
Wang and Zhou Journal of Inequalities and Applications  (2017) 2017:27 
DOI 10.1186/s13660-017-1299-x

R E S E A R C H Open Access

Lipschitz estimates for commutators of
singular integral operators associated with
the sections
Guangqing Wang and Jiang Zhou*

*Correspondence:
zhoujiangshuxue@126.com
College of Mathematics and System
Sciences, Xinjiang University,
Urumqi, 830046, Republic of China

Abstract
Let H be Monge-Ampère singular integral operator, b ∈ Lipβ

F , and 1/q = 1/p – β . It is
proved that the commutator [b,H] is bounded from Lp(Rn,dμ) to Lq(Rn,dμ) for
1 < p < 1/β and from Hp

F (R
n) to Lq(Rn,dμ) for 1/(1 + β) < p≤ 1. For the extreme case

p = 1/(1 + β), a weak estimate is given.
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1 Introduction
In , Caffarelli and Gutiérrez [] introduced the new concept of a family of sections
in studying real variable theory related to the Monge-Ampère equation. They defined the
Hardy-Littlewood maximal operator MF and BMOF (Rn) spaces associated to sections,
and the weak (, ) of MF and the John-Nirenberg inequality for BMOF (Rn) were ob-
tained. Caffarelli and Gutiérrez [] defined the singular integral operator H related to the
Monge-Ampère equation and proved L-boundedness of it. Applying the theory of ho-
mogeneous spaces, Incognito [] obtained a weak type (, ) estimate of H . In [], Tang
considered the commutator of Coifman-Rochberf-Weiss [b, H] and obtained weighted es-
timates for the operator H and the commutator [b, H], where b ∈ BMOF . And from [],
it follows that [b, H] with b ∈ BMOF is bounded on Lp(Rn, dμ) for  < p < ∞. Inspired by
the above work, we will study the behaviors of commutator [b, H] with b ∈ Lipβ

F acting on
Lebesgue spaces Lp(Rn, dμ) and Hardy spaces Hp

F (Rn), where the Lipschitz spaces Lipβ

F
and Hardy spaces Hp

F (Rn) associated with sections are defined by Lin [].
As is well known, linear commutators are naturally appearing operators in harmonic

analysis that have been extensively studied already. In general, the boundedness results
of commutators in harmonic analysis can be used to characterize some important func-
tion spaces such as BMO spaces, Lipschitz spaces, Besove spaces and so on (see [–]).
Coifman et al. [] applied the boundedness to some non-linear PDEs, which perfectly il-
lustrate the intrinsic links between the theory of compensated compactness and the clas-
sical tools of harmonic and real analysis. As for some other essential applications to PDEs
such as characterizing pseudodifferential operators, studying linear PDEs with measur-
able coefficients and the integrability theory of the Jacobians, interested researchers can
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refer to [–]. It is perhaps for this important reason that the boundedness of commuta-
tors attracted vast attention among researchers in harmonic analysis and PDEs. Thus, it is
meaningful to identify the behaviors of commutator [b, H] associated with the Monge-
Ampère equation. In the sense of Euclidean space R

n, the boundedness of commuta-
tor [b, T] with b ∈ Lipβ acting on Lebesgue spaces, is easily obtained by the inequality
|[b, T]f (x)| ≤ CIβ (|f |)(x), where T is a Calderón-Zygmund singular integral operator and
Iβ is the Riesz potential of order β . However, we cannot find a suitable operator to control
the commutator [b, H] with b ∈ Lipβ

F - just as controlling of [b, T] with b ∈ Lipβ - due to
the particularity of the operator H . Therefore, in this paper we investigate [b, H] directly,
and obtain some relatively important properties.

This paper is organized as follows. In Section , we recall some elementary properties of
sections. In the first part of Section , we demonstrate the (Lp, Lq) boundedness of [b, H]
when  < p < /β and /q = /p –β . It is worth mentioning that boundedness of [b, H] from
L(Rn, dμ) to weak L/(–β)(Rn, dμ) is also obtained, which indicates the differences be-
tween the commutator [b, H] with b ∈ Lipβ

F and that commutator with b ∈ BMOF . Based
on these differences, in the second part of Section , we further discuss the behavior of
the commutator [b, H] acting on Hardy spaces Hp

F (Rn), and we see that the commutator
[b, H] is bounded from Hp

F (Rn) to Lq(Rn, dμ) if /( + β) < p ≤  and /q = /p – β . For the
extreme case p = /( + β), we cannot get the (Hp, Lq) boundedness of [b, H], but we give
a characterization. Instead of the boundedness in the extreme case, a weak estimate for
[b, H] is showed.

Now we recall the definition of sections which play an important role in the study of the
Monge-Ampère equation and the linearized Monge-Ampère equation (see [, –]). For
x ∈R

n and t > , let S(x, t) denote an open and bounded convex subset of Rn containing x.
The set S(x, t) is called a section if the family F = {S(x, t) ⊂R

n : x ∈R
n and t > } is mono-

tone increasing in t, i.e., S(x, t) ⊂ S(x, t′) for t ≤ t′ which satisfies the following criteria:
(A) There exist constants K, K, K and ε, ε such that given two sections S(x, t), S(x, t)

with t ≤ t satisfying

S(x, t) ∩ S(x, t) �= ∅,

and given T , an affine transformation that “normalizes” S(x, t), that is,

B(, /n) ⊂ T
(
S(x, t)

) ⊂ B(, ),

there exists z ∈ B(, K) depending on S(x, t) and S(x, t) such that

B(z, K(t/t)ε ⊂ T
(
s(x, t)

) ⊂ B
(
z, K(t/t)ε

)
(.)

and

T(z) ∈ B
(
z, (/)K(t/t)ε

)
.

Here B(x, t) denotes the Euclidean ball centered at x with radius t.
(B) There exists a constant δ >  such that given a section S(x, t) and y /∈ S(x, t), if T is an

affine transformation that “normalizes” S(x, t), then for any  < ε < 

B
(
T(y), εδ

) ∩ T
(
S
(
x, ( – ε)t

))
= ∅.



Wang and Zhou Journal of Inequalities and Applications  (2017) 2017:27 Page 3 of 12

(C)
⋂

t> S(x, t) = {x} and
⋃

t> S(x, t) = R
n.

In addition, we also assume that a Borel measure μ which is finite on compact sets is
given, μ(Rn) = ∞, and that it satisfies the doubling property with respect to F , that is,
there exists a constant A such that

μ
(
S(x, t)

) ≤ Aμ
(
S(x, t)

)
(.)

for any section S(x, t) ∈ F . Throughout the paper, the letter C will denote a positive con-
stant that may vary from line to line but remains independent of the main variables.
We write A � B to indicate that A is majorized by B times a constant independent of
A and B, while the notation A ≈ B denotes both A � B and B � A. Finally, we denote
Lp

μ := Lp(Rn, dμ) ( ≤ p ≤ ∞) simply.

2 Elementary properties of section and notions
According to [], the properties of (A) and (B) imply the following properties:

(D) There exists a constant θ ≥ , depending only on δ, K and ε, such that for any
y ∈ S(x, t),

S(x, t) ⊂ S(y, θ t) and S(y, t) ⊂ S(x, θ t). (.)

(E) There exists a quasi-metric d(x, y) on R
n with respect to F defined by

d(x, y) = inf
{

t : x ∈ S(y, t) and y ∈ S(x, t)
}

,

and its triangular constant is just the θ appearing in (D); that is,

d(x, y) ≤ θ
(
d(x, z) + d(z, y)

)
for any x, y, z ∈ R

n. (.)

Also,

S(x, t/θ ) ⊂ Bd(x, t) ⊂ S(x, t) for any x ∈R
n and t > , (.)

where Bd(x, t) is a d-ball defined by Bd(x, t) := {y ∈ R
n : d(x, y) < t}. Combining (.) and

(.), one can see that there exists a constant n >  and n > A such that

μ
(
Bd(x, r)

) ≤ nμ
(
Bd(x, r)

)
. (.)

Thus, (Rn, d,μ) becomes a space of homogeneous type. Based on this, one can use the
standard real analysis tools as the maximal function Mf and the sharp function M�f . In
this paper, both of them are defined on (Rn, d,μ), namely

Mf (x) = sup
r>


μ(B(x, r))

∫

B(x,r)

∣∣f (y)
∣∣dμ(y),

M�f (x) = sup
x∈B


μ(B)

∫

B

∣∣f (y) – fB
∣∣dμ(y) ≈ sup

x∈B
inf

c


μ(B)

∫

B

∣∣f (y) – c
∣∣dμ(y).
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Here and below, B is a d-ball and fB means the average of f on B. If we write BMO(Rn) := {f :
‖f ‖BMO(Rn) < ∞} with ‖f ‖BMO = ‖M�f ‖L∞

μ
, then the BMOF (Rn) space coincides with BMO

and ‖f ‖BMOF (Rn) ≈ ‖f ‖BMO(Rn) (see []). Denote Mδf (x) = M(|f |δ)/δf (x) and M�
δ f (x) =

M�(|f |δ)/δ(x).
Macías and Segovia [] have found that the quasi-metric d can be replaced by another

quasi-metric ρ such that (Rn,ρ,μ) is a normal space. Moreover, for the quasi-metric ρ

there exist constants C >  and ε ∈ (, ) such that

⎧
⎪⎪⎨

⎪⎪⎩

ρ(x, y) ≈ inf{μ(Bd) : Bd are d-balls containing x and y};
μ(Bρ(x,r)) ≈ r, ∀x ∈R

n, r > , where Bρ(x, y) := {y ∈R
n : ρ(x, y) < r};

|ρ(x, y) – ρ(x′, y)| ≤ Cρ(x′, y)ε[ρ(x, y) + ρ(x′, y)]–ε , ∀x, x′, y ∈R
n.

(.)

Let ρ satisfy (.) above and f be a continuous function on R
n. Lin [] defined Lipschitz

spaces Lipβ

F associated with sections as follows.

Definition . Let  < β ≤ . There exists a positive constant C such that

sup
ρ(x,y)≤h

∣
∣f (x) – f (y)

∣
∣ ≤ Chβ

for ∀h > . The “norm” of f in Lipβ

F is defined by the lower bound of the constants C.

Let ε be given in (.) above. Lin [] found that the function spaces �
β

q,F and Lipβ

F co-
incide with equivalent norms for  < β < ε and  ≤ q ≤ ∞, where �

β

q,F denotes the Cam-
panato spaces associated to the family F of the section. Also, he proved that �

β

q,F are the
dual spaces of Hardy spaces Hp

F (Rn) (/ < p ≤ ).
For a locally integral function b, the commutator of Cofiman-Rochberg-Weiss [b, H] is

defined as follows:

[b, H]f (x) = b(x)Hf (x) – H(bf )(x) =
∫

Rn

(
b(x) – b(y)

)
k(x, y)f (y) dμ(y),

where H is defined by the formula

Hf (x) =
∫

Rn
k(x, y)f (y) dμ(y),

with k(x, y) =
∑

i ki(x, y), and each kernel ki satisfies the following properties:

supp ki(·, y) ⊂ Si(y), ∀y ∈R
n; supp ki(x, ·) ⊂ Si(x), ∀x ∈R

n;
∫

Rn
ki(x, y) dμ(y) =

∫

Rn
ki(x, y) dμ(x) = , ∀x, y ∈R

n;

sup
i

∫

Rn

∣
∣ki(x, y)

∣
∣dμ(y) ≤ C, ∀x ∈R

n; sup
i

∫

Rn

∣
∣ki(x, y)

∣
∣dμ(x) ≤ C, ∀x ∈ R

n;

where Si(x) = S(x, i) for any x ∈R
n, i ∈ Z. If T is an affine transformation that normalizes

the section Si(y) then each ki satisfies the Lipschitz condition,

∣∣ki(u, y) – ki(v, y)
∣∣ ≤ C


μ(Si(y))

|Tu – Tv|;
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and, finally, if T is an affine transformation that normalizes the section Si(x) then ki satisfies
the Lipschitz condition,

∣∣ki(x, u) – ki(x, v)
∣∣ ≤ C


μ(Si(x))

|Tu – Tv|.

Caffarelli and Gutiérrez [] obtained that H is bounded on L
μ. Subsequently, Incognito

[] has given Lp
μ ( < p < ∞) and the weak-type (, ) estimate of H .

Using the property (D) and defining a function σ on R
n ×R

n by σ (x, y) = inf{t >  : y ∈
S(x, t)}, Incognito [] obtained the following conclusions:

(E) σ (x, y) ≤ θσ (y, x) for all x, y ∈R
n.

(F) σ (x, y) ≤ θ(σ (x, z) + σ (z, y)) for all x, y, z ∈R
n.

It is easy to see that

σ (x, y) < d(x, y) < θσ (x, y) for all x, y ∈ R
n, (.)

and for a given section S(x, t), y ∈ S(x, t) if and only if σ < t.

3 Main results
3.1 Boundedness from Lp

μ to Lq
μ

In this subsection, we discuss the property of the commutator acting on Lebesgue spaces.

Theorem . Suppose that b ∈ Lipβ

F ,  < β < . If /q = /p –β with  < p < /β , then [b, H]
is bounded from Lp

μ to Lq
μ.

Theorem . Suppose that b ∈ Lipβ

F ,  < β < min{, ε/n}, where ε and n are given in
(.) and (.) respectively. Then the commutator [b, H] is bounded from L

μ to weak L/(–β)
μ .

In order to prove the theorems above, it is necessary to give the following lemmas.

Lemma . ([]) Let  < p, δ < ∞ and ω ∈ A∞. There exists a positive C such that

∫

Rn
Mδf (x)pω(x) dμ(x) ≤ C

∫

Rn
M�

δ f (x)pω(x) dμ(x)

for any smooth function f for which the left-hand side is finite.

Lemma . ([]) Let K (x, y) =
∑

i Ki(x, y). Then there exists a constant C >  such that

∣
∣K(x, y) – K(x, y)

∣
∣ +

∣
∣K(y, x) – K(y, x)

∣
∣ ≤ C

–εk

μ(S(y, kσ (y, x)))

if σ (y, x) ≥ kθσ (y, y) and k ≥ .

Lemma . Suppose that b ∈ Lipβ

F , for  < β < . Let  < δ <  < r < /β . Then there exists
a constant C >  such that

M�
δ

(
[b, H]f

)
(x) ≤ C‖b‖Lipβ

F

(
Mβ ,r(Hf )(x) + Mβ ,r(f )(x)

)
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for any smooth function f and every x ∈R
n, and where

Mβ ,r(f )(x) = sup
x∈B

(


μ(B)–rβ

∫

B

∣∣f (y)
∣∣r dμ(y)

)/r

.

Proof Observe that for any constant λ

[b, H]f (x) =
(
b(x) – λ

)
Hf (x) – H

(
(b – λ)f

)
(x).

For any fixed ball B = B(x, r). Decompose f = f + f, where f = f χB̄ with B̄ = B(x, θr).
Let λ and cB be constants to be fixed in the proof. We write

(


μ(B)

∫

B

∣
∣
∣
∣[b, H]f (y)

∣
∣δ – |cB|δ∣∣dμ(y)

)/δ

≤
(


μ(B)

∫

B

∣∣(b(y) – λ
)
Hf (y)

∣∣δ dμ(y)
)/δ

+
(


μ(B)

∫

B

∣∣H
(
(b – λ)f

)
(y)

∣∣δ dμ(y)
)/δ

+
(


μ(B)

∫

B

∣
∣H

(
(b – λ)f

)
(y) – cB

∣
∣δ dμ(y)

)/δ

:= L + L + L.

For L, we fix λ = bB. The Hölder inequality and (.) give us

L � ‖b‖Lipβ
F

μ(B)β
(


μ(B)

∫

B

∣∣Hf (y)
∣∣r dμ(y)

)/r

� ‖b‖Lipβ
F

Mβ ,r(Hf )(x).

From Kolmogorov’s inequality and (.), it follows that

L �
μ(B)/δ–/r

μ(B)/δ

(∫

B

∣
∣(b(y) – bB

)
f(y)

∣
∣r dμ(y)

)/r

� ‖b‖Lipβ
F

Mβ ,r(f )(x).

Finally, we take cB = (H((b – bB)f))B. Then for any x ∈ B, Lemma ., (.), (.), and (.)
yield

L ≤ 
μ(B)

∫

B

∣∣H
(
(b – λ)f

)
(y) –

(
H

(
(b – bB)f

))
B

∣∣dμ(y)

≤ 
μ(B)

∫

B

∫

B

∫

Rn\B̄

∣
∣K(x, w) – K(z, w)

∣
∣
∣
∣b(w) – bB

∣
∣
∣
∣f (w)

∣
∣dμ(w) dμ(z) dμ(y)

× ∣∣K(x, w) – K(z, w)
∣∣∣∣f (w)

∣∣dμ(w) dμ(z) dμ(y)

� ‖b‖Lipβ
F

∞∑

k=

∫

k θr<σ (x,w)≤k+θr

ρβ (x, w)–εk

μ(S(x, kθr))
∣∣f (w)

∣∣dμ(w)

� ‖b‖Lipβ
F

Mβ ,r(f )(x)
∞∑

k=

–εk

� ‖b‖Lipβ
F

Mβ ,r(f )(x).

The estimates for L, L, and L indicate that the proof is completed. �
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Lemma . ([]) Let local integral function f ∈ L
μ and α > . Then there exists a family

of balls {Bi} such that:
() |f (x)| ≤ α, for μ-a.e.x ∈R

n\⋃
i Bi;

() 
μ(Bi)

∫
Bi

|f (t)|dμ(t) ≤ Cα;
()

∑∞
i= μ(Bi) ≤ C

α
‖f ‖L

μ
;

() there exists an integer N ≥ , independent of f and λ, such that
∑

i χBi (x) ≤ N for
μ-a.e. x ∈R

n.

Now, with the lemmas above, we state the proof of our results.

Proof of Theorem . From Lemma . and Lemma . with  < δ <  < r < p, it follows
that

∥
∥[b, H]f

∥
∥

Lq
μ

≤ ∥
∥Mδ

(
[b, H]f

)∥∥
Lq
μ

≤ ∥
∥M�

δ

(
[b, H]f

)∥∥
Lq
μ

� ‖b‖Lipβ
F

(∥∥Mβ ,r(Hf )
∥
∥

Lq
μ

+
∥
∥Mβ ,r(f )

∥
∥

Lq
μ

)

� ‖b‖Lipβ
F

‖f ‖Lp
μ

.

Thus, the proof of the theorem is completed. �

Proof of Theorem . For f ∈ L
μ and any α > , applying Lemma . with α replaced by

αq with q = 
–β

, we obtain, with the same notation as in Lemma ., f = g + h = g +
∑

j hj,
where

g(x) = f (x)χRn\⋃
i Bi (x) +

∑

j

(f ηj)BjχBj (x) and hj(x) = f (x)ηj(x) – (f ηj)BjχBj (x)

with ηj(x) =
χBj (x)

∑
j χBj (x)χ

⋃
i Bi (x). By Lemma ., it is easy to obtain the following properties:

(i) |f (x)| ≤ αq , for μ-a.e.x ∈R
n\⋃

j Bj;
(ii) 

μ(Bj)
∫

Bj
|f (t)|dμ(t) ≤ Cαq ;

(iii)
∑∞

j= μ(Bj) ≤ C
αq ‖f ‖L

μ
;

(iv) ‖g‖L
μ

≤ C‖f ‖L
μ

and |g(x)| ≤ Cαq , for μ-a.e. x ∈R
n;

(v) each hj is supported in Bj,
∫
Rn |hj(x)|dμ(x) ≤ Cαqμ(Bj) and

∫
Rn hj(x) dμ(x) = .

Let B̄j = B(zj, θrj), we write

μ
(
x ∈R

n :
∣
∣[b, H]f (x)

∣
∣ > α

)

≤ μ
(
x ∈R

n :
∣
∣[b, H]g(x)

∣
∣ > α/

)
+ μ

(
x ∈

⋃

j

B̄j :
∣
∣[b, H]h(x)

∣
∣ > α/

)

+ μ

(
x ∈R

n\
⋃

j

B̄j :
∣
∣[b, H]h(x)

∣
∣ > α/

)

:= K + K + K.
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Choose  < p < /β and 
q

= 
p

– β . The boundedness of [b, H] from Lp
μ to Lq

μ and (iv)
give us that

K � α–q
∥∥[b, H]g

∥∥q
Lq
μ
� α–q‖g‖q

Lp
μ
� α–qα

q(p–) q
p ‖f ‖

q
p
L
μ
� α–q‖f ‖

q
p
L
μ

.

By (iii), it is concluded that

K ≤ μ

(⋃

j

B̄j

)
�

∑

j

μ(Bj) � α–q‖f ‖L
μ

.

For K, we have

K ≤ μ

(
x ∈R

n∖⋃

j

B̄j :
∑

j

∣∣b(x) – b(zj)
∣∣∣∣H(hj)(x)

∣∣ > α/
)

+ μ

(
x ∈R

n∖⋃

j

B̄j :
∣∣
∣∣H

(∑

j

(
b – b(zj)

)
hj

)
(x)

∣∣
∣∣ > α/

)

:= K + K.

From (v), Lemma ., (.), and (iii), it follows that

K � α–
∑

j

∫

Rn\⋃
j B̄j

∣
∣b(x) – b(zj)

∣
∣
∣
∣H(hj)(x)

∣
∣dμ(x)

� α–
∑

j

∫

Rn\B̄j

∣
∣b(x) – b(zj)

∣
∣
∫

Bj

∣
∣k(x, y) – k(x, zj)

∣
∣
∣
∣hj(y)

∣
∣dμ(y) dμ(x)

� ‖b‖Lipβ
F

αq–
(∑

j

μ(Bj)
)β+ ∞∑

k=

(nβ–ε)k

� ‖b‖Lipβ
F

‖f ‖β+
L
μ

α–q .

The boundedness of [b, H] from L
μ to weak L

μ, (.), (v), and (iii) give us that

K � α–
∑

j

∫

Bj

∣
∣b(x) – b(zj)

∣
∣
∣
∣hj(x)

∣
∣dμ(x) � ‖b‖Lipβ

F
αq–

(∑

j

μ(Bj)
)β+

� ‖b‖Lipβ
F

‖f ‖β+
L
μ

α–q .

Combining the estimates for K, K and K, one can finish the proof. �

3.2 Boundedness from Hp
F (Rn) to Lq

μ

In this subsection, we discuss the boundedness of the commutator [b, H] on Hardy spaces
Hp

F (Rn), and obtain the following results in which the symbols ε and n are given in (.)
and (.) respectively. Firstly, we recall the definition of the (p,∞)-atoms and the atomic
Hardy spaces Hp

F (Rn) with respect to a family F of sections and a doubling measure μ.

Definition . ([]) Let / < p ≤ . A function a ∈ L∞
μ is called a (p,∞)-atom if there

exists a section S(x, t) ∈F such that
() supp(a) ⊂ S(x, t);
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()
∫
Rn a(x) dμ(x) = ;

() ‖a‖L∞
μ

≤ μ(S(x, t))–/p.

The atomic Hardy space Hp
F (Rn) is defined by Hp

F (Rn) = {f ∈ S ′(Rn) : f (x) S ′
=

∑
j λjaj(x),

each aj is a (p,∞)-atom and
∑

j |λj|p < ∞}, where S(Rn) denotes the space of Schwartz
functions and S ′(Rn) is the dual space of S(Rn). We define the Hp

F (Rn) norm of f by

‖f ‖Hp
F (Rn) = inf

(∑

j

|λj|p
)/p

,

where the infimum is taken over all decompositions of f =
∑

j λjaj above.

Theorem . Suppose that b ∈ Lipβ

F ,  < β < min{, ε/n}. If 
+β

< p ≤  and /q = /p–β ,
then [b, H] maps Hp

F (Rn) continuously into Lq
μ.

For the extreme case p = /( + β), one gets the following characterization theorem.

Theorem . Let b ∈ Lipβ

F ,  < β < min{, ε/n}. Then the following statements are equiv-
alent.

(a) [b, H] raps H/(+β)
F continuously into L

μ;
(b) for any (,∞)-atom a supported in a section S = S(x, r/θ ) and u ∈ S,

∣∣∣
∣

∫

Rn
b(y)a(y) dμ(y)

∣∣∣
∣

∫

B̄c

∣∣K(x, u)
∣∣dμ(x) � ,

where B̄ = B(x, θr).

In general, the (Hp, Lq) boundedness of [b, H] fails for p = /( + β), then we give a weak
estimate instead.

Theorem . Let b ∈ Lipβ

F ,  < β < min{, ε/n}. Then [b, H] maps H/(+β)
F (Rn) continu-

ously into weak L
μ.

Next, we show the proofs of the theorems above.

Proof of Theorem . Without loss of generality, we assume that ‖b‖Lipβ
F

= . By Defi-
nition ., we only need to prove that for any (p,∞)-atom a, ‖[b, H]a‖Lq

μ
� . Given a

(p,∞)-atom a with supp a ⊂ S = S(x, r/θ ) ∈ F . Let B = B(x, r), B̄ = B(x, θr). Then
S(x, r/θ ) ⊂ B(x, r). Write

∥
∥[b, H]a

∥
∥

Lq
μ

≤
(∫

B̄

∣
∣[b, H]a(x)

∣
∣q dμ(x)

)/q

+
(∫

Rn\B̄

∣
∣[b, H]a(x)

∣
∣q dμ(x)

)/q

= I + II.

Choosing  < p < /β and /q = /p – β , and noting the (p, q) boundedness of [b, H]
and the size condition of a, one can get

I �
∥∥[b, H]a

∥∥
Lq
μ

μ(B)/q–/q � ‖a‖Lp
μ

μ(B)/q–/q � ‖a‖L∞
μ

μ(B)/q+β � .
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On the other hand, the cancellation condition of the atom a yields

II ≤
(∫

Rn\B̄

∣∣∣
∣
(
b(x) – b(x)

)∫

B

(
K(x, y) – K(x, x)

)
a(y) dμ(y)

∣∣∣
∣

q

dμ(x)
)/q

+
(∫

Rn\B̄

∣∣
∣∣

∫

B
K(x, y)

(
b(x) – b(y)

)
a(y) dμ(y)

∣∣
∣∣

q

dμ(x)
)/q

:= II + II.

Lemma ., (.), (.), and (.) imply that

II �
‖b‖Lipβ

F

μ(B)/p

( ∞∑

k=

∫

k θr≤σ (x,x)<k+θr

∣
∣∣
∣ρ

β(x, x)

×
∫

B

∣∣K(x, y) – K(x, x)
∣∣dμ(y)

∣∣∣
∣

q

dμ(x)

)/q

� μ(B)/q–/p+β

∞∑

k=

k(n(β–+/q)–ε)

� .

Finally, noting that

∥
∥(

b(x) – b
)
a
∥
∥

Lq
μ
� ‖b‖Lipβ

F
ρβ (x, y)‖a‖L∞

μ
μ(B)/q � μ(B)βμ(B)/q–/p � ,

by the (q, q) boundedness of H , one obtains

II =
(∫

Rn\B̄

∣
∣H

((
b(x) – b

)
a
)
(x)

∣
∣q dμ(x)

)/q

�
∥
∥(

b(x) – b
)
a
∥
∥

Lq
μ
� .

Combining the estimates for I and II , one can finish the proof. �

Proof of Theorem . Now that [b, H] is bounded from H/(+β)
F (Rn) to L

μ is equivalent
to the fact that ‖[b, H]a‖L

μ
�  holds for any (/( + β),∞) atom. Thus, we will study

the behavior of [b, H] acting on any (/( + β),∞) atom. Let a be an atom with supp ⊂
S = S(x, r/θ ) ∈ F , let B = B(x, r), B̄ = B(x, θr), then S(x, r/θ ) ⊂ B(x, r). For any
u ∈ S(x, r/θ ), one writes

[b, H]a(x) = χB(x)[b, H]a(x) + χB̄c (x)
∫

B

(
K(x, y) – K(x, u)

)(
b(y) – b(x)

)
a(y) dμ(y)

+ χB̄c (x)
(
b(x) – b(x)

)
Ha(x) + χB̄c (x)K(x, u)

∫

B
b(y)a(y) dμ(y)

:= M + M – M – M.

Similar to the estimate for I and II in the proof of Theorem ., we can show that
‖M‖L

μ
�  and ‖M‖L

μ
� . Using the vanishing condition, one can obtain
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‖M‖L
μ

≤
∫

B̄c

∣∣b(x) – b(x)
∣∣
∫

B

∣∣K(x, y) – K(x, x)
∣∣∣∣a(y)

∣∣dμ(y) dμ(x)

�
∞∑

k=

k(nβ–ε)

� .

The estimation above yields that ‖[b, H]a‖L
μ
�  if and only if ‖M‖L

μ
� . Hence the

proof is finished. �

Proof of Theorem . Let f ∈ H/(+β)
F (Rn) and f (x) =

∑
i λiai(x) with each ai an (/( +

β),∞)-atom and
∑

i |λi|/(+β) < ∞. Suppose that supp a ⊂ Si = S(xi, ri). Write

[b, H]f (x) =
∑

i

λi
(
b(x) – b(xi)

)
Hai(x)χB̄(x) +

∑

i

λi
(
b(x) – b(xi)

)
Hai(x)χ(B̄)c (x)

– H
(∑

i

λi
(
b – b(xi)

)
ai

)
(x) := J + J + J.

By the Hölder inequality and the (, ) boundedness of H , we have

∥∥(
b – b(xi)

)
(Hai)χB̄

∥∥
L
μ
� .

Using the same method as M together with  < β < ε/n, it is easy to check

∥∥((
b – b(xi)

)
(Hai)χB̄c

)∥∥
L
μ
� .

So, we have

μ
({

x ∈ R
n : |Jj| > λ/

})
� λ–‖Jj‖L

μ
� λ–

∑

i

|λi|, j = , . (.)

Finally, noting that

∥∥(
b – b(xi)

)
a
∥∥

L
μ
� ‖b‖Lipβ

F
ρβ (xi, y)‖a‖L∞

μ
μ(B) � μ(B)βμ(B)–(+β) � ,

and we have the weak (, ) boundedness of H , one obtains

μ
({

x ∈ R
n : |J| > λ/

})
�

∥
∥∥∥
∑

i

λi
(
b – b(xi)

)
ai

∥
∥∥∥

L
μ

� λ–
∑

i

|λi|. (.)

Equations (.) and (.) imply that the proof is completed. �

4 Conclusions
The authors prove the commutator [b, H] is bounded from Lp(Rn, dμ) to Lq(Rn, dμ) for
 < p < /β and from Hp

F (Rn) to Lq(Rn, dμ) for /( + β) < p ≤  and give the weak estimate
at the extreme case p = /( + β) as well, which may give us an essential tool to study the
linear or non-linear Monge-Ampère equation. It is a pity that we do not characterize the
Lipschitz spaces Lipβ

F with the boundedness of it due to the particularity of the opera-
tor H . But in order to provide more useful ways to study the equation we will continue to
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perform this work in the future. Moreover, the smoothing effect and the compactness of
the commutator [b, H] can be investigated as well.
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