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Abstract
In this paper we introduce q-Szász-Mirakjan-Kantorovich operators generated by a
Dunkl generalization of the exponential function and we propose two different
modifications of the q-Szász-Mirakjan-Kantorovich operators which preserve some
test functions. We obtain some approximation results with the help of the
well-known Korovkin theorem and the weighted Korovkin theorem for these
operators. Furthermore, we study convergence properties in terms of the modulus of
continuity and the class of Lipschitz functions. This type of operator modification
enables better error estimation than the classical ones. We also obtain a
Voronovskaja-type theorem for these operators.
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1 Introduction and preliminaries
In , Bernstein [] introduced a sequence of operators Bn : C[, ] → C[, ] defined by

Bn(f , x) =
n∑

k=

(
n
k

)
xk( – x)n–kf

(
k
n

)
, x ∈ [, ], (.)

for n ∈ N and f ∈ C[, ]. Szász in  (see []) and Mirakjan in  (see []) generalized
the Bernstein polynomial to an infinite interval as

Sn(f , x) = e–nx
∞∑

k=

(nx)k

k!
f
(

k
n

)
, f ∈ C[,∞). (.)

In [], the Kantorovich type of the Szász-Mirakjan operators was defined as

Kn(f , x) = ne–nx
∞∑

k=

(nx)k

k!

∫ k+
n

k
n

f (t) dt, (.)

where f is a continuous nondecreasing function on [,∞).
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In the field of approximation theory, q-calculus plays an important role. In , the first
q-analog of the well-known Bernstein polynomial was introduced by Lupas []. Later on
several researchers have proposed the q-analog of various operators and investigated their
approximation properties [, , , ]. We recall some definitions of q-calculus (see []).
Let k ∈N and q ∈ (, ) then the q-integer [k]q is defined as

[k]q =

⎧
⎨

⎩

–qk

–q if q �= ,

k if q = .

The q-factorial [k]q! is defined as

[k]q! =

⎧
⎨

⎩
[k]q[k – ]q · · · []q if k ∈ N,

 if k = ,

and for k ∈ N, q-binomial coefficient
[ k

r

]
q is defined by

[
k
r

]

q

=
[k]q!

[r]q![k – r]q!
,  ≤ r ≤ k,

with
[ k



]
q =  and

[ k
r

]
q =  for r > k.

There are two q-analogs of the exponential function ex (see []):

eq(x) =
∞∑

k=

xk

[k]q!
=


( – ( – q)x)∞q

, |x| <


 – q
, |q| < ,

and

Eq(x) =
∞∑

k=

q
k(k–)


xk

[k]q!
=
(
 + ( – q)x

)∞
q , |q| < ,

where

( – x)∞q =
∞∏

j=

(
 – qjx

)
.

Now assume that  < a < b,  < q < , and f is a real valued function. The q-Jackson inte-
grals of f over the interval [, b] and over a general interval [a, b] are defined by (see [])

∫ b


f (t) dqt = ( – q)b

∞∑

j=

f
(
bqj)qj

and

∫ b

a
f (t) dqt =

∫ b


f (t) dqt –

∫ a


f (t) dqt,
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respectively, provided the series converges. It is obvious that q-calculus reduces to the
ordinary version when q = . A generalization of the exponential function is given by Sucu.
Sucu [] defined a Dunkl analog of the Szász operator given by

Sn(f ; x) =


eμ(nx)

∞∑

k=

(nx)k

γμ(k)
f
(

k + μθk

n

)
, (.)

where μ ≥ , n ∈N, x ≥ , f ∈ C[,∞), and

eμ(x) =
∞∑

k=

xk

γμ(k)
.

Here

γμ(k) =
kk!�(k + μ + 

 )
�(μ + 

 )

and

γμ(k + ) =
k+k!�(k + μ + 

 )
�(μ + 

 )
.

The recursion relation for γμ is given by

γμ(k + ) = (k +  + μθk+)γμ(k), k ∈ N,

where

θk =

⎧
⎨

⎩
 if k ∈ N,

 if k ∈ N + .

Cheikh et al. [] stated the Dunkl analog of classical q-Hermite polynomials and gave def-
initions of the q-Dunkl analog of exponential functions, an explicit formula, and recursion
relations for μ > – 

 and  < q < , respectively:

eμ,q(x) =
∞∑

k=

xk

γμ,q(k)
, x ∈ [,∞), (.)

and

Eμ,q(x) =
∞∑

k=

q
k(k–)


xk

γμ,q(k)
, x ∈ [,∞). (.)

An explicit formula for γμ,q(k) is given by

γμ,q(k) =
(qμ+, q)[ k+

 ](q
, q)[ k

 ]

( – q)k , k ∈N, (.)
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where

(x, q)k =

⎧
⎨

⎩

∏k–
n=( – qnx) if k = , , . . . ,

 if k=.

Some of the special cases of γμ,q(k) are defined as

γμ,q() = , γμ,q() =
 – qμ+

 – q
,

γμ,q() =
(

 – qμ+

 – q

)(
 – q

 – q

)
,

γμ,q() =
(

 – qμ+

 – q

)(
 – q

 – q

)(
 – qμ+

 – q

)
,

γμ,q() =
(

 – qμ+

 – q

)(
 – q

 – q

)(
 – qμ+

 – q

)(
 – q

 – q

)
.

The recursion relation for γμ,q is given by

γμ,q(k + ) = [k +  + μθk+]qγμ,q(k), k ∈ N, (.)

where

θk =

⎧
⎨

⎩
 if k ∈ N,

 if k ∈ N + .

It has been observed that a sequence of linear positive operator preserve constant as well as
linear functions, i.e., Ln(ei, x) = ei(x) for ei(x) = xi(i = , ). These conditions hold good for
Bernstein polynomials, Szász-Mirakjan operators, Baskakov operators, Phillips operators,
and so on. For each of the above operators Ln(e, x) �= e(x). In order to preserve e and e,
King [] gave the modification of the well-known Bernstein polynomials as

Vn(f , x) =
n∑

k=

(
n
k

)(
r∗

n(x)
)k( – r∗

n(x)
)n–kf

(
k
n

)
, (.)

with  ≤ r∗
n(x) ≤ , n = , , . . . ,  ≤ x ≤ , where r∗

n(x) is given by

r∗
n(x) =

⎧
⎨

⎩
– 

(n–) +
√

( n
n– )x + 

(n–) if n = , , . . . ,

x if n = .
(.)

Obviously, limn→∞ r∗
n(x) = x. Also,

Vn(e, x) = , Vn(e, x) = r∗
n(x), Vn(e, x) = x.

The Kantorovich variant of Szász operators preserves only a constant function. Ap-
proximation results on modified Szász-Mirakjan-Kantorovich operators preserving e

and e have been investigated in [] and q-Szász-Mirakjan-Kantorovich-type operators
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preserving test functions e and e have been studied in []. Previous studies demon-
strated that providing a better error estimation for positive linear operators plays an im-
portant role in approximation theory, which allows us to approximate much faster to
the function being approximated. In [, , ], various better approximation proper-
ties of the Szász-Mirakjan-Kantrovich operators, Szász-Mirakjan operators, and Szász-
Mirakjan-Beta operators were investigated.

The purpose of this paper is to construct and investigate the Dunkl analog of q-Szász-
Mirakjan-Kantorovich operators which preserves the test functions e and e. Also, we
have show that our modified operators have a better error estimation than the classical
ones.

2 Operators and estimation of moments
Içöz gave a Dunkl generalization of Szász-Mirakjan-Kantorovich operators in [] and one
gave a Dunkl generalization of Szász operators via q-calculus in []. For μ > 

 ,  < q < ,
and f ∈ C[,∞), we define a q-Dunkl analog of Szász-Mirakjan operators as

Dn,q(f ; x) =


eμ,q([n]q
x
q )

∞∑

k=

([n]qx)k

γμ,q(k)qk f
(

q[k + μθk]q

[n]q

)
, x ∈ [,∞). (.)

Lemma . Let Dn,q(·; ·) be the operator given by (.). Then we have the following identities
and inequalities:

() Dn,q(e; x) = ,
() Dn,q(e; x) = x,
() x + [ – μ]qqμ+ eμ,q([n]qx)

eμ,q([n]q x
q )

x
[n]q

≤ Dn,q(e; x) ≤ x + [ + μ]q
x

[n]q
.

Now in this paper, we define a q-Dunkl analog of the Szász-Mirakjan-Kantorovich op-
erators as follows:

Kn,q(f ; x) =
[n]q

eμ,q([n]q
x
q )

∞∑

k=

([n]qx)k

γμ,q(k)qk

∫ [k++μθk ]q
[n]q

q[k+μθk ]q
[n]q

f (t) dqt, (.)

where μ > 
 , n ∈ N,  < q < ,  ≤ x < 

–qn , and f is a continuous nondecreasing function
on the interval [,∞). It is seen that the operators Kn,q are linear and positive. In the case
of q = , the operators Kn,q turn to the Szász-Mirakjan-Kantorovich operators [].

Lemma . For μ > 
 , n ∈ N,  < q < ,  ≤ x < 

–qn , and m ∈ N, we have a recurrence
relation given by

Kn,q
(
em(t); x

)
=


[m + ]q

m∑

j=

j∑

i=

(
j
i

)


[n]j–i
q

Dn,q
(
em+i–j(t); x

)
. (.)

Proof

∫ [k++μθk ]q
[n]q

q[k+μθk ]q
[n]q

tm dqt =


[m + ]q

{(
[k +  + μθk]q

[n]q

)m+

–
(

q[k + μθk]q

[n]q

)m+}
.
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Using the expansion am+ – bm+ = (a – b)(am + am–b + · · · + abm– + bm), we have

∫ [k++μθk ]q
[n]q

q[k+μθk ]q
[n]q

tm dqt =


[m + ]q

(
[k +  + μθk]q

[n]q
–

q[k + μθk]q

[n]q

)

×
m∑

j=

(
[k +  + μθk]q

[n]q

)j(q[k + μθk]q

[n]q

)m–j

.

Using [k +  + μθk]q =  + q[k + μθk]q,

∫ [k++μθk ]q
[n]q

q[k+μθk ]q
[n]q

tm dqt =


[m + ]q[n]q

m∑

j=

(
 + q[k + μθk]q

[n]q

)j(q[k + μθk]q

[n]q

)m–j

=


[m + ]q[n]q

m∑

j=

j∑

i=

(
j
i

)(qi[k + μθk]i
q

[n]j
q

)(
q[k + μθk]q

[n]q

)m–j

=


[m + ]q[n]q

m∑

j=

j∑

i=

(
j
i

)
qm+i–j[k + μθk]m+i–j

q

[n]m
q

.

From (.), we have

Kn,q
(
em(t); x

)

=
[n]q

eμ,q([n]q
x
q )

∞∑

k=

([n]qx)k

γμ,q(k)qk

∫ [k++μθk ]q
[n]q

q[k+μθk ]q
[n]q

tm dqt

=
[n]q

eμ,q([n]q
x
q )

∞∑

k=

([n]qx)k

γμ,q(k)qk


[m + ]q[n]q

m∑

j=

j∑

i=

(
j
i

)
qm+i–j[k + μθk]m+i–j

q

[n]m
q

=


[m + ]qeμ,q([n]q
x
q )

m∑

j=

j∑

i=

(
j
i

)


[n]j–i
q

∞∑

k=

([n]qx)k

γμ,q(k)qk
qm+i–j[k + μθk]m+i–j

q

[n]m+i–j
q

=


[m + ]q

m∑

j=

j∑

i=

(
j
i

)


[n]j–i
q

Dn,q
(
em+i–j(t); x

)
.

�

Lemma . Let ei(x) = xi (i = , , ) and Kn,q(·; ·) be the operator defined by (.). Then we
have the following identities and inequalities:

() Kn,q(e; x) = ,
() Kn,q(e; x) = 

[]q[n]q
+ x

[]q
,

() 
[]q[n]

q
+ x

[]q[n]q
( + qμ+[ – μ]q

eμ,q([n]qx)
eμ,q([n]q x

q ) ) + x

[]q
≤ Kn,q(e; x) ≤


[]q[n]

q
+ x

[]q[n]q
( + [ + μ]q) + x

[]q
,

() Kn,q((e – ex); x) = 
[]q[n]q

+ ( 
[]q

– )x,

() 
[]q[n]

q
+ x

[]q[n]q
{qμ+[ – μ]q

eμ,q([n]qx)
eμ,q([n]q x

q ) + ( – []q
[]q

)} + ( 
[]q

– 
[]q

+ )x ≤
Kn,q((e – ex); x) ≤ 

[]q[n]
q

+ x
[]q[n]q

{[ + μ]q + ( – []q
[]q

)} + ( 
[]q

– 
[]q

+ )x.

Proof Here the proof is based on Lemma ., and we can calculate only Kn,q(e; x) and
Kn,q((e – ex); x):
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Put m =  in (.), we have

Kn,q
(
e(t); x

)
=


[]q

∑

j=

j∑

i=

(
j
i

)


[n]j–i
q

Dn,q
(
e+i–j(t); x

)

=


[]q

(
Dn,q(e; x) +


[n]q

Dn,q(e; x) +


[n]
q

Dn,q(e; x)
)

.

Using Lemma (.), we have

Kn,q
(
e(t); x

) ≥ 
[]q

(

(

x + [ – μ]qqμ+ eμ,q([n]qx)
eμ,q([n]q

x
q )

x
[n]q

)
+

x
[n]q

+


[n]
q

)

≥ x

[]q
+

x
[]q[n]q

(
 + [ – μ]qqμ+ eμ,q([n]qx)

eμ,q([n]q
x
q )

)
+


[]q[n]

q
,

on the other hand, we have

Kn,q
(
e(t); x

) ≤ 
[]q

(

(

x + [ + μ]q
x

[n]q

)
+

x
[n]q

+


[n]
q

)

≤ x

[]q
+

x
[]q[n]q

(
 + [ + μ]q

)
+


[]q[n]

q
.

Now, we have to prove (). By linearity of Kn,q and from (), (), (), we have

Kn,q
(
(e – ex); x

)
= Kn,q(e; x) – xKn,q(e; x) + xKn,q(e; x)

≥ 
[]q[n]

q
+

x
[]q[n]q

(
 + qμ+[ – μ]q

eμ,q([n]qx)
eμ,q([n]q

x
q )

)
+

x

[]q

– x
(


[]q[n]q

+
x

[]q

)
+ x

≥ 
[]q[n]

q
+

x
[]q[n]q

{
qμ+[ – μ]q

eμ,q([n]qx)
eμ,q([n]q

x
q )

+
(

 –
[]q

[]q

)}

+
(


[]q

–


[]q
+ 

)
x.

Similarly, on the other hand

Kn,q
(
(e – ex); x

) ≤ 
[]q[n]

q
+

x
[]q[n]q

(
 + [ + μ]q

)
+

x

[]q

– x
(


[]q[n]q

+
x

[]q

)
+ x

≤ 
[]q[n]

q
+

x
[]q[n]q

{
[ + μ]q +

(
 –

[]q

[]q

)}

+
(


[]q

–


[]q
+ 

)
x. �

Now, we want to transform the operators defined at (.) in order to preserve the lin-
ear function e. Let rn,q(x) be the following sequence of real valued continuous function
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defined on [,∞) with  ≤ rn,q(x) < ∞:

rn,q(x) =
[]qx


–


[n]q

,


[]q[n]q
≤ x <


 – qn , n ∈N. (.)

Then we consider the following linear positive operators:

K̄n,q(f ; x) = Kn,q
(
f ; rn,q(x)

)

=
[n]q

eμ,q([n]q
rn,q(x)

q )

∞∑

k=

([n]qrn,q(x))k

γμ,q(k)qk

∫ [k++μθk ]q
[n]q

q[k+μθk ]q
[n]q

f (t) dqt, (.)

where f be a continuous and nondecreasing function on the interval [,∞).

Lemma . Let K̄n,q(f ; x) be the operator defined by (.). Then, for each 
[]q[n]q

≤ x < 
–qn ,

we have
() K̄n,q(e; x) = ,
() K̄n,q(e; x) = x,
() 

[]q[n]
q

( 
 – 

 qμ+[ – μ]q
eμ,q([n]qrn,q(x))

eμ,q([n]q
rn,q(x)

q )
) + []qx

[]q[n]q
qμ+[ – μ]q

eμ,q([n]qrn,q(x))

eμ,q([n]q
rn,q(x)

q )
+

[]
q

[]q
x ≤ K̄n,q(e; x) ≤ 

[]q[n]
q

( 
 – 

 [ + μ]q) + []q
[]q[n]q

[ + μ]qx + []
q

[]q
x,

() K̄n,q((e – ex); x) = ,

() 
[]q[n]

q
( 

 – 
 qμ+[ – μ]q

eμ,q([n]qrn,q(x))

eμ,q([n]q
rn,q(x)

q )
) + []qx

[]q[n]q
qμ+[ – μ]q

eμ,q([n]qrn,q(x))

eμ,q([n]q
rn,q(x)

q )
+ ( []

q
[]q

–

)x ≤ K̄n,q((e – ex); x) ≤ 
[]q[n]

q
( 

 – 
 [ + μ]q) + []q

[]q[n]q
[ + μ]qx + ( []

q
[]q

– )x.

Proof Using Lemma . and (.), we have

K̄n,q(e; x) = ,

K̄n,q(e; x) =


[]q[n]q
+

rn,q(x)
[]q

=


[]q[n]q
+


[]q

(
[]qx


–


[n]q

)

= x.

Also,


[]q[n]

q
+

rn,q(x)
[]q[n]q

(
 + qμ+[ – μ]q

eμ,q([n]qrn,q(x))

eμ,q([n]q
rn,q(x)

q )

)
+

(rn,q(x))

[]q

≤ K̄n,q(e; x) ≤ 
[]q[n]

q
+

rn,q(x)
[]q[n]q

(
 + [ + μ]q

)
+

(rn,q(x))

[]q
.

Now,

K̄n,q(e; x)

≥ 
[]q[n]

q
+

rn,q(x)
[]q[n]q

(
 + qμ+[ – μ]q

eμ,q([n]qrn,q(x))

eμ,q([n]q
rn,q(x)

q )

)
+

(rn,q(x))

[]q
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≥ 
[]q[n]

q
+


[]q[n]q

(
[]qx


–


[n]q

)(
 + qμ+[ – μ]q

eμ,q([n]qrn,q(x))

eμ,q([n]q
rn,q(x)

q )

)

+


[]q

(
[]qx


–


[n]q

)

≥ 
[]q[n]

q

(



–



qμ+[ – μ]q
eμ,q([n]qrn,q(x))

eμ,q([n]q
rn,q(x)

q )

)
+

[]qx
[]q[n]q

qμ+[ – μ]q

× eμ,q([n]qrn,q(x))

eμ,q([n]q
rn,q(x)

q )
+
([]

q

[]q
– 

)
x.

Similarly, on the other hand

K̄n,q(e; x) ≤ 
[]q[n]

q

(



–



[ + μ]q

)
+

[]q

[]q[n]q
[ + μ]qx +

[]
q

[]q
x.

By using the linearity of K̄n,q and (), (), () of Lemma . we obtain () and (). �

Let un,q(x) be the following sequence of real valued continuous function defined on
[,∞) with  ≤ un,q(x) < ∞:

un,q(x) =
–( + qμ+[ – μ]q

eμ,q([n]qx)
eμ,q([n]q x

q ) )

[n]q

+

√√√√ ( + qμ+[ – μ]q
eμ,q([n]qx)
eμ,q([n]q x

q ) )

[n]
q

+
[]q


x –


[n]

q
, (.)

where √
[]q[n]q

≤ x < 
–qn , n ∈N. Then we consider the following linear positive operators:

K∗
n,q(f ; x) = Kn,q

(
f ; un,q(x)

)

=
[n]q

eμ,q([n]q
un,q(x)

q )

∞∑

k=

([n]qun,q(x))k

γμ,q(k)qk

∫ [k++μθk ]q
[n]q

q[k+μθk ]q
[n]q

f (t) dqt, (.)

where f is a continuous and nondecreasing function on the interval [,∞).

Lemma . Let K∗
n,q(f ; x) be the operator defined by (.). Then, for each √

[]q[n]q
≤ x <


–qn , we have

() K∗
n,q(e; x) = ,

() K∗
n,q(e; x) =


[]q

(
–qμ+[–μ]q

eμ,q([n]qx)
eμ,q([n]q x

q )

[n]q
+
√


[n]

q
( + qμ+[ – μ]q

eμ,q([n]qx)
eμ,q([n]q x

q ) ) + []q
 x – 

[n]
q

),

() K∗
n,q(e; x) = x.

Proof Using Lemma ., (.) and following similar steps to Lemma ., we have the proof
of Lemma .. �
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3 Korovkin’s and weighted Korovkin’s type approximation properties
In order to obtain the convergence results for our constructed operators, we take q = qn

where (qn) be a sequence in the interval (, ) so that

lim
n→∞ qn =  and lim

n→∞


[n]qn
= . (.)

We obtain the Korovkin’s type approximation properties for our constructed operators
K̄n,q(·; ·), K∗

n,q(·; ·) defined by (.) and (.), respectively.

Theorem . Let (qn) be a sequence satisfying (.) and K̄n,qn (·; ·) be the operator given
by (.). Then, for each nondecreasing f ∈ Cγ [,∞), we have

lim
n→∞ K̄n,qn (f ; x) = f (x)

uniformly with respect to x ∈ [ 
[]qn [n]qn

, a] provided γ ≥  and a > 
[]qn [n]qn

.

Proof The proof is based on the well known Korovkin’s theorem regarding the conver-
gence of a sequence of linear and positive operators; so, it is enough to prove the condi-
tions

lim
n→∞ K̄n,qn (ei; x) = ei(x) for i = , , .

From Lemma . and (.), the result follows. �

Theorem . Let (qn) be a sequence satisfying (.) and K∗
n,qn (·; ·) be the operator given

by (.). Then, for each nondecreasing f ∈ Cγ [,∞), we have

lim
n→∞ K∗

n,qn (f ; x) = f (x)

uniformly with respect to x ∈ [ √
[]qn [n]qn

, b] provided γ ≥  and b > √
[]qn [n]qn

.

The weighted space of the functions which are defined on the positive semi axis R
+ =

[,∞) is addressed as follows:
Let Pρ(R+) be the set of all functions f satisfying the condition |f (x)| ≤ Mf ρ(x), where

x ∈R
+ and Mf is a constant depending on f . Introduce

Qρ

(
R

+) = Pρ

(
R

+)∩ C[,∞),

Qk
ρ

(
R

+) =
{

f : f ∈ Qρ

(
R

+) and lim
x→∞

f (x)
ρ(x)

= k (constant)
}

,

where ρ(x) =  + x is a weight function. These spaces are endowed with the norm

‖f ‖ρ = sup
x∈[,∞)

|f (x)|
ρ(x)

.
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Theorem . Let (qn) be a sequence satisfying (.) and Kn,qn (·; ·) be the operator defined
by (.). Then, for each function f ∈ Qk

ρ(R+), we have

lim
n→∞

∥∥Kn,qn (f ; x) – f
∥∥

ρ
= .

Proof Using the Korovkin-type theorem on weighted approximations in [], we see that
it is sufficient to verify the following three conditions:

lim
n→∞

∥∥Kn,qn

(
ei(t); x

)
– ei(x)

∥∥
ρ

= , i = , , . (.)

Since Kn,qn (e(t); x) = , (.) holds for i = .
Using Lemma ., we have

∥∥Kn,qn

(
e(t); x

)
– e(x)

∥∥
ρ

= sup
x∈[,∞)

|Kn,qn (e(t); x) – e(x)|
 + x

= sup
x∈[,∞)

| 
[]qn [n]qn

+ x
[]qn

– x|
 + x

≤ 
[]qn [n]qn

sup
x∈[,∞)


 + x +

(


[]qn
– 

)
sup

x∈[,∞)

x
 + x

≤ 
[]qn [n]qn

+
(


[]qn

– 
)

,

which implies that (.) holds for i =  as n → ∞. Similarly, we can write

∥∥Kn,qn

(
e(t); x

)
– e(x)

∥∥
ρ

= sup
x∈[,∞)

|Kn,qn (e(t); x) – e(x)|
 + x

≤ sup
x∈[,∞)

| 
[]qn [n]

qn
+ x

[]qn [n]qn
( + [ + μ]qn ) + x

[]qn
| – x

 + x

≤ 
[]qn [n]

qn

sup
x∈[,∞)


 + x +

( + [ + μ]qn )
[]qn [n]qn

sup
x∈[,∞)

x
 + x

+
(


[]qn

– 
)

sup
x∈[,∞)

x

 + x

≤ 
[]qn [n]

qn

+
( + [ + μ]qn )

[]qn [n]qn
+
(


[]qn

– 
)

,

which implies that

lim
n→∞

∥∥Kn,qn

(
e(t); x

)
– e(x)

∥∥
ρ

= . �

Theorem . Let K̄n,qn (f ; x) be the operator defined by (.). Then, for each function f ∈
Qk

ρ(R+), we have

lim
n→∞

∥∥K̄n,qn (f ; x) – f
∥∥

ρ
= .
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Proof In order to prove this theorem it is sufficient to verify (.). Since

K̄n,qn

(
e(t); x

)
= , K̄n,qn

(
e(t); x

)
= x,

we can easily see that (.) holds for i = , . By using Lemma ., we have

∥∥K̄n,qn

(
e(t); x

)
– e(x)

∥∥
ρ

= sup
x∈[,∞)

|K̄n,qn (e(t); x) – e(x)|
 + x

≤ sup
x∈[,∞)


[]qn [n]

qn
( 

 – 
 [ + μ]qn ) + []qn

[]qn [n]qn
[ + μ]qn x + []

qn
[]qn

x – x

 + x

≤ 
[]qn [n]

qn

(



–



[ + μ]qn

)
sup

x∈[,∞)


 + x

+
[]qn

[]qn [n]qn
[ + μ]qn sup

x∈[,∞)

x
 + x +

([]
qn

[]qn
– 

)
sup

x∈[,∞)

x

 + x

≤ 
[]qn [n]

qn

(



–



[ + μ]qn

)
+

[]qn

[]qn [n]qn
[ + μ]qn +

([]
qn

[]qn
– 

)
,

which implies that

lim
n→∞

∥∥K̄n,qn

(
e(t); x

)
– e(x)

∥∥
ρ

= . �

4 Rate of convergence
In this section we compute rate of convergence of the constructed operators in terms of
the modulus of continuity and the class of Lipschitz functions:

Let f ∈ CB[,∞), the space of all bounded and continuous functions on [,∞). Then,
for any δ > , x ≥  the modulus of continuity is denoted by ω(f , δ) and is defined as

ω(f , δ) = sup
|t–x|≤δ, t∈[,∞)

∣∣f (t) – f (x)
∣∣. (.)

Also,

∣∣f (t) – f (x)
∣∣ ≤ ω(f , δ)

(
 +

|t – x|
δ

)
. (.)

If f (x) is uniformly continuous on [,∞) then it is necessary and sufficient that

lim
δ→

ω(f , δ) = .

In order to obtain the convergence result we use the following lemma.

Lemma . ([]) Let  < q <  and a ∈ [, bq], b > . The inequality

∫ b

a
|t – x|dqt ≤

(∫ b

a
(t – x) dqt

) 

(∫ b

a
dqt

) 


is satisfied.
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Theorem . Let (qn) be a sequence satisfying (.). For the operator Kn,qn given by (.),
for all nondecreasing f ∈ CB[,∞),  ≤ x < 

–qn
n

and n ∈ N, we have

∣∣Kn,qn (f ; x) – f (x)
∣∣

≤
{



+

√


[]qn
+ [n]qn

(


[]qn

(
 + [ + μ]qn

)
–


[]qn

)
x + [n]

qn

(


[]qn
–


[]qn

+ 
)

x
}

× ω

(
f ,

√
[n]qn

)
,

where ω(f , ·) is the modulus of continuity of the function f ∈ CB[,∞) defined in (.).

Proof Let μ > 
 , n ∈ N, nondecreasing f ∈ CB[,∞), δ > , and  ≤ x < 

–qn
n

. Applying
linearity and monotonicity of Kn,qn and using (.), we get

∣∣Kn,qn (f ; x) – f (x)
∣∣

=
∣∣Kn,qn

(
f (t) – f (x); x

)∣∣ ≤ Kn,qn

(∣∣f (t) – f (x)
∣∣; x

) ≤ ω(f , δ)
(

 +
Kn,qn (|t – x|; x)

δ

)

≤ ω(f , δ)

(
 +


δ

[n]qn

eμ,qn ([n]qn
x

qn
)

∞∑

k=

([n]qn x)k

γμ,qn (k)qk
n

∫ [k++μθk ]qn
[n]qn

qn[k+μθk ]qn
[n]qn

|t – x|dqn t

)
.

Using Lemma ., with a = qn[k+μθk ]qn
[n]qn

and b = [k++μθk ]qn
[n]qn

, we have

∣∣Kn,qn (f ; x) – f (x)
∣∣ ≤ ω(f , δ)

{
 +


δ

[n]qn

eμ,qn ([n]qn
x

qn
)

∞∑

k=

([n]qn x)k

γμ,qn (k)qk
n

×
(∫ [k++μθk ]qn

[n]qn

qn[k+μθk ]qn
[n]qn

(t – x) dqn t
) 


(∫ [k++μθk ]qn

[n]qn

qn[k+μθk ]qn
[n]qn

dqn t
) 


}

.

Using the Hölder inequality for sums, we get

∣∣Kn,qn (f ; x) – f (x)
∣∣

≤ ω(f , δ)

{
 +


δ

(
[n]qn

eμ,qn ([n]qn
x

qn
)

∞∑

k=

([n]qn x)k

γμ,qn (k)qk
n

∫ [k++μθk ]qn
[n]qn

qn[k+μθk ]qn
[n]qn

(t – x) dqn t

) 


×
(

[n]qn

eμ,qn ([n]qn
x

qn
)

∞∑

k=

([n]qn x)k

γμ,qn (k)qk
n

∫ [k++μθk ]qn
[n]qn

qn[k+μθk ]qn
[n]qn

dqn t

) 

}

≤ ω(f , δ)
{

 +

δ

(
Kn,qn

(
(t – x); x

)) 
 × (

Kn,qn (; x)
) 



}

≤ ω(f , δ)
{

 +

δ

(
Kn,qn

(
(t – x); x

)) 


}
.

Choosing δ = δn = √
[n]qn

and using () of Lemma ., we have the result. �
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Theorem . Let (qn) be a sequence satisfying (.). For the operator K̄n,qn given by (.),
for all nondecreasing f ∈ CB[,∞), 

[]qn [n]qn
≤ x < 

–qn
n

and n ∈N, we have

∣∣K̄n,qn (f ; x) – f (x)
∣∣

≤
{



+

√


[]qn

(



–



[ + μ]qn

)
+

[]qn [n]qn

[]qn
[ + μ]qn x + [n]

qn

([]
qn

[]qn
– 

)
x
}

× ω

(
f ,

√
[n]qn

)
,

where ω(f , ·) is the modulus of continuity of the function f ∈ CB[,∞) defined in (.).

Proof Using () of Lemma . and following similar steps to Theorem ., we have the
proof of Theorem .. �

Now we claim that the error estimation in Theorem . is better than that of Theo-
rem . provided f ∈ CB[,∞) and 

[]qn [n]qn
≤ x < 

–qn
n

.
For 

[]qn [n]qn
≤ x < 

–qn
n

, μ > 
 , and n ∈ N it is guaranteed that


[]qn

(



–



[ + μ]qn

)
+

[]qn [n]qn

[]qn
[ + μ]qn x + [n]

qn

([]
qn

[]qn
– 

)
x

≤ 
[]qn

+ [n]qn

(


[]qn

(
 + [ + μ]qn

)
–


[]qn

)
x

+ [n]
qn

(


[]qn
–


[]qn

+ 
)

x. (.)

If we put μ =  in (.) then we have


[]qn

(



–



)
+

[]qn [n]qn

[]qn
x + [n]

qn

([]
qn

[]qn
– 

)
x

≤ 
[]qn

+ [n]qn

(


[]qn
–


[]qn

)
x + [n]

qn

(


[]qn
–


[]qn

+ 
)

x.

Again, if we put qn =  then clearly

nx –



≤ nx +



.

Now, we can also compute the rate of convergence of the our constructed operators in
terms of the element of the usual Lipschitz class LipM(ν):

Let f ∈ CB[,∞), M > , and  < ν ≤ . The class of LipM(ν) is defined as

LipM(ν) =
{

f :
∣∣f (ζ) – f (ζ)

∣∣ ≤ M|ζ – ζ|ν , ζ, ζ ∈ [,∞)
}

. (.)
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Theorem . Let (qn) be a sequence satisfying (.) and Kn,qn be the operator defined
in (.). Then, for each f ∈ LipM(ν) (M > ,  < ν ≤ ) satisfying (.), we have

∣∣Kn,qn (f ; x) – f (x)
∣∣ ≤ M

(
δn(x)

) ν
 , (.)

where δn(x) = Kn,qn ((e – ex); x).

Proof We prove this theorem by using (.) and Hölder’s inequality:

∣∣Kn,qn (f ; x) – f (x)
∣∣ =

∣∣Kn,qn

(
f (t) – f (x); x

)∣∣ ≤ Kn,qn

(∣∣f (t) – f (x)
∣∣; x

)

≤ MKn,qn

(|t – x|ν ; x
)
.

Therefore,

∣∣Kn,qn (f ; x) – f (x)
∣∣ ≤ M

[n]qn

eμ,qn ([n]qn
x

qn
)

∞∑

k=

([n]qn x)k

γμ,qn (k)qk
n

∫ [k++μθk ]qn
[n]qn

qn[k+μθk ]qn
[n]qn

|t – x|ν dqn t

≤ M
[n]qn

eμ,qn ([n]qn
x

qn
)

∞∑

k=

(
([n]qn x)k

γμ,qn (k)qk
n

) ν

(

([n]qn x)k

γμ,qn (k)qk
n

) –ν


×
∫ [k++μθk ]qn

[n]qn

qn[k+μθk ]qn
[n]qn

|t – x|ν dqn t

≤ M

(
[n]qn

eμ,qn ([n]qn
x

qn
)

∞∑

k=

([n]qn x)k

γμ,qn (k)qk
n

∫ [k++μθk ]qn
[n]qn

qn[k+μθk ]qn
[n]qn

dqn t

) –ν


×
(

[n]qn

eμ,qn ([n]qn
x

qn
)

∞∑

k=

([n]qn x)k

γμ,qn (k)qk
n

∫ [k++μθk ]qn
[n]qn

qn[k+μθk ]qn
[n]qn

|t – x| dqn t

) ν


≤ M
(
Kn,qn (; x)

) –ν

(
Kn,q(e – ex); x

)
)

ν


≤ M
(
Kn,qn

(
(e – ex); x

)) ν
 .

Choosing δn(x) = Kn,qn ((e – ex); x), the proof is completed. �

Theorem . Let (qn) be a sequence satisfying (.) and K̄n,qn be the operator defined
in (.). Then, for each f ∈ LipM(ν) (M > ,  < ν ≤ ) satisfying (.), we have

∣∣K̄n,qn (f ; x) – f (x)
∣∣ ≤ M

(
δ̄n(x)

) ν
 , (.)

where δ̄n(x) = K̄n,qn ((e – ex); x).

Proof Taking into account () of Lemma . and following similar steps to Theorem .,
we have the proof of Theorem .. So we omit the details of the proof. �

From (.), it follows that the above claim also holds for Theorem ., i.e., the rate of
convergence of the operators K̄n,qn by means of an element of the Lipschitz class functions
is better than the ordinary error estimation given by (.), where x ≥ 

[]qn [n]qn
.
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5 A Voronovskaja-type theorem
Now, we prove the Voronovskaja-type result for our modified Dunkl analog of q-Szász-
Mirakjan-Kantorovich operators K̄n,qn .

Lemma . Let (qn) be a sequence satisfying (.) and K̄n,qn be the operator defined in (.).
Therefore for every x ≥ 

[]qn [n]qn
there holds,

lim
n→∞[n]qn K̄n,qn (e – ex; x) = , (.)

( – μ)x ≤ lim
n→∞[n]qn K̄n,qn

(
(e – ex); x

) ≤ ( + μ)x. (.)

Theorem . Let q = qn satisfies (.) and K̄n,qn be the operator defined in (.). For any
f ∈ Cγ [,∞) such that f ′, f ′′ ∈ Cγ [,∞), γ ≥ , we have

lim
n→∞[n]qn

(
K̄n,qn (f ; x) – f (x)

) ≤ 


( + μ)xf ′′(x),

uniformly with respect to x ∈ [ 
[]qn [n]qn

, a] (a > 
[]qn [n]qn

).

Proof Let f , f ′, f ′′ ∈ Cγ [,∞) and x ≥ 
[]qn [n]qn

. By the Taylor formula, we write

f (t) = f (x) + (t – x)f ′(x) +



(t – x)f ′′(x) + (t – x)r(t; x), (.)

where r(t; x) is the Peano form of the remainder r(·; x) ∈ Cγ [,∞) and limt→x r(t; x) = .
Applying K̄n,qn to (.), we obtain

K̄n,qn

(
f (t); x

)
– f (x) = f ′(x)K̄n,qn

(
(e – ex); x

)
+




f ′′(x)K̄n,qn

(
(e – ex); x

)

+ K̄n,qn

(
r(t; x)(e – ex); x

)
.

By the Cauchy-Schwartz inequality, we have

K̄n,qn

(
r(·; x)(· – x); x

) ≤
√

K̄n,qn

(
r(·; x); x

)√
K̄n,qn

(
(· – x); x

)
. (.)

Let η(·; x) := r(·; x). In this case observe that η(x; x) =  and η(·; x) ∈ Cγ [,∞). Then it
follows from Theorem . that

lim
n→∞ K̄n,qn

(
r(·; x); x

)
= lim

n→∞ K̄n,qn

(
η(·; x); x

)
= η(x; x) =  (.)

uniformly with respect to x ∈ [ 
[]qn [n]qn

, a]. Now consider (.), (.) and using Lemma .,
we have

lim
n→∞[n]qn K̄n,qn

(
f (t); x

)
– f (x)

= f ′(x) lim
n→∞[n]qn K̄n,qn

(
(e – ex); x

)
+




f ′′(x) lim
n→∞[n]qn K̄n,qn

(
(e – ex); x

)

≤ 


( + μ)xf ′′(x).

This completes the proof. �
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Remark The further properties of the operators such as convergence properties via
summability methods (see, for example, [, , ]) can be studied.

Conclusion In this paper we have constructed and investigated a Dunkl analog of the q-
Szász-Mirakjan-Kantorovich operators which preserves the test functions e and e. We
have showed that our modified operators have a better error estimation than the classical
ones. We have also obtained some approximation results with the help of the well-known
Korovkin theorem and the weighted Korovkin theorem for these operators. Furthermore,
we studied convergence properties in terms of the modulus of continuity and the class of
Lipschitz functions.
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