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Abstract

In this paper we introduce g-Szasz-Mirakjan-Kantorovich operators generated by a
Dunkl generalization of the exponential function and we propose two different
modifications of the g-Szasz-Mirakjan-Kantorovich operators which preserve some
test functions. We obtain some approximation results with the help of the
well-known Korovkin theorem and the weighted Korovkin theorem for these
operators. Furthermore, we study convergence properties in terms of the modulus of
continuity and the class of Lipschitz functions. This type of operator modification
enables better error estimation than the classical ones. We also obtain a
Voronovskaja-type theorem for these operators.
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1 Introduction and preliminaries
In 1912, Bernstein [1] introduced a sequence of operators B, : C[0,1] — C[0, 1] defined by

Bufn) =Y (Z) ta-a(1), weton

k=0

(1.1)

for n e Nand f € C[0,1]. Szész in 1950 (see [4]) and Mirakjan in 1941 (see [5]) generalized
the Bernstein polynomial to an infinite interval as

2 (mx)k [k
Su(frx) = e—nxz f(—), f € C[0,00). (1.2)
k! n
k=0
In [6], the Kantorovich type of the Szasz-Mirakjan operators was defined as
o) k+1
e (m)* o
K,(f, %) = ne kzoj . fk f(t)dt, (1.3)

where f is a continuous nondecreasing function on [0, 00).
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In the field of approximation theory, g-calculus plays an important role. In 1987, the first
g-analog of the well-known Bernstein polynomial was introduced by Lupas [7]. Later on
several researchers have proposed the g-analog of various operators and investigated their
approximation properties [8, 9, 11, 12]. We recall some definitions of g-calculus (see [13]).
Let k € Ny and g € (0,1) then the g-integer [k], is defined as

k

L4 ifg 41,
[k]g = = 7
k ifg=1.

The g-factorial [k],! is defined as

[kl lk—1],---[1], ifkeN,

(k]! =
T ifk=0,

and for k € N, g-binomial coefficient [/:]q is defined by

k B [k]g!
[rl‘[r]q![k—r]q!’ l=r=k

with [(’;]qzland [f]q:Oforr>k.

There are two g-analogs of the exponential function e* (see [14]):

e (x)—ix—k—; < ——,lql <1
L, T a gy g
and
S k
D X
E,(x) = Zq 3 7l (1+@ —q)x):o, lq] <1,
k=0 7
where
oo
(1 —x);>O = l_[(l —q’x)
j=0

Now assume that 0 <a < b, 0 <g <1, and f is a real valued function. The g-Jackson inte-

grals of f over the interval [0, b] and over a general interval [a, b] are defined by (see [15])

b 00
[ 0d-a-ap 3 r(od)

j=0

and

_/ubf(t) dgt = /Obf(t) dgt - /Oﬂf(t) d,t,
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respectively, provided the series converges. It is obvious that g-calculus reduces to the
ordinary version when g = 1. A generalization of the exponential function is given by Sucu.
Sucu [16] defined a Dunkl analog of the Szasz operator given by

S k
Sulf;%) = ! Z(nx)f(kﬂuek), (1.4)

ey (nx) = vu(k) n

where u >0,n€ N, x>0, f € C[0,00), and

22K (k+ o+ 1)

(2k) =
i I+ %)
and

22T (k + o+ 3)
T(u+3)

vu(2k +1) =

The recursion relation for y, is given by
Yulk+1) = (k+1+2u6k1)yu(k), k€N,
where

0 ifke2N,
1 ifke2N+1.

O =

Cheikh et al. [17] stated the Dunkl analog of classical g-Hermite polynomials and gave def-
initions of the g-Dunkl analog of exponential functions, an explicit formula, and recursion

relations for p > —% and 0 < g < 1, respectively:

i k

X
euqx) = —, x€[0,00), 1.5
104(%) ;yu,q(k) [0, 00) (1.5)
and
Ea@=30"" " scl000 (16)
ATy TR ‘

An explicit formula for y,, 4(k) is given by

2u+1

(q ’qz)[%](qz’qz)[/%]

1o , ke, (17)

Vig (k) =
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where

Ma-q% iftk=12,...,
if k=0.

(x’ 61)1< =

Some of the special cases of y,, ;(k) are defined as

1-— q2u+1
yﬂ,q(o) =1, V;L,q(l) = ﬁ:

1-— 2u+1 1-— 2
- (52 (1)

l-q l-q

1-— 2u+1 1-— 2 1-— 2/4+3
- (52 () (52

l-q l-q l-q
y (4): 1_q2u_+1 1_q2 1_q2u+3 1_q4
e 1-q J\1-q )\ 1-q )J\1-q

The recursion relation for y,, 4 is given by

Yigk+1) = [k +1+2u0kalqVuqk), k€N, (1.8)
where
0 ifke2N,
O =
1 ifke2N+1.

It has been observed that a sequence of linear positive operator preserve constant as well as
linear functions, i.e., L,(e;, x) = e;(x) for e;(x) = x'(i = 0,1). These conditions hold good for
Bernstein polynomials, Szasz-Mirakjan operators, Baskakov operators, Phillips operators,
and so on. For each of the above operators L, (e, x) # ex(x). In order to preserve ey and ey,
King [18] gave the modification of the well-known Bernstein polynomials as

n

Vi) =3 (Z) (@) (1 r:<x))"kf(f), 19)

k=0 n
with 0 <ri(x) <1,n=1,2,...,0 <x <1, where r}(x) is given by

_1 M V2 L
T 2(n-1) + (n—l)x +4(r1—1)2 ifn=2,3,...,

ra(x) = (1.10)

x? ifn=1.
Obviously, lim,,_, 7} (x) = x. Also,
Vn(eO;x) =1, Vn(elrx) = VZ(?C), V,,(ez,x) :xz'

The Kantorovich variant of Szdsz operators preserves only a constant function. Ap-
proximation results on modified Szdsz-Mirakjan-Kantorovich operators preserving ey
and e; have been investigated in [19] and g-Szasz-Mirakjan-Kantorovich-type operators
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preserving test functions e; and e, have been studied in [20]. Previous studies demon-
strated that providing a better error estimation for positive linear operators plays an im-
portant role in approximation theory, which allows us to approximate much faster to
the function being approximated. In [19, 21, 22], various better approximation proper-
ties of the Szdsz-Mirakjan-Kantrovich operators, Szasz-Mirakjan operators, and Szdsz-
Mirakjan-Beta operators were investigated.

The purpose of this paper is to construct and investigate the Dunkl analog of g-Szész-
Mirakjan-Kantorovich operators which preserves the test functions e; and ey. Also, we
have show that our modified operators have a better error estimation than the classical

ones.

2 Operators and estimation of moments
I¢6z gave a Dunkl generalization of Szdsz-Mirakjan-Kantorovich operators in [23] and one
gave a Dunkl generalization of Szdsz operators via g-calculus in [24]. For > ,0<g<1,

and f € C[0, 00), we define a g-Dunkl analog of Szasz-Mirakjan operators as

o0 k
Dy,(f5x) = > (L)) f(q[k+2“9k]q>, x € [0,00). (2.1)

eu,q([n]qg) P V;L,q(k)qk [}'I]q

Lemma2.1 Let D, (;-) be the operator given by (2.1). Then we have the following identities
and inequalities:

(1) Dn,q(eo;x) =1,

(2) Dygle;x) =x,

2 2u+1 €, q(["lm x . 2 x

(3) &%+ [1-2ul,q™ A Ty <Dy q(exx) <x*+[1+ ZM]q[n]q.

Now in this paper, we define a g-Dunkl analog of the Szdsz-Mirakjan-Kantorovich op-
erators as follows:

[k+1+2p6; ]

[y & (g [

K, ,(f;x) =
i ena((nle) 15 Vi (k)g* Jalo2unda

f@)dyt, (2.2)

where u > 2, neN,0<g<1,0<x< qn ,and f is a continuous nondecreasing function
on the interval [0, 00). It is seen that the operators K}, , are linear and positive. In the case

of g = 1, the operators K, , turn to the Szasz-Mirakjan-Kantorovich operators [6].

Lemma 2.2 For,u>2,neN 0<g<1,0<x<

o qn , and m € Ny, we have a recurrence

relation given by

1 m j 1
K, en(t);x) = () +Dn em+ij(t); % (2.3)
q( ) [m+1]q;; i) [}y’ q( ’ )
Proof
e g, 1 k+1+2u0d,\™ [ qlk +2u6,\"™"
a0 ), (1) (g '

[nlq
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Using the expansion a”*! — b"*! = (a — b)(a™ + " 'b + - - - + ab™! + ™), we have

[k+1+2u6;]q
Tl g 1 ([k +1+2u6d, qlk+ 2,u9k]q>
" q° = -
alk [i/]tqf’qu [m +1], (n], [n],

5 Z([k+ 1+2u6, )'(q[k+ 2M9k],,)’”—f

[n]q [n]q

Using [k +1+2ubil, =1+ qlk +2ub¢],

[k+1+2u6;] 3
[n]l; i g 1 i 1+ glk+2u0q Y (alk + 216, "
% T Im+1] qlnlg P [n], [n],

" Lo\ (@ 20008 [ qlh + 200, \"
] KOk q /'qu
[m+1 (1], ZZ(Z)( )( )

=0 i=0 [”]q P

~.

mj m+L m+i—j
j Tk +21460c]4
T m+1] [n]qzz<) )

m
j=0 i=0 L [l/l]q

From (2.2), we have

K,y (em (®); x)
o) [k+1+206; 1

[n], () [ g

= Wld
na011g) 22 Vg Og* Jatsmoga "

B [”l]q 00 ([I’l]qx)k () m+z ][k+ 2M9k]m+l -
B e,u,q([l’l]qg) kzzoz Y, q(k) k [Wl + 1 [n]q =le: [}’l];”
_ LA =\ ([m]gx)k g™k + 2M9k];"+i_j
S lm+ l]qen q([1]q3) ]2: Z < ) (]} kXO: Vg (k) gk [n]y

1 moj .

] (3) ot )

Lemma 2.3 Lete;(x) = (i=0,1,2) and K,4(;-) be the operator defined by (2.2). Then we

have the following identities and inequalities:
(1) Kpgleosx) =1,
) o 1 2
(2) I(n,q(elrx) = [Z]q[n]q + ﬁ

1 2u+1 eu,q([n]gx)
(3) Bl + s]q[n]q 1+q [1- Z;L]qe#q e ) )+ Bl <an(ez,x) <

- 3x
Bl T Bl PRt +2M] )+

(4) I<n,q((el er) )=

2l [n] (W - 1)"’

1 2l g nlg) 23] s . )
(5) [3]q[l'l]§ + 3]q[71]q {3q " [1 2I’L]q Hq[n]qx (3 - 2]y q)} + (@ - Z_q + l)x <
[3
I<n,q((31 - er) %) < m + q[n] {3[1+ 2#] +(3- [2]]q)} ( %q + l)xz.

Proof Here the proof is based on Lemma 2.2, and we can calculate only Kj, ;(e»;x) and
]<n,q((el - er)z;x):
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Put m = 2 in (2.3), we have

j .
Z < ) nq 32+l—/(t) x)

i=

nq(eZ(t) X L

2
[3]4 pn

1

3 1
" 3], <3D”"1 (e2;) + @Dn,q(el;x) + @Dn,q(eo;x)).

Using Lemma (2.1), we have

King(e2(t);) = [31] <3<x2 f[1- M]qszlML) L3 L)

enq((nlg3) nlg )~ nlg  [n]]

3—962 3436 _ 2u+1 ell«:q([n]qx) ) 1
> B, + B0, <1+ 1-2ulq ena7]g?) + [ ]q[n]%;,

on the other hand, we have

Kyq(e2(t);x) < @ (3 (x +[1+2ulp— ol ) [n]q + @)

342 3x
<= 4
- [3]q [B]q[”l]q

(1+[1+2ul,) + B0

Now, we have to prove (5). By linearity of K, ; and from (1), (2), (3), we have

K,,,q((el — epx)?; ) = Ky 4(ex;%) — 24K, 4 (e5 % )+x21(,,,q(eo;x)

1 3x
> +
T BlglnlZz - [Blylnlg

- 2x<; + Z_x) +x°
[2]4ng ~ [2]4

1 x 2u+lry eu,q([n]qx) ( _2[3]q>}
2[3]q[n]§+[3]q[n]q{3q L2l s P,

+ (i - i + 1>x2
31 [2] '

Similarly, on the other hand

(1 + @1 - 2p] €ing171g2) ) 3«

enqg([nlg3) ) [Blq

1 3x (1+[1+2 ])+3_x2
31,02 " Bl,n, Hia

P
-~ 2x<# + Z_x) +x
[Z]q[”l]q [2]q
= Bl0E [3]q[n1q{3[“2“]“ (3_ 2], >}

+ (i - i + 1>x2
Bl, [2l, ' O

Now, we want to transform the operators defined at (2.2) in order to preserve the lin-

K,,q((el - egx)? x)

ear function e;. Let 7, 4(x) be the following sequence of real valued continuous function
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defined on [0, 00) with 0 <7, 4(x) < co:

2] % 1 1 1
Tq(X) = 2], - , <x< , neNlN. (2.4)
2 2[n]q [2]q[n]q 1- qn
Then we consider the following linear positive operators:
kn,q(f; x) = I(n,q (f; Vn,q(x))
[k+1+2u6; 1q
o0 k ok
n [n]
Ul S W [T e (25)
e;L,q([W]q na® ) k=0 Vﬂ,q(k)q 1 Jr[}]qu

where f be a continuous and nondecreasing function on the interval [0, c0).

Lemma2.4 Let K, ,(f;x) be the operator defined by (2.5). Then, for each [2] <x< ﬁ,
we have

1) Rn,q(eo;x) =1,

(2) kn,q(el;x) X,

([nlgrn,q(x)) 3[2]gx 2 +1 epq([nlgrnqg )

B) Grpp (@~ 5347 L - 2] =) L P[] - ], a2

(314l ]2 e/Lq([Vl]q "q( ) 2[3]q[”l] euq(lnlg nq ))
3[2]7 2 <K, (eg;x) < —1L ( 311+ 2ul,) 3[2]¢ [ +2u] 3217 5
ap), mq\€2:%) = 1 m2\a "2 tabtlg) t apr T, [n] ol g X

(4) kn q((el - er) x) =0,

1_3 2u+l enq([nlgrng (%)) 3[2g%  ou41 eug(Mlgrng®) . 3[212
®) & ]2( S 1-2u], T, ,W))+2[3 Lo a2, o e, (531 -
% 312] 3213
Da? < Ky q((er — e0x)%5 %) < m(z =30 +2uly) + 5 oo L+ 20lgx + (51t - 1.

Proof Using Lemma 2.3 and (2.4), we have

kn,q(eo; x) = 1)

Page 8 of 18

_ L 1 27,4(%)
Kuglew?) = i o ¥ 712,
o <[2],,x 1)
TR, 2,2 2[m,
=X.
Also,
1 3n,® (1 sy gy el ]qrnq(x))) 31y ()2
B " Bl T )
= . 3r'n,q (%) 3(’”}1,4](95))2
< Kyqler;x) < (31,012 + 31,11, (1+[1+2u],) + W
Now,
kn,q(eZ;x)
1 Srn,q(x) (1 2M+11 2 ,uq([n]qrnq(x))) 3(rn,q(x))2
= Bty " Byl T T gy )



Mursaleen et al. Journal of Inequalities and Applications (2016) 2016:317 Page 9 of 18

1 3 [z]qx_ 1 >( 2u41[] _ 9 eu,q([”]qrnq(x)))
2[3]q[n]31+[3]q[n]q< 2 2, )L 20l T ], )

enq([nlg q
+i([2]qx_ 1 )2
[S]q 2 2[”]:1

1 (l_§q2u+1[1 2ul, e“’q([n]qrn,q(x))>+ 312],x QZMH[I—ZM]‘I

= Bl el ) ) " 2Bl 1,

. Cna(larng(s) (3[212 _1>x2.
e[l 22y \ 4],

Similarly, on the other hand

o 1 (1 3 3[2], 3[217 ,
Rugler®) = grim (1 -5 2“]q) o, e g,

By using the linearity off(,,_q and (1), (2), (3) of Lemma 2.4 we obtain (4) and (5). O

Let u,,(x) be the following sequence of real valued continuous function defined on
[0, 00) with 0 < u,, 4(x) < o0:

~(1+ g (L - 2], 224000

(Mg )
Upg(X
nq(%) = 20,
1+ 2/4+1[1 —2u] ep,q([n]gx) )2
1 TogllD) By , 1
" + - (2.6)
4[n]? 3 3[n]2
1 1 : T L .
where TBlainly Sx< g ne€ N. Then we consider the following linear positive operators:

K (f5%) = Koy (f thn g (%))

[k+1+2u6; g

["]q i ([n]qun,q(x))k lnlq

u k [k+2u6]
euq([nly ”Z ) k=0 Ving(K)q : +[n/]quq

f@®)d,t, (2.7)

where f is a continuous and nondecreasing function on the interval [0, c0).

Lemma 2.5 Let K; (f;x) be the operator defined by (2.7). Then, for each ﬁ <
nlq

ﬁ, we have

(1) I<* (60, )=1,
2) K, (e1;%) =

—PH 12, ep,q([1g%)

2 eliq([”]qq> 21+1 eu,q([nlgx) \o [3]q 2 1
a1, 2l * 12(1”1 R P P+ B - ),

(3) K (es) = >

Proof Using Lemma 2.3, (2.6) and following similar steps to Lemma 2.4, we have the proof
of Lemma 2.5. O
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3 Korovkin’s and weighted Korovkin’s type approximation properties
In order to obtain the convergence results for our constructed operators, we take g = g,
where (g,) be a sequence in the interval (0,1) so that

lim g,=1 and lim =0. (3.1)

n—00 n—00 [n]qn

We obtain the Korovkin’s type approximation properties for our constructed operators
I_(n,q('; ), I(;’q(‘; -) defined by (2.5) and (2.7), respectively.

Theorem 3.1 Let (q,) be a sequence satisfying (3.1) and K, (-;-) be the operator given
by (2.5). Then, for each nondecreasing f € C,[0,00), we have

lim I_(n,qn (f;x) =f(x)
n—00

1
[z}qn [”]qn ’

uniformly with respect to x € | a) provided y > 2 and a > ] L

an (g ”
Proof The proof is based on the well known Korovkin’s theorem regarding the conver-
gence of a sequence of linear and positive operators; so, it is enough to prove the condi-
tions

lim I_(,,,qn (e;;x) = e;(x) fori=0,1,2.

n—00

From Lemma 2.4 and (3.1), the result follows. O

Theorem 3.2 Let (q,) be a sequence satisfying (3.1) and K;f,qn(q -) be the operator given
by (2.7). Then, for each nondecreasing f € C, [0, 00), we have

lim K;qn (f;%) =f(x)

n—00

uniformly with respect to x € [——==———, b provided y > 2 and b > ——-—.

[S]Qn [”]qn [S]Qn [”]qn

The weighted space of the functions which are defined on the positive semi axis R* =
[0, 00) is addressed as follows:

Let P,(R*) be the set of all functions f satisfying the condition |f(x)| < M/ p(x), where
x € R* and My is a constant depending on f. Introduce

Q,(R*) =P, (R*) N C[0, o),

Qi (RY) = {f :f € Q,(R*) and xlirgo% =k (constant)},

where p(x) = 1 +x? is a weight function. These spaces are endowed with the norm

[f @)l

xel0,00) O (X)

[TAIPES
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Theorem 3.3 Let (q,) be a sequence satisfying (3.1) and K, 4,(-;-) be the operator defined
by (2.2). Then, for each function f € Q’; (R*), we have

Tim [ 511, = 0.

Proof Using the Korovkin-type theorem on weighted approximations in [25], we see that

it is sufficient to verify the following three conditions:
nli)rgo [ Kongn (€:(2)s %) = ei(x)”p =0, i=0,1,2. (3.2)

Since K, 4, (eo(£);x) =1, (3.2) holds for i = 0.
Using Lemma 2.3, we have

| King (e1(2); %) — ex(%)]

”Kn,qn (61 (t);x) —€ (x) ”p

x€[0,00) 1+a2
1 2x _
| BTy * Ty~ !
= sup 5
x€[0,00) 1+x

< ! 1 ( 2 1) x
<——— sup ——+|-—=——-1) sup
[Z]qn [n]qn x€[0,00) 1+x2 [Z]qn x€[0,00) 1+a2

(i)
2]y, [nlg, (2]g, ,

which implies that (3.2) holds for i =1 as #n — oo. Similarly, we can write

|Kin,q, (€2(2); %) — €2(x)]|
x€[0,00) 1+ xz

“Kn,qn (eZ(t);x) —€ (JC) || P

1 3x
B o, * Bl

32 | _ 2
(1+[1+2u]qn)+[3]qn x

< sup
x€[0,00) 1+a?

1 31+ [1+2uly,)
< ——— sup + sup
[3]q,, [n];n x€[0,00) 1+a2 [3]qn [n]qn x€[0,00) 1+a?

(@ 1) o
+(—=——-1) sup
[3]qn x€[0,00) 1+a?
1 31+[1+2 3
( + [ + M]qn) + <[ 1>,

< + —
- [B]qn [Vl];n [B]LM [n]qﬂ S]qn

which implies that

nli>ngo||1<n,51n (ez(t);x) —e2(x) ”p =0. -

Theorem 3.4 Let K, (f;x) be the operator defined by (2.5). Then, for each function f €
Q’; (R*), we have

Jim [ K, (fi6) - f]], = 0.
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Proof In order to prove this theorem it is sufficient to verify (3.2). Since

I_(,,,qn (eo(t);x) =1, K, (el(t);x) =X,
we can easily see that (3.2) holds for i = 0,1. By using Lemma 2.4, we have

”I_(n,qn (eZ(t);x) —€ (x) “p
|I_<n,qn (ez(t);x) —ex(x)|

= sup
x€[0,00) 1+a2
1 1 3 3[2]g,, 31213, 2 .2

3 B, (z —30+2uly,)+ 3By, 1y, E’n]qn 1+2u]g,x+ 4[3]; X —x
- x€[0,00) 1+ xz
<1 (1 31+ 2] )
S\ s+ 2y, ) sup

[3] qn [n];n 4 2 1 x€[0,00) 1+x2

3[2 x 3[2]2 P
+&[1+2M]qn sup 3 +( in —1) S —
2[3]qn [I’l]qn x€[0,00) l+x 4[3]% x€[0,00) 1+x

1 1 3 3[2],, 3[215,
= Bl 0k, (5-30+20) 2Bl i, et (4[31% 1)

which implies that
nli>rlgo||1_<n,4n (ez(t);x) —e2(x) ”p =0.

4 Rate of convergence

Page 12 of 18

In this section we compute rate of convergence of the constructed operators in terms of

the modulus of continuity and the class of Lipschitz functions:

Let f € Cg[0, 00), the space of all bounded and continuous functions on [0, 00). Then,

for any 8 > 0, x > 0 the modulus of continuity is denoted by w(f, §) and is defined as

off,)= s |fO-f@)].

[t-x|<8, te[0,00)

Also,

I (6) - )] 5w(f,8)<1+ 't;x').

If f(x) is uniformly continuous on [0, c0) then it is necessary and sufficient that
lim w(f,8) = 0.
§—0 (f )

In order to obtain the convergence result we use the following lemma.

Lemma 4.1 ([20]) Let0<g<1anda € [0,bq], b >0. The inequality

/ﬂb|t—x|dqt§ (/ah(t—x)qut>é</ab d,,t)é

is satisfied.

(4.1)
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Theorem 4.2 Let (g,) be a sequence satisfying (3.1). For the operator K, 4, given by (2.2),
for all nondecreasing f € Cp[0,00), 0 < x < —

1-q;

and n € N, we have

|I(n,qn (f; x) _f(x)}
< {1
1 3 2 3 4
* \/ 3l,, e < 3, 0+ e 2da) - @)x + U, ( Bl 2, 1>x2}

1
e <f, [n]qn ) ’

where w(f, ) is the modulus of continuity of the function f € Cg|0, 00) defined in (4.1).

Proof Let p > %, n € N, nondecreasing f € Cg[0,00), § >0, and 0 < x < #. Applying
linearity and monotonicity of K, 4, and using (4.2), we get

| K g (f5%) = f ()]

;x)fa)(f,8)(1+ ;

= Ko (F () = f(2);%) | < Ko, ([f(8) = f ()

[k+1+2u€k]qn
[n] o ([n]g, %) @
qn n qn It—xldqnt

(Ml ) 5 Vi (05 Jm2s0is

5w(f,8)<1+%

= ©lk200gn o q gy = K200

Using Lemma 4.1, with g = , we have
[nlgy [nlgn

o k
|Kn,qn (f;x) —f(x)i < o(f, ) {1 + l [nlg, ([m]g,%)

8 euyqn([”]qnq%, oo Yidn (k)gy;

[k+142068 1 1 [k+1+2u6 g, 1
T P dgt) T e)
X - X .
anlk+2u6) g, an anlke2ublg, "
[nlgn [ngy

Using the Holder inequality for sums, we get

’I(ann (f;x) —f(x)}

1

00 [k+1+2u6; 1, 3
1 ko T g,
e/’-’qn

x X
1) ([n]qn q_n) =0 y/t,qn(k)qn W

1

00 X [k+l+2/4(-}k]qn 3
X( (1], 5 (1], %) /T% dqnt)}

el’-v‘]n([n]fh qi,,) k=0 ylb‘]n(k)q]}; %

< a)(f,S){l N %(Kn,qn (= 2%0)E x (K, (1)) }

< w(fﬂ”{l " %(Kn,qn ((f—x)z;x))% }

1

Choosing § = 5, = N

and using (5) of Lemma 2.3, we have the result. a
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Theorem 4.3 Let (q,) be a sequence satisfying (3. 1) For the operator K, . iven by (2.5),

for all nondecreasing f € Cg[0, 00), Dby =%<1 q” and n € N, we have

[ ]qn

|I_(n,qn (f; x) _f(x)i
< {1
1 /1 3 3121, (1], 31217,
+ \/@(4 2[ + M]qn) 72[3] (1 +2ulg,x + [n]3, <4[3]qn - 1)x2}
1
) w<f’ (1], )

where w(f,-) is the modulus of continuity of the function f € Cg[0, 00) defined in (4.1).

Proof Using (5) of Lemma 2.4 and following similar steps to Theorem 4.2, we have the
proof of Theorem 4.3. d

Now we claim that the error estimation in Theorem 4.3 is better than that of Theo-
rem 4.2 provided f € Cz[0, 00) and
For

Tgn g [],, SX<ig

1 1 1
By, S*<tg k>3 and # € N it is guaranteed that

1 ./1.3 3[2lg, [, ) (31215, 2
3, (4 D) 1+ 2/L]qn> + 23], 1+2u]g,x+ [n]%1 (4[3]qn - 1>x

1 3 2
< @ +[ny, (@(1 +[1+2ul,,) - @>x
3 4
+ [Vl];n <@ - @ + 1)962. (43)
If we put 1 = 0 in (4.3) then we have
L l § 3[2]%1 [n]‘In 2 3[2]3;1 2
o (373) e (e 1)
1 6 2 ,( 3 4 )
<+ (g e v ()

Again, if we put g, = 1 then clearly

Now, we can also compute the rate of convergence of the our constructed operators in
terms of the element of the usual Lipschitz class Lip,,(v):
Let f € Cg[0,00), M >0, and 0 < v < 1. The class of Lip,,(v) is defined as

Lipy(v) = {f: [f(©1) = f(&)| =Mt - &21", 61,82 € [0,00) ). (4.4)
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Theorem 4.4 Let (q,) be a sequence satisfying (3.1) and K, ,, be the operator defined
in (2.2). Then, for each f € Lip,,(v) (M >0, 0 < v <1) satisfying (4.4), we have

Ko ) @) < M(8,) ", (4.5)
where 8,(x) = Ky,4, ((e1 — eox)%; x).

Proof We prove this theorem by using (4.4) and Hoélder’s inequality

Ko (F3%) = f )] = |Kingy () = f(0);6) | < Ko, ([£(8) = £

< MKy, (It —x|";%).

;%)

Therefore,
[k+1+2u6; gy
[ — (g% [ Tl
Kig, (f;2)—fx)| <M L 1 |t —x|"d, t
| 1 (f f } eu,qn([n]qn qx_n) g Yivan (k)qﬁ qin[kfr:];jk]qn
v 2-v
-M [n]g, i( ([n]gu)* )2< ([n]gu)* ) 2
eﬂ,qn([”]qnqin) oo \Yian (k) Vian KT

[k+1+2u6; gy
[n]qn
|t —x|"dg,t
qanlk+2u0;)qn

mqn

Tk+1+200; 1g,0 2y

00 k T Kn 2
n nig X [n]

< M< [ ]qn ([ ]6111 ) qn qnt>

enan (Mg 3,) 155 Y R e B

0 [k+1+2u6 gy %
y [n]g, ([n]qﬂx)k 0lan - xld, ¢
enn (Mo, ) k) anlks2uilgy 0N Pan
Wdn qn an’ k=0 y/’« qn qu ﬁ

< M(Kyg, (1;%)) 2 (Kngler — e0x)%x))?

< M(Kyq, ((e1 — e0x)%x)) 7

Choosing §,(x) = K4, ((e1 — eox)?; %), the proof is completed O

Theorem 4.5 Let (q,) be a sequence satisfying (3.1) and I_(y,,qn be the operator defined
in (2.5). Then, for each f € Lip,,(v) (M >0, 0 < v <1) satisfying (4.4), we have

| Ry (%) —F(0)| < M(5,(x)) 7,

(4.6)
where 8,(x) = Ky, ((e1 — e9x)%; %)

Proof Taking into account (5) of Lemma 2.4 and following similar steps to Theorem 4.4
we have the proof of Theorem 4.5. So we omit the details of the proof.

O
From (4.3), it follows that the above claim also holds for Theorem 4.5, i.e., the rate of

convergence of the operators K, ;, by means of an element of the Lipschitz class functions
is better than the ordinary error estimation given by (4.5), where x >

1
= Rlgnlnlgn”
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5 A Voronovskaja-type theorem
Now, we prove the Voronovskaja-type result for our modified Dunkl analog of g-Szész-
Mirakjan-Kantorovich operators K, .

Lemma5.1 Let(q,)bea sequence satisfying (3.1) and f(,,,qn be the operator defined in (2.5).

Therefore for every x > Bl il there holds,
lim [n]qnl_@,,qn (e1 —egx;x) = 0, (5.1)
(1-2u)x < lim [n]qnl_@,qn ((el - eox)z;x) <(@+2u)x. (5.2)

Theorem 5.2 Let q = g, satisfies (3.1) and f(,,'qn be the operator defined in (2.5). For any
feC,[0,00) such that f',f" € C,[0,00), y > 2, we have

(1 +2p)xf" (%),

l\JI»—*

im [y, (Kig, (i) —f () <

uniformly with respect to x € [m,a] (a > m).

Proof Letf,f',f" € C,[0,00) and x > . By the Taylor formula, we write

1
(219 [)gy

@) =f(x) + (& —x)f"(x) + %(t —x)*f" (%) + (t — x)*r(t; x), (5.3)

where r(£;x) is the Peano form of the remainder r(-;x) € C, [0,00) and lim,_,, r(;x) = 0.
Applying K, ,, to (5.3), we obtain

Ko, (f ) %) = f () = f' (%) K q,, ((e1 — €0%); %) + %f//(x)l_(n,qn ((er - eox)*; )
+ I_(y,,qn (r(t; x)(e; — eox)2;x)‘

By the Cauchy-Schwartz inequality, we have

K g, (r(52)( \/an \/an = x)4x). (5.4)

Let n(;%) := r*(;x). In this case observe that n(x;x) = 0 and n(;;x) € C,[0,00). Then it
follows from Theorem 3.1 that

lim K,g, (7 (52);) = lim Ky, (n(50);2) = n(x2) = 0 (5.5)
uniformly with respect tox € [[2]4, a]. Now consider (5.4), (5.5) and using Lemma 5.1,
we have

nliglo[”l]anmqn (f(6);%) ~f (%)

=f'(%) lim [n]y,Kq, ((e1 — eox); %) + éf (@) lim [1], Kig, ((e1 — e0x)*; )

n—>oo
1

= 30+ 20" (x)

This completes the proof. d
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Remark The further properties of the operators such as convergence properties via
summability methods (see, for example, [2, 3, 10]) can be studied.

Conclusion In this paper we have constructed and investigated a Dunkl analog of the g-
Szasz-Mirakjan-Kantorovich operators which preserves the test functions e; and e;. We
have showed that our modified operators have a better error estimation than the classical
ones. We have also obtained some approximation results with the help of the well-known
Korovkin theorem and the weighted Korovkin theorem for these operators. Furthermore,
we studied convergence properties in terms of the modulus of continuity and the class of
Lipschitz functions.
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