞} is a sequence
of real numbers with

∑∞
i=–∞ |ai| < ∞ and {εi, –∞ < i < ∞} is a sequence of identically dis-

tributed NA random variables with Eε = , Eε
 < ∞. Let h be a function slowly varying at

infinity,  ≤ q < , r >  + q/. Then E|ε|rh(|ε|q) < ∞ implies

∞∑
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nr/q––/qh(n)E
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∣
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Xj
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∣

– εn/q

}+

< ∞

for all ε > .

Later on, the following complete moment convergence of moving average processes gen-
erated by ρ-mixing sequence was proved by Zhou and Lin [].

Theorem B Let h be a function slowly varying at infinity, p ≥ , pα > , and α > /. Sup-
pose that {Xn, n ≥ } is a moving average process based on a sequence {Yi, –∞ < i < ∞} of
identically distributed ρ-mixing random variables. If EY =  and E|Y|p+δh(|Y|/α) < ∞
for some δ > , then for all ε > ,

∞∑

n=

npα––αh(n)E

{

max
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∣

– εnα

}+

< ∞.

Recently, Ko [] obtained the complete moment convergence of moving average processes
generated by a class of random variable.

Theorem C Let h be a function slowly varying at infinity, p ≥ , pα > , and α > /. As-
sume that {ai, –∞ < i < ∞} is an absolutely summable sequence of real numbers and that
{Yi, –∞ < i < ∞} is a sequence of mean zero random variables satisfying a weak mean dom-
inating condition with a mean dominating random variable Y and E|Y |ph(|Y |/α) < ∞.
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Suppose that {Xn, n ≥ } is a moving average process based on the sequence {Yi, –∞ < i <
∞}. Assume that the Rosenthal type maximal inequality of Yxj = –xI{Yj < –x} + YjI{|Yj| ≤
x} + xI{Yj > x} holds for any q ≥  and x > . Then, for all ε > ,

∞∑

n=

npα––αh(n)E

{

max
≤k≤n

∣
∣
∣
∣
∣

k∑

j=

Xj

∣
∣
∣
∣
∣

– εnα

}+

< ∞.

The aim of this paper is to study the complete moment convergence of moving aver-
age process of random sequence under the assumption that the random variables satisfy
the Rosenthal type maximal inequality and the weak mean dominating condition. The pa-
per is organized as follows. In Section  we describe the main results, Sections  and 
provide some lemmas and the details of the proofs, respectively. Throughout the sequel,
C represents a positive constant although its value may change from one place to the next,
an = O(bn) means |an/bn| ≤ C and I{A} stands for the indicator function of the set A.

2 Main results
Theorem . Let l be a function slowly varying at infinity. Suppose that {ai, –∞ < i < ∞}
is an absolutely summable sequence of real numbers. Let {g(n), n ≥ } and {f (n), n ≥ } be
two sequences of positive constants such that, for some r ≥ max{, p}, p ≥ ,

(C) f (n) ↑ ∞, n
f p(n) → ;

(C)
∑k

m= log( f (m+)
f (m) )

∑m
n=

ng(n)l(n)
f (n) = O(f p–(k)l(k));

(C)
∑∞

m=k[f –r(m + ) – f –r(m)]
∑m

n=
ng(n)l(n)

f (n) = O(f p–r(k)l(k));
(C)

∑k
m=[f (m + ) – f (m)]

∑m
n=

ng(n)l(n)
f (n) = O(f p(k)l(k));

(C)
∑∞

m=[f –r(m + ) – f –r(m)]f t(m + )
∑m

n=
nr/g(n)l(n)

f (n) < ∞, where
t = max{,  – p}r/;

(C)
∑∞

m=[f (m + ) – f (m)]f t′ (m + )
∑m

n=
nr/g(n)l(n)

f (n) < ∞, where t′ = – min{, p}r/.
Assume that {Xn =

∑∞
i=–∞ aiYi+n, n ≥ } is a moving average process generated by a se-

quence of random variables {Yi, –∞ < i < ∞} with mean zeros and satisfying a weak dom-
inating condition with a dominating random variable Y and E|Y |p( ∨ l(f –(|Y |))) < ∞,
where f – is the inverse function of f .

Assume that the Rosenthal type maximal inequality of Yxj = –xI{Yj < –x} + YjI{|Yj| ≤
x} + xI{Yj > x} holds for the above r and all x > . Then, for all ε > ,

∞∑

n=

g(n)l(n)
f (n)

E

{

max
≤k≤n
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∣
∣
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∣

k∑
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Xj
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∣
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∣

– εf (n)

}+

< ∞. (.)

Corollary . If we replace conditions (C)-(C) by the following:
(C)

∑k
n=

ng(n)l(n)
f (n) = O(f p–(k)l(k)),

∑∞
n=

nr/g(n)l(n)
f min{,p}r (n) < ∞,

∑∞
n=k

ng(n)l(n)
f r (n) = O(f p–r(k)l(k)).

The other assumptions of Theorem . also hold, then, for all ε > , we have

∞∑

n=

g(n)l(n)P

{

max
≤k≤n
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∣
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∣
∣

k∑

j=

Xj

∣
∣
∣
∣
∣

> εf (n)

}

< ∞. (.)

Conditions (C)-(C) can be satisfied by many sequences, we list some as the following
remarks.
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Remark . Let g(n) = npα–, f (n) = nα for pα > , and / < α ≤ , assume that (.) holds
true for {Yxj} and

⎧
⎨

⎩

r > ,  < p ≤ ,

r > (pα–)
α– , p > ,

then conditions (C)-(C) can be verified easily by Lemma ., therefore we know

∞∑

n=

npα–α–l(n)E

{

max
≤k≤n
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k∑

j=

Xj
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∣
∣
∣

– εnα

}+

< ∞, (.)

∞∑

n=

npα–l(n)P

{

max
≤k≤n
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∣
∣
∣
∣

k∑

j=

Xj

∣
∣
∣
∣
∣

> εnα

}

< ∞. (.)

Obviously, Theorem . and Corollary . from Ko [] are the same as (.) and (.),
respectively, so we extend the known results. If we take a = , ai = , i 	= , l(x) = , let
{Y , Yi, –∞ < i < ∞} be a sequence of i.i.d. random variables, then

∑∞
n= npα–P{|Y | > nα} <

∞ is equivalent to E|Y |p < ∞, which implies (.), so we can obtain Remark . from
Chen [].

Remark . If we take g(n) = ns–, f (n) = ns/p for s > p > , suppose that (.) holds true for
{Yxj} and

⎧
⎨

⎩

r > ,  < p ≤ ,

r > (s–)p
s–p , p > ,

then conditions (C)-(C) can be verified easily by Lemma ., so we can obtain

∞∑

n=

ns–s/p–l(n)E

{

max
≤k≤n

∣
∣
∣
∣
∣

k∑

j=

Xj

∣
∣
∣
∣
∣

– εns/p

}+

< ∞,

∞∑

n=

ns–l(n)P

{

max
≤k≤n

∣
∣
∣
∣
∣

k∑

j=

Xj

∣
∣
∣
∣
∣

> εns/p

}

< ∞.

Remark . If we set g(n) = log n
n , f (n) = (n log n)/p for  < p ≤ , assume that (.) holds

true for {Yxj} and r > , it is easy to see that conditions (C)-(C) can be satisfied by
Lemma ., so we can obtain

∞∑

n=

(log n)–/pl(n)
n+/p E

{

max
≤k≤n

∣
∣
∣
∣
∣

k∑

j=

Xj

∣
∣
∣
∣
∣

– ε(n log n)/p

}+

< ∞,

∞∑

n=

(log n)l(n)
n

P

{

max
≤k≤n

∣
∣
∣
∣
∣

k∑

j=

Xj

∣
∣
∣
∣
∣

> ε(n log n)/p

}

< ∞.

Remark . Denote g(n) = 
n log n , f (n) = (n log log n)/p for  < p ≤ , assuming that (.)

holds true for {Yxj} and r > , it is easy to prove that conditions (C)-(C) can be satisfied
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by Lemma ., hence the following hold:

∞∑

n=

l(n)
n+/p(log n)(log log n)/p E

{

max
≤k≤n

∣
∣
∣
∣
∣

k∑

j=

Xj

∣
∣
∣
∣
∣

– ε(n log log n)/p

}+

< ∞,

∞∑

n=

l(n)
n log n

P

{

max
≤k≤n

∣
∣
∣
∣
∣

k∑

j=

Xj

∣
∣
∣
∣
∣

> ε(n log log n)/p

}

< ∞.

Theorem . Let l be a function slowly varying at infinity. Suppose that {Xn =
∑∞

i=–∞ aiYi+n, n ≥ } is a moving average process generated by a sequence of random vari-
ables {Yi, –∞ < i < ∞} with mean zeros, where {ai, –∞ < i < ∞} is an absolutely summable
sequence of real numbers. Let {g(n), n ≥ } and {f (n), n ≥ } be two sequences of positive
constants with f (n) ↑ ∞ and {�n(t), n ≥ } ba a sequence of even and nonnegative func-
tions such that, for each n ≥ , �n(t) >  as t > . Assume that

�n(|t|)
|t|p ↑,

�n(|t|)
|t|q ↓, as |t| ↑ (.)

for some  ≤ p < q ≤ , and

∞∑

n=

g(n)l(n)
j+n∑

i=j+

E�i(Yi)
�i(f (n))

< ∞,
j+n∑

i=j+

E�i(Yi)
�i(f (n))

→ , as n → ∞ (.)

for any j ≥ . Assume that the Rosenthal type maximal inequality of Ynj = YjI{|Yj| ≤ f (n)}
holds true for r = . Then, for all ε > ,

∞∑

n=

g(n)l(n)P

{

max
≤k≤n

∣
∣
∣
∣
∣

k∑

j=

Xj

∣
∣
∣
∣
∣

> εf (n)

}

< ∞. (.)

3 Preliminary lemmas
In order to prove the main results, we shall need the following lemmas.

Lemma . (Zhou []) If l is slowly varying at infinity, then
()

∑m
n= nsl(n) ≤ Cms+l(m) for s > – and positive integer m,

()
∑∞

n=m nsl(n) ≤ Cms+l(m) for s < – and positive integer m.

Lemma . (Gut []) Let {Yn, n ≥ } be a sequence of random variables satisfy a weak
dominating condition with a dominating random variable Y . For any b > , set

Y ′
i = YiI

{|Yi| ≤ b
}

, Y ′′
i = YiI

{|Yi| > b
}

,

Y ′ = YI
{|Y | ≤ b

}
, Y ′′ = YI

{|Y | > b
}

.

Then for any a >  and some constant C
() if E|Y |a < ∞, then n– ∑n

i= E|Yi|a ≤ CE|Y |a;
() n– ∑n

i= E|Y ′
i |a ≤ C(E|Y ′|a + baP{|Y | > b});

() n– ∑n
i= E|Y ′′

i |a ≤ CE|Y ′′|a.
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4 Proofs

Proof of Theorem . Obviously that
∑n

k= Xk =
∑∞

i=–∞ ai
∑i+n

j=i+ Yj. Noting that
∑∞

i=–∞ |ai| < ∞, EYi = , E|Y |p( ∨ l(f –(|Y |))) < ∞, then by Lemma . and condition
(C), for any x > f (n), we conclude

x–

∣
∣
∣
∣
∣
E

∞∑

i=–∞
ai

i+n∑

j=i+

Yxj

∣
∣
∣
∣
∣

= x–

∣
∣
∣
∣
∣
E

∞∑

i=–∞
ai

i+n∑

j=i+

(Yj – Yxj)

∣
∣
∣
∣
∣

≤ Cx–
∞∑

i=–∞
|ai|

i+n∑

j=i+

E|Yj|I
{|Yj| > x

} ≤ Cx–nE|Y |I{|Y | > x
}

≤ Cnx–pE|Y |pI
{|Y | > x

} ≤ C
n

f p(n)
E|Y |pI

{|Y | > x
} → , as x → ∞.

Therefore, one can get

x–

∣
∣
∣
∣
∣
E

∞∑

i=–∞
ai

i+n∑

j=i+

Yxj

∣
∣
∣
∣
∣

< ε/,

for any ε >  and x > f (n) large enough. Hence it follows that

∞∑

n=

g(n)l(n)
f (n)

E

{

max
≤k≤n

∣
∣
∣
∣
∣

k∑

j=

Xj

∣
∣
∣
∣
∣

– εf (n)

}+

≤
∞∑

n=

g(n)l(n)
f (n)

∫ ∞

εf (n)
P

{

max
≤k≤n

∣
∣
∣
∣
∣

k∑

j=

Xj

∣
∣
∣
∣
∣
≥ x

}

dx

≤ C
∞∑

n=

g(n)l(n)
f (n)

∫ ∞

f (n)
P

{

max
≤k≤n

∣
∣
∣
∣
∣

k∑

j=

Xj

∣
∣
∣
∣
∣
≥ εx

}

dx

≤ C
∞∑

n=

g(n)l(n)
f (n)

∫ ∞

f (n)
P

{

max
≤k≤n

∣
∣
∣
∣
∣

∞∑

i=–∞
ai

i+k∑

j=i+

(Yj – Yxj)

∣
∣
∣
∣
∣
≥ εx/

}

dx

+ C
∞∑

n=

g(n)l(n)
f (n)

∫ ∞

f (n)
P

{

max
≤k≤n

∣
∣
∣
∣
∣

∞∑

i=–∞
ai

i+k∑

j=i+

(Yxj – EYxj)

∣
∣
∣
∣
∣
≥ εx/

}

dx

=: I + I. (.)

Now we want to estimate I < ∞. It is obvious that |Yj – Yxj| ≤ |Yj|I{|Yj| > x}, then it follows
by Markov’s inequality, Lemma . and conditions (C) and (C) that

I ≤ C
∞∑

n=

g(n)l(n)
f (n)

∫ ∞

f (n)
x–E max

≤k≤n

∣
∣
∣
∣
∣

∞∑

i=–∞
ai

i+k∑

j=i+

(Yj – Yxj)

∣
∣
∣
∣
∣
dx

≤ C
∞∑

n=

g(n)l(n)
f (n)

∫ ∞

f (n)
x–

∞∑

i=–∞
|ai|

i+n∑

j=i+

E|Yj – Yxj|dx
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≤ C
∞∑

n=

ng(n)l(n)
f (n)

∫ ∞

f (n)
x–E|Y |I{|Y | > x

}
dx

= C
∞∑

n=

ng(n)l(n)
f (n)

∞∑

m=n

∫ f (m+)

f (m)
x–E|Y |I{|Y | > x

}
dx

≤ C
∞∑

n=

ng(n)l(n)
f (n)

∞∑

m=n
log

f (m + )
f (m)

E|Y |I{|Y | > f (m)
}

= C
∞∑

m=

log
f (m + )

f (m)
E|Y |I{|Y | > f (m)

} m∑

n=

ng(n)l(n)
f (n)

= C
∞∑

m=

[

log
f (m + )

f (m)

m∑

n=

ng(n)l(n)
f (n)

] ∞∑

k=m

E|Y |I{f (k) < |Y | ≤ f (k + )
}

= C
∞∑

k=

E|Y |I{f (k) < |Y | ≤ f (k + )
} k∑

m=

[

log
f (m + )

f (m)

m∑

n=

ng(n)l(n)
f (n)

]

≤ C
∞∑

k=

f p–(k)l(k)E|Y |I{f (k) < |Y | ≤ f (k + )
}

≤ CE|Y |pl
(
f –(|Y |)) < ∞. (.)

Hence it remains to show that I < ∞. By Markov’s inequality, the Hölder inequality and
the Rosenthal type maximal inequality, for r > max{, p}, it is easy to see that

I ≤ C
∞∑

n=

g(n)l(n)
f (n)

∫ ∞

f (n)
x–rE max

≤k≤n

∣
∣
∣
∣
∣

∞∑

i=–∞
ai

i+k∑

j=i+

(Yxj – EYxj)

∣
∣
∣
∣
∣

r

dx

≤ C
∞∑

n=

g(n)l(n)
f (n)

∫ ∞

f (n)
x–rE

[ ∞∑

i=–∞

(|ai| r–
r

)
(

|ai|/r max
≤k≤n

∣
∣
∣
∣
∣

i+k∑

j=i+

(Yxj – EYxj)

∣
∣
∣
∣
∣

)]r

dx

≤ C
∞∑

n=

g(n)l(n)
f (n)

∫ ∞

f (n)
x–r

( ∞∑

i=–∞
|ai|

)r–( ∞∑

i=–∞
|ai|E max

≤k≤n

∣
∣
∣
∣
∣

i+k∑

j=i+

(Yxj – EYxj)

∣
∣
∣
∣
∣

r)

dx

≤ C
∞∑

n=

g(n)l(n)
f (n)

∫ ∞

f (n)
x–r

∞∑

i=–∞
|ai|

i+n∑

j=i+

E|Yxj – EYxj|r dx

+ C
∞∑

n=

g(n)l(n)
f (n)

∫ ∞

f (n)
x–r

∞∑

i=–∞
|ai|

( i+n∑

j=i+

E|Yxj – EYxj|
)r/

dx

=: I + I. (.)

For I, it follows by Cr inequality, Lemma . and conditions (C), (C), and (C) that

I ≤ C
∞∑

n=

g(n)l(n)
f (n)

∫ ∞

f (n)
x–r

∞∑

i=–∞
|ai|

i+n∑

j=i+

[
E|Yj|rI

{|Yj| ≤ x
}

+ xrP
(|Yj| > x

)]
dx

≤ C
∞∑

n=

ng(n)l(n)
f (n)

∫ ∞

f (n)
x–r[E|Y |rI

{|Y | ≤ x
}

+ xrP
(|Y | > x

)]
dx
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= C
∞∑

n=

ng(n)l(n)
f (n)

∞∑

m=n

∫ f (m+)

f (m)

[
x–rE|Y |rI

{|Y | ≤ x
}

+ P
(|Y | > x

)]
dx

≤ C
∞∑

n=

ng(n)l(n)
f (n)

∞∑

m=n

[
f –r(m + ) – f –r(m)

]
E|Y |rI

{|Y | ≤ f (m + )
}

+ C
∞∑

n=

ng(n)l(n)
f (n)

∞∑

m=n

[
f (m + ) – f (m)

]
P
(|Y | > f (m)

)

= C
∞∑

m=

[
f –r(m + ) – f –r(m)

]
E|Y |rI

{|Y | ≤ f (m + )
} m∑

n=

ng(n)l(n)
f (n)

+ C
∞∑

m=

[
f (m + ) – f (m)

]
P
(|Y | > f (m)

) m∑

n=

ng(n)l(n)
f (n)

= C
∞∑

m=

{
[
f –r(m + ) – f –r(m)

] m∑

n=

ng(n)l(n)
f (n)

} m∑

k=

E|Y |rI
{

f (k) < |Y | ≤ f (k + )
}

+ C
∞∑

m=

{
[
f (m + ) – f (m)

] m∑

n=

ng(n)l(n)
f (n)

} ∞∑

k=m

P
{

f (k) < |Y | ≤ f (k + )
}

= C
∞∑

k=

E|Y |rI
{

f (k) < |Y | ≤ f (k + )
} ∞∑

m=k

{
[
f –r(m + ) – f –r(m)

] m∑

n=

ng(n)l(n)
f (n)

}

+ C
∞∑

k=

P
{

f (k) < |Y | ≤ f (k + )
} k∑

m=

{
[
f (m + ) – f (m)

] m∑

n=

ng(n)l(n)
f (n)

}

≤ C
∞∑

k=

f p–r(k)l(k)E|Y |rI
{

f (k) < |Y | ≤ f (k + )
}

+ C
∞∑

k=

f p(k)l(k)P
{

f (k) < |Y | ≤ f (k + )
}

≤ CE|Y |pl
(
f –(|Y |)) < ∞. (.)

Finally we want to show that I < ∞, by Cr inequality, Lemma . and conditions (C),
(C), and (C), it follows that

I ≤ C
∞∑

n=

nr/g(n)l(n)
f (n)

∫ ∞

f (n)
x–r[(E|Y |I

{|Y | ≤ x
})r/ + xrPr/(|Y | > x

)]
dx

≤ C
∞∑

n=

nr/g(n)l(n)
f (n)

∞∑

m=n

∫ f (m+)

f (m)

[
x–r(E|Y |I

{|Y | ≤ x
})r/ + Pr/(|Y | > x

)]
dx

≤ C
∞∑

n=

nr/g(n)l(n)
f (n)

∞∑

m=n

[
f –r(m + ) – f –r(m)

](
E|Y |I

{|Y | ≤ f (m + )
})r/

+ C
∞∑

n=

nr/g(n)l(n)
f (n)

∞∑

m=n

[
f (m + ) – f (m)

]
Pr/(|Y | > f (m)

)

= C
∞∑

m=

[
f –r(m + ) – f –r(m)

](
E|Y |I

{|Y | ≤ f (m + )
})r/

m∑

n=

nr/g(n)l(n)
f (n)
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+
∞∑

m=

[
f (m + ) – f (m)

]
Pr/(|Y | > f (m)

) m∑

n=

nr/g(n)l(n)
f (n)

≤ C
∞∑

m=

{
[
f –r(m + ) – f –r(m)

] m∑

n=

nr/g(n)l(n)
f (n)

f max{,–p}r/(m + )

}

× (
E|Y |min{p,})r/

+ C
∞∑

m=

{
[
f (m + ) – f (m)

] m∑

n=

nr/g(n)l(n)
f (n)

f – min{,p}r/(m)

}
(
E|Y |min{p,})r/

< ∞. (.)

Hence the proof of (.) is completed by combining (.)-(.). �

Proof of Theorem . Clearly
∑k

j= Xj =
∑∞

i=–∞ ai
∑i+k

j=i+ Yj. Noting that
∑∞

i=–∞ |ai| < ∞
and EYj = , then by (.) and (.), we know


f (n)

max
≤k≤n

∣
∣
∣
∣
∣
E

∞∑

i=–∞
ai

i+k∑

j=i+

Ynj

∣
∣
∣
∣
∣

≤ 
f (n)

∞∑

i=–∞
|ai|

i+n∑

j=i+

E|Yj|I
{|Yj| > f (n)

}

≤ 
f p(n)

∞∑

i=–∞
|ai|

i+n∑

j=i+

E|Yj|pI
{|Yj| > f (n)

} ≤ C
∞∑

i=–∞
|ai|

i+n∑

j=i+

E
�j(Yj)

�j(f (n))

→ , as n → ∞.

Hence for n large enough and any ε > , we obtain


f (n)

max
≤k≤n

∣
∣
∣
∣
∣
E

∞∑

i=–∞
ai

i+k∑

j=i+

Ynj

∣
∣
∣
∣
∣

< ε/.

Then one can get

∞∑

n=

g(n)l(n)P

{

max
≤k≤n

∣
∣
∣
∣
∣

k∑

j=

Xj

∣
∣
∣
∣
∣

> εf (n)

}

≤ C
∞∑

n=

g(n)l(n)P

{

max
≤k≤n

∣
∣
∣
∣
∣

∞∑

i=–∞
ai

i+k∑

j=i+

(Yj – Ynj)

∣
∣
∣
∣
∣

> εf (n)/

}

+ C
∞∑

n=

g(n)l(n)P

{

max
≤k≤n

∣
∣
∣
∣
∣

∞∑

i=–∞
ai

i+k∑

j=i+

(Ynj – EYnj)

∣
∣
∣
∣
∣

> εf (n)/

}

=: J + J.
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By Markov’s inequality, (.), and (.), it is easy to check that

J ≤ C
∞∑

n=

g(n)l(n)
f (n)

E max
≤k≤n

∣
∣
∣
∣
∣

∞∑

i=–∞
ai

i+k∑

j=i+

(Yj – Ynj)

∣
∣
∣
∣
∣

≤ C
∞∑

n=

g(n)l(n)
f (n)

∞∑

i=–∞
|ai|

i+n∑

j=i+

E|Yj|I
{|Yj| > f (n)

}

≤ C
∞∑

n=

g(n)l(n)
f p(n)

∞∑

i=–∞
|ai|

i+n∑

j=i+

E|Yj|pI
{|Yj| > f (n)

}

≤ C
∞∑

i=–∞
|ai|

∞∑

n=

g(n)l(n)
i+n∑

j=i+

E
�j(Yj)

�j(f (n))
< ∞.

It follows from Markov’s inequality, the Hölder inequality, the Rosenthal type inequality,
(.), and (.) that

J ≤ C
∞∑

n=

g(n)l(n)
f (n)

E max
≤k≤n

∣
∣
∣
∣
∣

∞∑

i=–∞
ai

i+k∑

j=i+

(Ynj – EYnj)

∣
∣
∣
∣
∣



≤ C
∞∑

n=

g(n)l(n)
f (n)

∞∑

i=–∞
|ai|

( i+n∑

j=i+

E|Ynj – EYnj|
)

≤ C
∞∑

n=

g(n)l(n)
f (n)

∞∑

i=–∞
|ai|

( i+n∑

j=i+

EY 
j I

{|Yj| ≤ f (n)
}
)

≤ C
∞∑

n=

g(n)l(n)
f q(n)

∞∑

i=–∞
|ai|

( i+n∑

j=i+

E|Yj|qI
{|Yj| ≤ f (n)

}
)

≤ C
∞∑

i=–∞
|ai|

∞∑

n=

g(n)l(n)
i+n∑

j=i+

E
�j(Yj)

�j(f (n))
< ∞.

Thus we have completed the proof of Theorem .. �
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