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Abstract
Given a sequence {fn}n∈N of measurable functions on a σ -finite measure space such
that the integral of each fn as well as that of lim supn↑∞ fn exists in R, we provide a
sufficient condition for the following inequality to hold:

lim sup
n↑∞

∫
fn dμ ≤

∫
lim sup
n↑∞

fn dμ.

Our condition is considerably weaker than sufficient conditions known in the
literature such as uniform integrability (in the case of a finite measure) and
equi-integrability. As an application, we obtain a new result on the existence of an
optimal path for deterministic infinite-horizon optimization problems in discrete time.

Keywords: Fatou’s lemma; σ -finite measure space; infinite-horizon optimization;
hyperbolic discounting; existence of optimal paths

1 Introduction
Let (�,F ,μ) be a measure space. Let L(�) be the set of measurable functions f : � →R.
A standard version of (reverse) Fatou’s lemma states that given a sequence {fn}n∈N in L(�),
if there exists an integrable function f ∈L(�) such that fn ≤ f μ-a.e. for all n ∈N, then

lim
n↑∞

∫
fn dμ ≤

∫
lim
n↑∞ fn dμ, (.)

where lim = lim sup. We call the above inequality the Fatou inequality.
Some sufficient conditions for this inequality weaker than the one described above are

known. In particular, provided that the integral of each fn as well as that of limn↑∞ fn exists,
‘uniform integrability’ of {f +

n } (where f +
n is the positive part of fn) is a sufficient condition for

the Fatou inequality (.) in the case of a finite measure (e.g., [–]); so is ‘equi-integrability’
of the same sequence in the case of a σ -finite measure (see [, ]). These conditions are
precisely defined in Section .
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In this paper we provide a sufficient condition for the Fatou inequality (.) considerably
weaker than the above conditions. Our approach is based on the following assumption,
which is maintained throughout the paper.

Assumption . (�,F ,μ) is a σ -finite measure space.

Under this assumption there is an increasing sequence of measurable sets of finite mea-
sure whose union equals �. We use this sequence to specify a ‘direction’ in which we
successively approximate the integral of a function.

There is a natural increasing sequence of measurable sets if the measure space is the set
of nonnegative integers equipped with the counting measure. In this setting, we provide
a simple sufficient condition for the Fatou inequality (.) as a corollary of our general
result. Applying this condition to a fairly general class of infinite-horizon deterministic
optimization problems in discrete time, we establish a new result on the existence of an
optimal path. The condition takes a form similar to transversality conditions and other
related conditions in dynamic optimization (e.g., [–]).

The current line of research was initially motivated by the limitations of the existing
applications of Fatou’s lemma to dynamic optimization problems (e.g., [, ]). In partic-
ular, there are certain cases in which optimal paths exist but the standard version of Fatou’s
lemma fails to apply. This is illustrated with some examples following our existence result.

We should mention that there are other important extensions of Fatou’s lemma to more
general functions and spaces (e.g., [–]). However, to our knowledge, there is no re-
sult in the literature that covers our generalization of Fatou’s lemma, which is specific to
extended real-valued functions.

In the next section we define the concepts and conditions needed to state our main result
and to compare it with some previous results based on uniform integrability and equi-
integrability. In Section  we state our main result and derive those previous results as
consequences. In Section  we present two simple examples that cannot be treated by the
previous results but that can easily be treated using our result. In Section  we show a new
result on the existence of an optimal path for infinite-horizon deterministic optimization
problems in discrete time. In Section  we prove our main result.

2 Definitions
Given f ∈L(�), let f + and f – denote the positive and negative parts of f , respectively; i.e.,
f + = max{f , } and f – = max{–f , }. A function f ∈ L(�) is called semi-integrable if f + or
f – is integrable, and upper (lower) semi-integrable if f + (f –) is integrable.

We say that a sequence {Ai}i∈N in F is a σ -finite exhausting sequence if

∀i ∈N, Ai ⊂ Ai+, μ(Ai) < ∞, (.)

μ

(
�

∖⋃
i∈N

Ai

)
= . (.)

It is easy to see that μ is σ -finite if and only if there exists a σ -finite exhausting sequence.
Since we assume that μ is σ -finite, we have at least one σ -finite exhausting sequence.

A sequence {fn}n∈N of integrable functions in L(�) is called equi-integrable (e.g., [],
page ) if the following conditions hold:



Kamihigashi Journal of Inequalities and Applications  (2017) 2017:24 Page 3 of 15

(a) For any ε >  there exists δ >  such that any A ∈ F with μ(A) < δ satisfies

sup
n∈N

∫
A
|fn|dμ ≤ ε. (.)

(b) For any ε >  there exists E ∈ F with μ(E) < ∞ such that

sup
n∈N

∫
�\E

|fn|dμ ≤ ε. (.)

Suppose that μ(�) < ∞. A sequence {fn}n∈N of integrable functions in L(�) is called
uniformly integrable (e.g., [], page ) if

lim
c↑∞

[
sup
n∈N

∫
{|fn|≥c}

|fn|dμ

]
= . (.)

It is well known that a sequence {fn}n∈N of integrable functions in L(�) is uniformly
integrable if and only if supn∈N

∫ |fn|dμ < ∞ and condition (a) above holds (e.g., [],
page ). In the case of a finite measure, condition (b) trivially holds, and thus uniform in-
tegrability implies equi-integrability. Conversely, provided that supn∈N

∫ |fn|dμ < ∞, equi-
integrability implies uniform integrability on each measurable set of finite measure; see [],
Proposition ., for related results.

3 A generalization of Fatou’s lemma
We are ready to state the main result of this paper.

Theorem . Let {fn}n∈N be a sequence of semi-integrable functions in L(�) such that
limn↑∞ fn is semi-integrable. Let {Bi}i∈N ⊂ F be a σ -finite exhausting sequence. Suppose
that

lim
i↑∞

lim
n↑∞

∫
�\Ai

fn dμ ≤  (.)

for any σ -finite exhausting sequence {Ai}i∈N ⊂ F such that

(i) ∀i ∈ N, Ai ⊂ Bi, (ii) lim
i↑∞μ(Bi \ Ai) = . (.)

Then the Fatou inequality (.) holds.

Proof See Section . �

It is shown in the proof (Lemma .) that (.) and (.) imply (.); i.e., (.) and (.)
imply that {Ai}i∈N is a σ -finite exhausting sequence. Thus in Theorem ., the requirement
that {Ai} be a σ -finite exhausting sequence can be replaced with (.). However, to verify
(.) to apply Theorem ., it is useful to have (.) instead of deriving it; for example, see
the proofs of Corollaries . and ..

If � = Z+ and μ is the counting measure, we obtain a simple sufficient condition for the
Fatou inequality:
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Corollary . Suppose that � = Z+ and that μ is the counting measure. Let {fn}n∈N be a se-
quence of semi-integrable functions in L(�) such that limn↑∞ fn is semi-integrable. Suppose
further that

lim
i↑∞

lim
n↑∞

∞∑
t=i

fn(t) ≤ , (.)

where the sum is understood as the Lebesgue integral with respect to the counting mea-
sure μ. Then

lim
n↑∞

∞∑
t=

fn(t) ≤
∞∑

t=

lim
n↑∞ fn(t). (.)

Proof Assume (.). For i ∈ N, let Bi = {, . . . , i – }. Then {Bi}i∈N is a σ -finite exhausting
sequence. Let {Ai}i∈N ⊂ F satisfy (.). Then Ai = Bi for sufficiently large i. For such i we
have

∑
�\Ai

fn(t) =
∞∑
t=i

fn(t). (.)

Hence (.) follows from (.). Now (.) holds by Theorem .. �

4 Known extensions of Fatou’s lemma
The version of Fatou’s lemma stated at the beginning of this paper can be shown as a
consequence of Theorem ..

Corollary . Let {fn}n∈N be a sequence in L(�) such that for some upper semi-integrable
function f ∈L(�) we have fn ≤ f μ-a.e. for all n ∈N. Then the Fatou inequality (.) holds.

Proof Since fn ≤ f μ-a.e. for all n ∈ N and f is upper semi-integrable, fn is upper semi-
integrable for each n ∈N, and so is limn↑∞ fn. For any σ -finite exhausting sequence {Ai}i∈N
we have

lim
i↑∞

lim
n↑∞

∫
�\Ai

fn dμ ≤ lim
i↑∞

∫
�\Ai

f dμ ≤ lim
i↑∞

∫
�\Ai

f + dμ = , (.)

where the equality holds by (.) since f is upper semi-integrable. Now the Fatou inequality
(.) holds by Theorem .. �

The following version of Fatou’s lemma is shown in [], page , and [], page , and can
be derived as a consequence of Theorem ..

Corollary . Suppose that μ(�) < ∞. Let {fn}n∈N be a sequence of functions in L(�) such
that {f +

n }n∈N is uniformly integrable. Suppose further that limn↑∞ fn is semi-integrable. Then
the Fatou inequality (.) holds.

Proof Recall that uniform integrability of {f +
n } requires integrability of each f +

n and condi-
tion (a) in Section  with f +

n replacing fn. Let {Ai}i∈N be any σ -finite exhausting sequence.
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We have

lim
i↑∞

lim
n∈N

∫
�\Ai

fn dμ ≤ lim
i↑∞ sup

n∈N

∫
�\Ai

f +
n dμ = , (.)

where the equality holds by condition (a) since {f +
n } is uniformly integrable and

limi↑∞ μ(� \ Ai) =  by (.) and the finiteness of μ. Now the Fatou inequality (.) holds
by Theorem .. �

The next result is a slight variation on the results shown by [], Lemma . and [],
Corollary .. The latter results (unlike Corollary . below) do not require upper semi-
integrability of limn↑∞ fn since they use the upper integral, which always exists, instead of
the Lebesgue integral.

Corollary . Let {fn}n∈N be a sequence of integrable functions in L(�) such that {f +
n }n∈N is

equi-integrable. Suppose that limn↑∞ fn is semi-integrable. Then the Fatou inequality (.)
holds.

Proof By equi-integrability of {f +
n } and condition (b) in Section , there exists a sequence

{Ei}i∈N in F such that μ(Ei) < ∞ for all i ∈N and

lim
i↑∞ sup

n∈N

∫
�\Ei

f +
n dμ = . (.)

Since μ is σ -finite, there exists a σ -finite exhausting sequence {Ci}i∈N. For i ∈ N, let Bi =
(
⋃i

j= Ej)∪Ci. Then {Bi}i∈N is also a σ -finite exhausting sequence. Let {Ai}i∈N be a sequence
in F satisfying (.).

Fix i ∈ N for the moment. For each n ∈N we have
∫

�\Ai

fn dμ ≤
∫

�\Ai

f +
n dμ =

∫
�\Bi

f +
n dμ +

∫
Bi\Ai

f +
n dμ. (.)

Applying supn∈N to the leftmost and rightmost sides, we obtain

sup
n∈N

∫
�\Ai

fn ≤ sup
n∈N

∫
�\Bi

f +
n dμ + sup

n∈N

∫
Bi\Ai

f +
n dμ. (.)

The first supremum on the right-hand side converges to zero as i ↑ ∞ by (.) since Ei ⊂ Bi

for all i ∈ N. The second supremum also converges to zero as i ↑ ∞ by (.)(ii) and con-
dition (a) in Section . It follows that (.) holds for any sequence {Ai}i∈N in F satisfying
(.); thus by Theorem ., the Fatou inequality (.) holds. �

5 Examples
In each of the examples below, � is taken to be an interval in R. Accordingly, F is taken
to be the σ -algebra of Lebesgue measurable subsets of �, and μ the Lebesgue measure
restricted to F .

Our first example shows that Theorem . is a strict generalization of Corollaries .
and . even in the case of a finite measure.
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Example . Let � = [–, ] \ {}. For n ∈N, define fn : � →R by

fn(ω) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

 if ω ∈ [–, –/n),

–n if ω ∈ [–/n, ),

n if ω ∈ (, /n],

 if ω ∈ (/n, ].

(.)

It is easy to see that there is no upper semi-integrable function that dominates {fn}n∈N;
thus Corollary . does not apply. Furthermore, {f +

n } is not uniformly integrable; indeed,
for any c ≥  we have

sup
n∈N

∫
{f +

n ≥c}
f +
n dμ = sup

n∈N:n≥c
n/n = . (.)

Hence Corollary ., which requires uniform integrability of {f +
n }, does not apply either.

Neither does Corollary . since equi-integrability implies uniform integrability on a finite
measure space provided that supn∈N

∫ |fn|dμ < ∞, which is the case here.
By contrast, Theorem . easily applies. To see this, note that, for each n ∈ N, fn is inte-

grable, and so is limn↑∞ fn. For i ∈ N, let

Bi = [–, –/i) ∪ (/i, ]. (.)

Then {Bi}i∈N is a σ -finite exhausting sequence. Let {Ai}i∈N be any sequence in F satis-
fying (.)(i). For each fixed i ∈ N, for any n ≥ i, we have fn =  on Bi, and

∫
�\Ai

fn dμ =∫
�\Bi

fn dμ = . Thus the left-hand side of (.) is zero. Hence the Fatou inequality (.)
holds by Theorem ..

In fact
∫

fn dμ =  for all n ∈N, and limn↑∞ fn = . Thus both sides of the Fatou inequality
(.) equal zero.

In the next example, μ is not finite, and the sequence {fn}n∈N is uniformly bounded from
below.

Example . Let � = R+. For n ∈N, define fn : � →R by

fn(ω) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

 if ω ∈ [, n),

n if ω ∈ [n, n + ),

– if ω ∈ [n + , n + ),

 if ω ≥ n + .

(.)

It is easy to see that there is no upper semi-integrable function that dominates {fn}n∈N;
thus Corollary . does not apply.

For any δ ∈ (, ) we have

∫
[n,n+δ)

f +
n dμ = nδ ↑ ∞ as n ↑ ∞. (.)



Kamihigashi Journal of Inequalities and Applications  (2017) 2017:24 Page 7 of 15

Thus {f +
n } does not satisfy condition (a) in Section . To consider condition (b), let E ∈ F

with μ(E) < ∞. Then

μ(E) =
∑
n∈Z+

μ
(
E ∩ [n, n + )

)
< ∞, (.)

which implies that limn↑∞ μ(E ∩ [n, n + )) = . It follows that
∫

�\E
f +
n dμ = n

(
 – μ

(
E ∩ [n, n + )

)) → ∞ as n ↑ ∞. (.)

Hence {f +
n } does not satisfy condition (b) either. Therefore {f +

n } is far from being equi-
integrable; as a consequence, Corollary . does not apply.

To see that Theorem . applies, note that, for each n ∈ N, fn is integrable for each n,
and so is limn↑∞ fn. For i ∈N, let Bi = [, i). Then {Bi}i∈N is a σ -finite exhausting sequence.
Take any sequence {Ai}i∈N in F satisfying (.)(i). Then for each fixed i ∈ N we have∫
�\Ai

fn dμ =  for all n ≥ i. Thus the left-hand side of (.) equals zero. Hence the Fatou
inequality (.) holds by Theorem ..

In fact, as in the previous example, we have
∫

fn dμ =  for all n ∈ N, and limn↑∞ fn = ;
thus both sides of the Fatou inequality (.) equal zero.

6 An application to infinite-horizon optimization in discrete time
In this section we consider a fairly general class of infinite-horizon maximization prob-
lems, establishing a new result on the existence of an optimal path using Corollary .. We
start with some notation.

For t ∈ Z+, let Xt be a metric space. For t ∈ Z+, let �t : Xt → Xt+ be a compact-valued up-
per hemicontinuous correspondence in the sense that, for each x ∈ Xt , �t(x) is a nonempty
compact subset of Xt+, and for any convergent sequence {xn}n∈N in Xt with limit x∗ ∈ Xt

and any sequence {yn}n∈N with yn ∈ �t(xn) for all n ∈ N, there exists a convergent sub-
sequence {yni}i∈N of {yn}n∈N with limit y∗ ∈ �t(x∗); see [], page  and [], page ,
concerning this definition of upper hemicontinuity. For t ∈ Z+, let

Dt =
{

(x, y) ∈ Xt × Xt+ : y ∈ �t(x)
}

. (.)

For t ∈ Z+, let rt : Dt →R∪ {–∞} be an upper semicontinuous function.
Consider the following maximization problem:

max
{xt}∞t=

∞∑
t=

rt(xt , xt+) (.)

s.t. xt+ ∈ �t(xt), ∀t ∈ Z+, (.)

x ∈ X given. (.)

We say that a sequence {xt}∞t= is a feasible path (from x) if it satisfies (.). We say that a
feasible path {x∗

t }∞t= is optimal (from x) if for any feasible path {xt}∞t=, we have

∞∑
t=

rt(xt , xt+) ≤
∞∑

t=

rt
(
x∗

t , x∗
t+

)
, (.)

where x∗
 = x. For the above inequality to make sense, we assume the following.
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Assumption . For each feasible path {xt}∞t=, we have

∞∑
t=

max
{

rt(xt , xt+), 
}

< ∞. (.)

In other words, the mapping rt(xt , xt+) : t 
→R∪ {–∞} is upper semi-integrable.

We are ready to show our existence result.

Proposition . Let Assumption . hold. Suppose that, for any sequence {{xn
t }∞t=}n∈N of

feasible paths, we have

lim
i↑∞

lim
n↑∞

∞∑
t=i

rt
(
xn

t , xn
t+

) ≤ . (.)

Then there exists an optimal path.

Proof Let

ν = sup
∞∑

t=

rt(xt , xt+), (.)

where the supremum is taken over all feasible paths {xt}∞t=. By the definition of ν , there
exists a sequence {{xn

t }∞t=}n∈N of feasible paths such that

lim
n↑∞

∞∑
t=

rt
(
xn

t , xn
t+

)
= ν. (.)

Since �(x) is compact, there exists a convergent subsequence {xnj
 }j∈N of {xn

 }n∈N with
limit x∗

 ∈ �(x). By the definition of upper hemicontinuity, there exists a convergent
subsequence of {xnj

 }j∈N with limit x∗
 ∈ �(x∗

 ). Continuing this way and using the diag-
onal argument, we see that there exists a subsequence of {{xn

t }∞t=}n∈N, again denoted by
{{xn

t }∞t=}n∈N, such that, for each t ∈ N, xn
t converges to some x∗

t as n ↑ ∞, and for each
t ∈ Z+, x∗

t+ ∈ �t(x∗
t ). Hence {x∗

t }∞t= is a feasible path, which implies that

∞∑
t=

rt
(
x∗

t , x∗
t+

) ≤ ν. (.)

To apply Corollary ., let fn(t) = rt(xn
t , xn

t+) for t ∈ Z+. By Assumption ., for each n ∈N,
fn(t) is an upper semi-integrable function of t ∈ Z+. For t ∈ Z+, let f ∗(t) = rt(x∗

t , x∗
t+). Since

{x∗
t }∞t= is feasible as shown above, f ∗(t) is also an upper semi-integrable function of t ∈ Z+

by Assumption .. For each t ∈ Z+, by upper semicontinuity of rt we have

lim
n↑∞ fn(t) = lim

n↑∞ rt
(
xn

t , xn
t+

) ≤ rt
(
x∗

t , x∗
t+

)
= f ∗(t). (.)
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Since the rightmost side is an upper semi-integrable function of t ∈ Z+, so is the leftmost
side. Note that (.) directly follows from (.). Thus we can apply Corollary . to ob-
tain (.), which is written here as

lim
n↑∞

∞∑
t=

rt
(
xn

t , xn
t+

) ≤
∞∑

t=

lim
n↑∞ rt

(
xn

t , xn
t+

)
. (.)

We are ready to show that {x∗
t }∞t= is an optimal path. Recall from (.) that

ν = lim
n↑∞

∞∑
t=

rt
(
xn

t , xn
t+

)
(.)

≤
∞∑

t=

lim
n↑∞ rt

(
xn

t , xn
t+

)
(.)

≤
∞∑

t=

rt
(
x∗

t , x∗
t+

)
, (.)

where (.) uses (.), and (.) uses (.). It follows from (.)-(.) and (.) that
{x∗

t }∞t= is an optimal path. �

As a simple consequence of Proposition ., we obtain a result that can be viewed as an
abstract version of the existence result shown in [], Proposition .; see [], Theorem ,
for a similar result that requires stronger assumptions.

Corollary . Suppose that there exists an integrable function f : Z+ → R+ such that, for
any feasible path {xt}∞t=, we have

∀t ∈ Zt , rt(xt , xt+) ≤ f (t). (.)

Then there exists an optimal path.

Proof Note that (.) implies Assumption .. Thus to apply Proposition ., it suffices
to verify (.) for an arbitrary sequence {{xn

t }∞t=}n∈N of feasible paths. Let {{xn
t }∞t=}n∈N be a

sequence of feasible paths. Then by (.) we have

lim
i↑∞

lim
n↑∞

∞∑
t=i

rt
(
xn

t , xn
t+

) ≤ lim
i↑∞

lim
n↑∞

∞∑
t=i

f (t) = lim
i↑∞

∞∑
t=i

f (t) = , (.)

where the last equality holds by integrability of f . It follows that (.) holds; hence an
optimal path exists by Proposition .. �

Corollary . can be shown directly by using Fatou’s lemma to conclude (.) from
(.) in the proof of Proposition .. As illustrated in the next section, Proposition .
covers some important cases to which Corollary . fails to apply.
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7 Examples of optimization problems
To illustrate the significance of our existence result, we consider two special cases of the
following example.

Example . Let u : R+ →R∪{–∞} be a strictly increasing, upper semicontinuous func-
tion. Let δ : R+ →R++ be a strictly decreasing function. Consider the following maximiza-
tion problem:

max
{xt}∞t=

∞∑
t=

δ(t)u(ct) (.)

s.t. ct + xt+ = xt , ct , xt+ ≥ , ∀t ∈ Z+, (.)

x ∈ R+ given. (.)

In economics, u and δ are known as a utility function and a discount function, respectively.
The above maximization problem is a special case of (.)-(.) such that, for all t ∈ Z+,
Xt = R+ and

rt(x, y) = δ(t)u(x – y), (.)

�t(x) = {y ∈R+ :  ≤ y ≤ x}. (.)

It is easy to see from (.) that

∀t ∈ Z+, ct , xt ≤ x. (.)

For simplicity, we assume that there exists θ >  such that

(i) ∀c ≥ , u(c) ≤ θc, (ii) u(x) > . (.)

(Condition (ii) above does not depend on θ .) It is easy to see that condition (i) above implies
Assumption .; see (.)-(.) for details.

Example . Consider Example .. Most discrete-time economic models assume an ex-
ponential discount function of the form

∀t ∈ Z+, δ(t) = β t (.)

for some β ∈ (, ). In this case, Corollary . easily applies. To see this, let f (t) = β tu(x)
for t ∈ Z+. Then f : Z+ → R+ is integrable, and (.) holds by (.). Hence an optimal
path exists by Corollary ..

Example . Consider Example . again. Although exponential discounting (.) is tech-
nically convenient (implying time consistency), experimental evidence suggests that ‘hy-
perbolic discounting’ is more plausible; see, e.g., [], page . A simple hyperbolic discount
function can be specified as follows:

∀t ∈ Z+, δ(t) =


 + αt
(.)

for some α > .
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In this example, Corollary . does not apply since there exists no integrable function
f : Z+ → R+ satisfying (.) for all feasible paths. To see this, define the feasible path
{x̃n

t }∞t= for each n ∈N by

x̃n
t =

⎧⎨
⎩

x if t ≤ n,

 if t ≥ n + .
(.)

Then

rt
(
x̃n

t , x̃n
t+

)
=

⎧⎨
⎩

u(x)/( + αt) if t = n,

u()/( + αt) otherwise.
(.)

Hence any f satisfying (.) must satisfy

f (t) ≥ u(x)/( + αt), ∀t ∈ Z+. (.)

Since the right-hand side is not upper semi-integrable in t ∈ Z+ by (.)(ii), there exists no
integrable function f satisfying (.) for all feasible paths. Hence Corollary . does not
apply.

However, Proposition . still applies. To see this, let {{xn
t }∞t=}n∈N be a sequence of fea-

sible paths. For any n, i ∈N we have

∞∑
t=i

rt
(
xn

t , xn
t+

)
=

∞∑
t=i

u(xn
t – xn

t+)
 + αt

(.)

≤
∞∑
t=i

θ (xn
t – xn

t+)
 + αi

(.)

=
θ

∑∞
t=i(xn

t – xn
t+)

 + αi
(.)

≤ θxn
i

 + αi
≤ θx

 + αi
, (.)

where (.) uses (.)(i), and the second inequality in (.) uses (.). It follows that

lim
i↑∞

lim
n↑∞

∞∑
t=i

rt
(
xn

t , xn
t+

) ≤ lim
i↑∞

θx

 + αi
= . (.)

Thus (.) holds; hence an optimal path exists by Proposition ..

In the above example, the hyperbolic discount function (.) is used to show that Corol-
lary . does not apply. The only property of the discount function required to apply
Proposition . is the equality in (.). We summarize this observation in the following
example.

Example . Consider Example . again. Suppose that

lim
t↑∞ δ(t) = . (.)

Then the argument of Example . shows that an optimal path exists by Proposition ..
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8 Proof of Theorem 3.1
8.1 Preliminaries
Throughout the proof, we fix {fn}n∈N and {Bi}i∈N to be given by Theorem .. Define f ∗ =
limn↑∞ fn. For n ∈N, define f̂n = supm≥n fm. We have

f ∗ = lim
n↑∞ f̂n. (.)

The following observation helps to simplify the proof.

Lemma . If f ∗ is not upper semi-integrable, then the Fatou inequality (.) holds.

Proof Suppose that f ∗ is not upper semi-integrable. Then
∫

(f ∗)+ dμ = ∞, and f ∗ must be
lower semi-integrable (i.e.,

∫
(f ∗)– dμ < ∞) since f ∗ is semi-integrable by hypothesis. It

follows that
∫

f ∗ dμ =
∫

(f ∗)+ dμ –
∫

(f ∗)– dμ = ∞. Thus the Fatou inequality (.) trivially
holds. �

Since the above result covers the case in which f ∗ is not upper semi-integrable, we as-
sume the following for the rest of the proof.

Assumption . f ∗ is upper semi-integrable.

8.2 Lemmas
We establish three lemmas before completing the proof of Theorem ..

Lemma . Suppose that there exists a σ -finite exhausting sequence {Ai}i∈N satisfying (.)
and the following:

∀i ∈N, lim
n↑∞

∫
Ai

fn dμ ≤
∫

Ai

f ∗ dμ. (.)

Then the Fatou inequality (.) holds.

Proof Since each fn is semi-integrable, we have

∀i, n ∈N,
∫

fn dμ =
∫

Ai

fn dμ +
∫

�\Ai

fn dμ. (.)

By (.) there exists a subsequence {Aik }k∈N of {Ai}i∈N such that

∀k ∈N, lim
n↑∞

∫
�\Aik

fn dμ < ∞, (.)

lim
k↑∞

lim
n↑∞

∫
�\Aik

fn dμ ≤ . (.)

Note that {Aik }k∈N is a σ -finite exhausting sequence.
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Fix k ∈N for the moment. Replacing i with ik in (.) and applying limn↑∞ to both sides
of the resulting equation, we obtain

lim
n↑∞

∫
fn dμ = lim

n↑∞

[∫
Aik

fn dμ +
∫

�\Aik

fn dμ

]
(.)

≤ lim
n↑∞

∫
Aik

fn dμ + lim
n↑∞

∫
�\Aik

fn dμ (.)

≤
∫

Aik

f ∗ dμ + lim
n↑∞

∫
�\Aik

fn dμ, (.)

where (.) holds by (.), and (.) uses (.).
Since f ∗ is upper semi-integrable and {Aik }k∈N is a σ -finite exhausting sequence, we have

limk↑∞
∫

Aik
f ∗ dμ =

∫
f ∗ dμ < ∞. Thus applying limk↑∞ to the right-hand side of (.) yields

lim
n↑∞

∫
fn dμ ≤

∫
f ∗ dμ + lim

k↑∞
lim
n↑∞

∫
�\Aik

fn dμ ≤
∫

f ∗ dμ, (.)

where the last inequality uses (.). The Fatou inequality (.) follows. �

Lemma . Let {Ai}i∈N be a sequence in F such that, for each i ∈ N, μ(Ai) < ∞ and f̂ +
n

converges to (f ∗)+ uniformly on Ai as n ↑ ∞. Then {Ai}i∈N satisfies (.).

Proof Let i ∈ N. Let δ > . Since f̂ +
n converges to (f ∗)+ uniformly on Ai as n ↑ ∞, for suf-

ficiently large n ∈ N we have fn ≤ f̂n ≤ f̂ +
n ≤ (f ∗)+ + δ on Ai. Since (f ∗)+ is integrable by

Assumption . and μ(Ai) < ∞, (.) holds by Fatou’s lemma. �

Lemma . Let {Ai}i∈N be a sequence in F satisfying (.) and (.). Then {Ai} is a σ -finite
exhausting sequence.

Proof Since {Ai} satisfies (.) by hypothesis, it suffices to verify (.). For any i, j ∈ N with
i ≤ j, by (.) for {Bi}, we have

μ(Bi \ Aj) ≤ μ(Bj \ Aj) →  as j ↑ ∞, (.)

where the convergence holds by (.). It follows that

∀i ∈N, μ

(
Bi

∖⋃
j∈N

Aj

)
= lim

j↑∞μ(Bi \ Aj) = . (.)

Therefore

μ

(⋃
i∈N

Bi

∖⋃
j∈N

Aj

)
= lim

i↑∞μ

(
Bi

∖⋃
j∈N

Aj

)
= . (.)

Since
⋃

i∈N Ai ⊂ ⋃
i∈N Bi, we have

μ

(
�

∖⋃
i∈N

Ai

)
= μ

(
�

∖⋃
i∈N

Bi

)
+ μ

(⋃
i∈N

Bi

∖⋃
i∈N

Ai

)
= , (.)
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where the last equality holds by (.) for {Bi} and (.). It follows that {Ai} satis-
fies (.). �

8.3 Completing the proof of Theorem 3.1
Note from (.) that (f ∗)+ = limn↑∞ f̂ +

n . Let {εi}i∈N be a sequence inR++ such that limi↑∞ εi =
. For each i ∈N, by Egorov’s theorem there exists Ei ∈ F such that Ei ⊂ Bi, μ(Bi \Ei) < εi,
and f̂ +

n converges to (f ∗)+ uniformly on Ei as n ↑ ∞. For i ∈N, let

Ai =
i⋃

j=

Ej ⊂ Bi. (.)

Then, for each i ∈ N, f̂ +
n converges to (f ∗)+ uniformly on Ai as n ↑ ∞. Thus (.) holds by

Lemma ..
Note that {Ai}i∈N satisfies (.) and (.) by construction. Thus by Lemma ., {Ai} is a

σ -finite exhausting sequence. Hence (.) holds by the hypothesis of Theorem .. Since
(.) also holds as shown in the previous paragraph, the Fatou inequality (.) holds by
Lemma ..

9 Conclusions
In this paper we have provided a sufficient condition for what we call the Fatou inequality:

lim
n↑∞

∫
fn dμ ≤

∫
lim
n↑∞ fn dμ.

Our condition is considerably weaker than sufficient conditions known in the literature
such as uniform integrability (in the case of a finite measure) and equi-integrability. We
have illustrated the strength of our condition with simple examples. As an application, we
have shown a new result on the existence of an optimal path for deterministic infinite-
horizon optimization problems in discrete time. We have illustrated the strength of this
existence result with concrete examples of optimization problems.
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