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Abstract
Conjugate gradient methods play an important role in many fields of application due
to their simplicity, low memory requirements, and global convergence properties. In
this paper, we propose an efficient three-term conjugate gradient method by
utilizing the DFP update for the inverse Hessian approximation which satisfies both
the sufficient descent and the conjugacy conditions. The basic philosophy is that the
DFP update is restarted with a multiple of the identity matrix in every iteration. An
acceleration scheme is incorporated in the proposed method to enhance the
reduction in function value. Numerical results from an implementation of the
proposed method on some standard unconstrained optimization problem show that
the proposed method is promising and exhibits a superior numerical performance in
comparison with other well-known conjugate gradient methods.

Keywords: unconstrained optimization; nonlinear conjugate gradient method;
quasi-Newton methods

1 Introduction
In this paper, we are interested in solving nonlinear large scale unconstrained optimization
problems of the form

min f (x), x ∈ �n, ()

where f : �n → � is an at least twice continuously differentiable function. A nonlinear
conjugate gradient method is an iterative scheme that generates a sequence {xk} of an
approximation to the solution of (), using the recurrence

xk+ = xk + αkdk , k = , , , , . . . , ()

where αk >  is the steplength determined by a line search strategy which either mini-
mizes the function or reduces it sufficiently along the search direction and dk is the search
direction defined by

dk =

⎧
⎨

⎩

–gk ; k = ,

–gk + βkdk–; k ≥ ,
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where gk is the gradient of f at a point xk and βk is a scalar known as the conjugate gradient
parameter. For example, Fletcher and Reeves (FR) [], Polak-Ribiere-Polyak (PRP) [], Liu
and Storey (LS) [], Hestenes and Stiefel (HS) [], Dai and Yuan (DY) [] and Fletcher (CD)
[] used an update parameter, respectively, given by

βFR
k =

gT
k gk

gT
k–gk–

, βPRP
k =

gT
k yk–

gT
k–gk–

, βLS
k =

–gT
k yk–

dT
k–gk–

,

βHS
k =

gT
k yk–

dT
k–yk–

, βDY
k =

gT
k gk

dT
k–yk–

, βCD
k = –

gT
k gk

dT
k–yk–

,

where yk– = gk – gk–. If the objective function is quadratic, with an exact line search the
performances of these methods are equivalent. For a nonlinear objective function different
βk lead to a different performance in practice. Over the years, after the practical conver-
gence result of Al-Baali [] and later of Gilbert and Nocedal [] attention of researchers has
been on developing on conjugate gradient methods that possesses the sufficient descent
condition

gT
k dk ≤ –c‖gk‖, ()

for some constant c > . For instance the CG-DESCENT of Hager and Zhang []

βHZ
k = max

{
βN

k ,ηk
}

, ()

where

βN
k =


dT

k–yk–

(

yk– – dk–
‖yk–‖

dT
k–yk–

)T

gk

and

ηk =
–

‖dk–‖min{‖gk–‖,η} ,

which is based on the modification of HS method. Another important class of conju-
gate gradient methods is the so-called three-term conjugate gradient method in which
the search direction is determined as a linear combination of gk , sk , and yk as

dk = –gk – τsk + τyk , ()

where τ and τ are scalar. Among the generated three-term conjugate gradient methods in
the literature we have the three-term conjugate methods proposed by Zhang et al. [, ]
by considering a descent modified PRP and also a descent modified HS conjugate gradient
method as

dk+ = –gk+ +
(

gT
k+yk

gT
k gk

)

dk –
(

gT
k+dk

gT
k gk

)

yk ,
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and

dk+ = –gk+ +
(

gT
k+yk

sT
k yk

)

sk –
(

gT
k+sk

sT
k yk

)

yk ,

where sk = xk+ – xk . An attractive property of these methods is that at each iteration, the
search direction satisfies the descent condition, namely gT

k dk = –c‖gk‖ for some constant
c > . In the same manner, Andrei [] considers the development of a three-term conju-
gate gradient method from the BFGS updating scheme of the inverse Hessian approxima-
tion restarted as an identity matrix at every iteration where the search direction is given
by

dk+ = –gk+ +
yT

k gk+

yT
k sk

–
(

y – 
‖yk‖

yT
k sk

)T sT
k gk+

yT
k sk

sk –
(

sT
k gk+

yT
k sk

)

yk .

An interesting feature of this method is that both the sufficient and the conjugacy condi-
tions are satisfied and we have global convergence for a uniformly convex function. Mo-
tivated by the good performance of the three-term conjugate gradient method, we are
interested in developing a three-term conjugate gradient method which satisfies both the
sufficient descent condition, the conjugacy condition, and global convergence. The re-
maining part of this paper is structured as follows: Section  deals with the derivation of
the proposed method. In Section , we present the global convergence properties. The
numerical results and discussion are reported in Section . Finally, a concluding remark
is given in the last section.

2 Conjugate gradient method via memoryless quasi-Newton method
In this section, we describe the proposed method which would satisfied both the sufficient
descent and the conjugacy conditions. Let us consider the DFP method, which is a quasi-
Newton method belonging to the Broyden class []. The search direction in the quasi-
Newton methods is given by

dk = –Hkgk , ()

where Hk is the inverse Hessian approximation updated by the Broyden class. This class
consists of several updating schemes, the most famous being the BFGS and the DFP; if Hk

is updated by the DFP then

Hk+ = Hk +
sksT

k

sT
k yk

–
HkykyT

k Hk

yT
k Hkyk

, ()

such that the secant equation

Hk+yk = sk ()

is satisfied. This method is also known as a variable metric method, developed by Davidon
[], Fletcher and Powell []. A remarkable property of this method is that it is a conju-
gate direction method and one of the best quasi-Newton methods that encompassed the
advantage of both the Newton method and the steepest descent method, while avoid-
ing their shortcomings []. Memoryless quasi-Newton methods are other techniques for
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solving (), where at every step the inverse Hessian approximation is updated as an iden-
tity matrix. Thus, the search direction can be determined without requiring the storage of
any matrix. It was proposed by Shanno [] and Perry []. The classical conjugate gradi-
ent methods PRP [] and FR [] can be seen as memoryless BFGS (see Shanno []). We
proposed our three-term conjugate gradient method by incorporating the DFP updating
scheme of the inverse Hessian approximation (), within the frame of a memoryless quasi-
Newton method where at each iteration the inverse Hessian approximation is restarted as
a multiple of the identity matrix with a positive scaling parameter as

Qk+ = μkI +
sksT

k

sT
k yk

– μk
ykyT

k

yT
k yk

, ()

and thus, the search direction is given by

dk+ = –Qk+gk+ = –μkgk+ –
sT

k gk+

sT
k yk

sk + μk
yT

k gk+

yT
k yk

yk . ()

Various strategies can be considered in deriving the scaling parameter μk ; we prefer the
following which is due to Wolkowicz []:

μk =
sT

k sk

yT
k sk

–

√(
sT

k sk

yT
k sk

)

–
sT

k sk

yT
k yk

. ()

The new search direction is then given by

dk+ = –μkgk+ – ϕsk + ϕyk , ()

where

ϕ =
sT

k gk+

sT
k yk

()

and

ϕ = μk
yT

k gk+

yT
k yk

. ()

We present the algorithm of the proposed method as follows.

2.1 Algorithm (STCG)
In this section, we present the algorithm of the proposed method. It has been reported that
the line search in conjugate gradient method performs more function evaluations so as to
obtain a desirable steplength αk due to poor scaling of the search direction (see Nocedal
[]). As a consequence, we incorporate the acceleration scheme proposed by Andrei [],
so as to have some reduction in the function evaluations. The new approximation to the
minimum instead of () is determined by

xk+ = xk + αkϑkdk , ()

where ϑk = –rk
qk

, rk = αkgT
k dk , qk = –αk(gk – gz)dk = –αkykdk , gz = ∇f (z) and z = xk + αkdk .
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Algorithm 

Step . Select an initial point xo and determine f (xo) and g(xo). Set do = –go and k = .
Step . Test the stopping criterion ‖gk‖ ≤ ε, if satisfied stop. Else go to Step .
Step . Determine the steplength αk as follows:

Given δ ∈ (, ) and p, p, with  < p < p < .
(i) Set α = .

(ii) Test the relation

f (x + αdk) – f (xk) ≤ αδgT
k dk . ()

(iii) If () is satisfied, then αk = α and go to Step  else choose a new
α ∈ [pα, pα] and go to (ii).

Step . Determine z = xk + αkdk , compute gz = ∇f (z) and yk = gk – gz .
Step . Determine rk = αkgT

k dk and qk = –αkyT
k dk .

Step . If qk 	= , then ϑk = rk
qk

, xk+ = xk + ϑkαkdk else xk+ = xk + αkdk .
Step . Determine the search direction dk+ by () where μk , ϕ, and ϕ are computed by

(), (), and (), respectively.
Step . Set k := k +  and go to Step .

3 Convergence analysis
In this section, we analyze the global convergence of the propose method, where we as-
sume that gk 	=  for all k ≥  else a stationary point is obtained. First of all, we show that
the search direction satisfies the sufficient descent and the conjugacy conditions. In order
to present the results, the following assumptions are needed.

Assumption  The objective function f is convex and the gradient g is Lipschitz contin-
uous on the level set

K =
{

x ∈ �n|f (x) ≤ f (x)
}

. ()

Then there exist some positive constants ψ, ψ, and L such that

∥
∥g(x) – g(y)

∥
∥ ≤ L‖x – y‖ ()

and

ψ‖z‖ ≤ zT G(x)z ≤ ψ‖z‖, ()

for all z ∈ Rn and x, y ∈ K where G(x) is the Hessian matrix of f .
Under Assumption , we can easily deduce that

ψ‖sk‖ ≤ sT
k yk ≤ ψ‖sk‖, ()

where sT
k yk = sT

k Ḡsk and Ḡ =
∫ 

 G(xk + λsk)sk dλ. We begin by showing that the updating
matrix () is positive definite.
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Lemma . Suppose that Assumption  holds; then the matrix () is positive definite.

Proof In order to show that the matrix () is positive definite we need to show that μk is
well defined and bounded. First, by the Cauchy-Schwarz inequality we have

(
sT

k sk

yT
k sk

)

–
sT

k sk

yT
k yk

=
(sT

k sk)((sT
k sk)(yT

k yk) – (yT
k sk))

(yT
k sk)(yT

k yk)

≥ ,

and this implies that the scaling parameter μk is well defined. It follows that

 < μk =
sT

k sk

yT
k sk

–
((

sT
k sk

yT
k sk

)

–
sT

k sk

yT
k yk

) 


≤ sT
k sk

yT
k sk

≤ ‖sk‖

ψ
 ‖sk‖ =


ψ


.

When the scaling parameter is positive and bounded above, then for any non-zero vector
p ∈ �n we obtain

pT Qk+p = μkpT pI +
pT sksT

k p
sT

k yk
– μk

pT ykyT
k p

yT
k yk

= μk

[
(pT p)(yT

k yk) – pT ykyT
k p

yT
k yk

]

+
(pT sk)

sT
k yk

.

By the Cauchy-Schwarz inequality and (), we have (pT p)(yT
k yk) – (pT yk)(yT

k p) ≥  and
yT

k sk > , which implies that the matrix () is positive definite ∀k ≥ .
Observe also that

tr(Qk+) = tr(μkI) +
sT

k sk

sT
k yk

– μk
yT

k yk

yT
k yk

= (n – )μk +
sT

k sk

sT
k yk

≤ n – 
ψ


+

‖sk‖

ψ‖sk‖

=
ψ + n – 

ψ


. ()

Now,

 <


ψ
≤

(
sT

k sk

yT
k sk

)

≤ tr(Qk+) ≤ ψ + n – 
ψ


. ()

Thus, tr(Qk+) is bounded. On the other hand, by the Sherman-Morrison House-Holder
formula (Q–

k+ is actually the memoryless updating matrix updated from 
μk

I using the
direct DFP formula), we can obtain

Q–
k+ =


μk

I –


μk

yksT
k + skyT

k

sT
k yk

+
(

 +


μk

sT
k sk

sT
k yk

)
ykyT

k

sT
k yk

. ()
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We can also establish the boundedness of tr(Q–
k+) as

tr
(
Q–

k+
)

= tr

(


μk
I
)

–

μk

sT
k yk

sT
k yk

+
‖yk‖

sT
k yk

+


μk

‖sk‖‖yk‖

(sT
k yk)

≤ n
μk

–

μk

+
L‖sk‖

ψ‖sk‖ +


μk

L‖sk‖

ψ
 ‖sk‖

≤ (n – )
ψ


+

L

ψ
+

L

ψ


= ω, ()

where ω = (n–)
ψ


+ L

ψ
+ L

ψ


> , for n ≥ . �

Now, we shall state the sufficient descent property of the proposed search direction in
the following lemma.

Lemma . Suppose that Assumption  holds on the objective function f then the search
direction () satisfies the sufficient descent condition gT

k+dk+ ≤ –c‖gk+‖.

Proof Since –gT
k+dk+ ≥ 

tr(Q–
k+)‖gk+‖ (see for example Leong [] and Babaie-Kafaki

[]), then by using () we have

–gT
k+dk+ ≥ c‖gk+‖, ()

where c = min{, 
ω
}. Thus,

gT
k+dk+ ≤ –c‖gk+‖. ()

Dai-Liao [] extended the classical conjugacy condition from yT
k dk+ =  to

yT
k dk+ = –t

(
sT

k gk+
)
, ()

where t ≥ . Thus, we can also show that our proposed method satisfies the above conju-
gacy condition. �

Lemma . Suppose that Assumption  holds, then the search direction () satisfies the
conjugacy condition ().

Proof By (), we obtain

yT
k dk+ = –μyT

k gk+ –
sT

k gk+

sT
k yk

yT
k sk + μ

yT
k gk+

yT
k yk

yT
k yk

= –μyT
k gk+ –

sT
k gk+

sT
k yk

sT
k yk + μ

yT
k gk+

yT
k yk

yT
k yk

= –μyT
k gk+ – sT

k gk+ + μyT
k gk+

= –sT
k gk+,
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where the result holds for t = . The following lemma gives the boundedness of the search
direction. �

Lemma . Suppose that Assumption  holds then there exists a constant p >  such that
‖dk+‖ ≤ P‖gk+‖, where dk+ is defined by ().

Proof A direct result of () and the boundedness of tr(Qk+) gives

‖dk+‖ = ‖Qk+gk+‖
≤ tr(Qk+)‖gk+‖
≤ P‖gk+‖, ()

where P = ( ψ+n–
ψ


). �

In order to establish the convergence result, we give the following lemma.

Lemma . Suppose that Assumption  holds. Then there exist some positive constants γ

and γ such that for any steplength αk generated by Step  of Algorithm  will satisfy either
of the following:

f (xk + αkdk) – f (xk) ≤ –γ(gT
k dk)

‖dk‖ , ()

or

f (xk + αkdk) – f (xk) ≤ γgT
k dk . ()

Proof Suppose that () is satisfied with αk = , then

f (xk + αkdk) – f (xk) ≤ δgT
k dk , ()

implies that () is satisfied with γ = δ.
Suppose αk < , and that () is not satisfied. Then for a steplength α ≤ αk

p
we have

f (xk + αdk) – f (xk) > δαgT
k dk . ()

Now, by the mean-value theorem there exists a scalar τk ∈ (, ) such that

f (xk + αdk) – f (xk) = αg(xk + ταdk)T dk . ()

From () we have

(δ – )αgT
k dk < α

(
g(xk + τkαdk) – gk

)T dk

= αyT
k dk

< L
(
α‖dk‖

),
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which implies

α ≥ –
( – δ)(gT

k dk)
L‖dk‖ . ()

Now,

αk ≥ pα ≥ –
( – δ)(gT

k dk)
L‖dk‖ . ()

Substituting () in () we have the following:

f (xk + αkdk) – f (xk) ≤ –
δ( – δ)(gT

k dk)
L‖dk‖

(
gT

k dk
)

=
–γ(gT

k dk)

‖dk‖ ,

where

γ =
δ( – δ)

L
.

Therefore

f (xk + αkdk) – f (xk) ≤ –γ(gT
k dk)

‖dk‖ . ()
�

Theorem . Suppose that Assumption  holds. Then Algorithm  generates a sequence of
approximation {xk} such that

lim
k→∞

‖gk‖ = . ()

Proof As a direct consequence of Lemma ., the sufficient descent property (), and the
boundedness of the search direction () we have

f (xk + αkdk) – f (xk) ≤ –γ(gT
k dk)

‖dk‖

≤ –γc‖gk‖

P‖gk‖

=
–γc

P ‖gk‖ ()

or

f (xk + αkdk) – f (xk) ≤ γgT
k dk

≤ –γc‖gk‖. ()
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Hence, in either case, there exists a positive constant γ such that

f (xk + αkdk) – f (xk) ≤ –γ‖gk‖. ()

Since the steplength αk generated by Algorithm  is bounded away from zero, () and
() imply that f (xk) is a non-increasing sequence. Thus, by the boundedness of f (xk) we
have

 = lim
k→∞

(
f (xk+) – f (xk)

) ≤ –γ lim
k→∞

‖gk‖,

and as a result

lim
k→∞

‖gk‖ = . ()
�

4 Numerical results
In this section, we present the results obtained from the numerical experiment of our
proposed method in comparison with the CG-DESCENT (CG-DESC) [], three-term
Hestenes-Stiefel (TTHS) [], three-term Polak-Ribiere-Polyak (TTPRP) [], and TTCG
[] methods. We evaluate the performance of these methods based on iterations and
function evaluations. By considering some standard unconstrained optimization test
problems obtained from Andrei [], we conducted ten numerical experiments for each
test function with the size of the variable ranging from  ≤ n ≤ ,. The algo-
rithms were implemented using Matlab subroutine programming on a PC (Intel(R)
core(TM) Duo E . GHz  GB) -bit Operating system. The program termi-
nates whenever ‖gk‖ < ε where ε = – or a method failed to converges within ,
iterations. The latter requirement is represented by the symbol ‘-’. An Armijo-type line
search suggested by Byrd and Nocedal [] was used for all the methods under consid-
eration. Table  in the appendices gives the performance of the algorithms in terms of
iterations and function evaluations. TTPRP solves % of the test problems, TTHS solves
% of the test problems, CG-DESCENT solves % of the test problems, and STCG
solves % of the test problems, whereas TTCG solves % of the test problems. The
performance of STCG over TTPRP is that TTPRP needs % and % more, on average,
in terms of the number of iterations and function evaluations, respectively, than STCG.
The improvement of STCG over TTHS is that STCG needs % and % less, on average,
in terms of number of iterations and function evaluations, respectively, than TTHS. The
improvement of STCG over CG-DESCENT algorithms is that CG-DESCENT needs %

and % more, on average, in terms of the number of iterations and function evaluations,
respectively, than STCG. Similarly, the improvement of STCG over TTCG is that STCG
needs % and % less, on average, in terms of the number of iterations and function
evaluations, respectively, than TTCG. In order to further examine the performance of
these methods, we employ the performance profile of Dolan and Moré []. Figures -
give the performance profile plots of these methods in terms of iterations and function
evaluations and the top curve corresponds to the method with the highest win which
indicates that the performance of the proposed method is highly encouraging and sub-
stantially outperforms any of the other methods considered.
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Figure 1 Performance profiles based on iterations.

Figure 2 Performance profiles based on function evaluations.

5 Conclusion
We have presented a new three-term conjugate gradient method for solving nonlinear
large scale unconstrained optimization problems by considering a modification of the
quasi-Newton memoryless DFP update of the inverse Hessian approximation. A remark-
able property of the proposed method is that both the sufficient and the conjugacy condi-
tions are satisfied and the global convergence is established under some mild assumption.
The numerical results show that the proposed method is promising and more efficient
than any of the other methods considered.
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Appendix

Table 1 Numerical results of TTPRP, TTHS, CG-DESCENT, STCG, and TTCG

Test functions Dimension TTPRP TTHS CG-DESC. STCG TTCG

NI NF NI NF NI NF NI NF NI NF

Extended BD1 70 27 73 39 142 28 102 19 31 25 133
180 28 77 50 207 28 102 19 31 26 157
863 31 85 51 194 31 124 20 33 26 157

1,362 31 85 65 259 31 124 20 33 26 157
6,500 31 85 37 144 31 124 20 33 28 164
11,400 31 85 52 216 31 124 20 33 28 164
17,000 31 85 55 215 31 124 20 33 28 164
33,200 32 88 59 249 31 124 21 34 28 164
42,250 32 88 56 205 31 124 - - 28 164
45,000 32 88 58 220 31 124 22 37 28 164

Extended Rosenbrock 70 44 227 23 156 55 590 125 156 87 828
180 52 272 40 264 42 349 119 186 129 1,243
863 55 285 41 290 33 269 100 136 115 1,098

1,362 60 315 46 323 28 230 91 142 - -
6,500 62 326 22 143 27 220 103 147 - -
11,400 74 401 23 159 27 209 116 191 - -
17,000 82 436 22 143 30 236 111 141 - -
33,200 62 322 39 240 28 213 83 125 - -
42,250 67 355 21 155 29 223 133 157 - -
45,000 75 393 22 158 22 174 134 157 - -

Diagonal 7 70 11 22 4 40 4 52 3 4 6 18
180 11 22 4 40 4 52 3 4 6 18
863 12 24 4 40 4 52 3 4 6 18

1,362 12 24 4 40 4 52 3 4 6 18
6,500 12 24 4 40 4 52 4 5 6 18
11,400 12 24 4 40 4 52 4 5 6 18
17,000 34 53 4 40 4 52 4 5 6 18
33,200 - - 4 40 4 52 4 5 6 18
42,250 - - 4 40 4 52 4 5 6 18
45,000 - - 4 40 4 52 4 5 6 18

DENSCHNF 70 25 126 47 403 20 171 6 17 15 126
180 25 126 49 420 20 171 6 18 16 136
863 27 136 50 429 21 179 7 18 16 135

1,362 27 136 52 446 22 188 7 18 16 135
6,500 28 141 53 455 22 188 19 31 16 135
11,400 28 141 53 455 22 188 19 31 16 135
17,000 29 146 53 455 22 188 19 31 16 135
33,200 29 146 54 463 22 188 19 31 16 135
42,250 29 146 54 463 22 188 19 31 16 135
45,000 29 146 55 472 22 188 19 31 16 135

Extended Himmelblau 70 34 135 20 126 19 114 9 15 18 124
180 36 143 16 85 19 114 9 15 18 124
863 36 143 15 76 18 121 9 15 18 124

1,362 37 147 12 75 18 121 9 15 18 124
6,500 38 151 9 54 19 128 9 15 20 137
11,400 39 155 11 78 19 128 9 15 20 137
17,000 39 155 12 76 19 128 9 15 20 137
33,200 40 159 24 152 19 128 9 15 20 137
42,250 40 159 16 136 19 128 9 15 20 137
45,000 40 159 13 69 19 128 9 15 20 137
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Table 1 (Continued)

Test functions Dimension TTPRP TTHS CG-DESC. STCG TTCG

NI NF NI NF NI NF NI NF NI NF

DQDRTIC 70 5 5 5 24 5 36 - - 43 362
180 5 5 5 27 5 35 - - 46 391
863 5 5 5 31 5 35 - - 44 371

1,362 5 5 5 29 5 35 - - 46 395
6,500 5 5 5 28 5 35 - - 111 961
11,400 5 5 5 24 5 35 - - 60 516
17,000 5 5 5 33 5 35 - - 37 320
33,200 5 5 5 26 5 35 - - 59 516
42,250 5 5 5 29 5 35 - - 64 548
45,000 5 5 5 27 5 35 - - 55 462

HIMMELH 70 - - - - - - 7 7 23 80
180 - - - - - - 7 7 18 54
863 - - - - - - 7 7 23 70

1,362 - - - - - - 7 7 22 77
6,500 - - - - - - 7 7 23 83
11,400 - - - - - - 7 7 28 71
17,000 - - - - - - 7 7 22 65
33,200 - - - - - - 7 7 33 90
42,250 - - - - - - 7 7 29 89
45,000 - - - - - - 7 7 26 91

Extended BD2 70 30 96 19 73 9 37 13 23 36 237
180 31 100 22 87 9 37 13 23 39 254
863 34 110 11 50 10 43 13 23 41 264

1,362 34 110 11 44 10 43 13 23 43 276
6,500 35 114 12 40 10 40 13 23 42 272
11,400 36 118 25 66 10 43 13 23 43 273
17,000 36 118 18 70 10 43 13 23 36 231
33,200 37 122 10 45 10 48 13 23 39 246
42,250 37 122 17 71 10 38 13 23 37 237
45,000 37 122 9 39 10 38 13 23 37 236

Extended Maratos 70 25 135 23 60 26 86 37 103 109 934
180 25 143 24 63 26 86 37 103 107 895
863 27 143 24 63 26 86 38 104 102 871

1,362 27 147 33 82 - - 38 104 112 887
6,500 27 151 94 209 - - 38 104 121 1,034
11,400 120 308 110 246 - - 38 104 118 949
17,000 278 681 102 229 - - 38 104 119 1,004
33,200 - - 140 302 - - 38 104 96 814
42,250 - - 140 302 - - 38 104 105 867
45,000 - - 159 350 - - 38 104 92 787

NONDIA 70 8 52 - - 12 141 12 37 34 441
180 11 83 - - 14 170 18 27 - -
863 14 119 - - 23 337 68 77 - -

1,362 11 96 - - 26 389 32 41 - -
6,500 16 155 - - 1,029 1,555 77 90 - -
11,400 16 167 - - - - 161 185 - -
17,000 16 168 - - - - - - - -
33,200 16 168 - - - - - - - -
42,250 21 234 - - - - - - - -
45,000 23 247 - - - - - - - -
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Table 1 (Continued)

Test functions Dimension TTPRP TTHS CG-DESC. STCG TTCG

NI NF NI NF NI NF NI NF NI NF

DENSCHNB 70 25 50 30 82 6 13 5 6 13 29
180 25 50 27 76 6 13 5 6 14 31
863 27 54 28 67 6 13 6 7 14 31

1,362 27 54 30 73 6 13 6 7 14 31
6,500 28 56 23 55 6 13 6 7 14 31
11,400 28 56 34 86 6 13 6 7 14 31
17,000 29 58 31 76 6 13 6 7 14 31
33,200 29 58 31 83 6 13 6 7 14 31
42,250 29 58 38 93 6 13 6 7 14 31
45,000 29 58 29 79 6 13 6 7 14 31

EG2 70 31 102 12 37 35 180 19 59 - -
180 87 321 18 27 31 172 68 96 - -
863 - - 68 77 - - 25 100 - -

1,362 - - 32 41 - - - - - -
6,500 - - 77 90 - - 25 107 - -
11,400 - - - - - - - - - -
17,000 - - - - - - 89 361 - -
33,200 - - - - - - - - - -
42,250 - - - - - - - - - -
45,000 - - 92 158 - - 33 138 - -

Raydan 2 70 5 5 5 5 5 5 4 4 5 41
180 5 5 5 5 5 5 4 4 5 41
863 5 5 5 5 5 5 4 4 5 41

1,362 5 5 5 5 5 5 4 4 5 41
6,500 6 6 6 6 6 6 4 4 5 41
11,400 6 6 6 6 6 6 4 4 5 41
17,000 6 6 6 6 6 6 4 4 5 41
33,200 6 6 6 6 6 6 4 4 5 41
42,250 6 6 6 6 6 6 4 4 5 41
45,000 6 6 6 6 6 6 4 4 5 41

ENGVAL1 70 49 137 30 139 29 181 53 60 54 375
180 48 154 28 137 30 157 52 61 50 413
863 67 273 29 145 31 135 49 88 55 402

1,362 81 325 33 159 30 134 49 98 57 525
6,500 283 1,486 32 139 23 156 50 100 39 263
11,400 100 461 29 173 28 192 51 97 40 271
17,000 - - 23 132 27 175 52 131 43 302
33,200 - - 30 164 29 244 52 94 54 373
42,250 - - 25 160 29 244 52 91 44 318
45,000 - - 27 119 29 244 51 104 39 223

HIMMELBG 70 5 5 5 5 5 5 4 4 4 4
180 5 5 5 5 5 5 5 5 5 5
863 6 6 6 6 6 6 5 5 5 5

1,362 6 6 6 6 6 6 5 5 6 6
6,500 7 7 7 7 7 7 6 6 6 6
11,400 7 7 7 7 7 7 6 6 6 6
17,000 8 8 8 8 8 8 6 6 6 6
33,200 8 8 8 8 8 8 7 7 7 7
42,250 8 8 8 8 8 8 7 7 7 7
45,000 8 8 8 8 8 8 7 7 7 7
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Table 1 (Continued)

Test functions Dimension TTPRP TTHS CG-DESC. STCG TTCG

NI NF NI NF NI NF NI NF NI NF

Diagonal 5 70 4 4 4 4 4 4 4 4 3 21
180 4 4 4 4 4 4 4 4 3 21
863 4 4 4 4 4 4 4 4 3 21

1,362 4 4 4 4 4 4 4 4 3 21
6,500 4 4 4 4 4 4 4 4 3 21
11,400 4 4 4 4 4 4 4 4 4 22
17,000 4 4 4 4 4 4 4 4 4 22
33,200 4 4 4 4 4 4 4 4 4 22
42,250 4 4 4 4 4 4 4 4 4 22
45,000 4 4 4 4 4 4 4 4 4 22

Extended Tridigonal 1 70 343 465 19 24 19 24 22 40 17 51
180 - - 21 24 20 24 22 40 20 51
863 - - 21 25 21 26 28 46 20 61

1,362 - - 22 29 21 26 28 46 20 61
6,500 - - 23 30 23 28 31 55 21 97
11,400 - - 23 30 23 28 31 56 21 97
17,000 - - 20 34 23 28 32 50 21 97
33,200 - - 23 44 24 29 31 49 21 97
42,250 - - 22 27 24 29 42 63 21 97
45,000 - - 22 38 24 29 46 64 21 97

Extended Quadratic Penalty QP1 70 8 25 10 53 7 33 7 15 15 99
180 9 36 10 53 6 21 9 18 18 124
863 12 44 11 58 6 25 12 24 21 154

1,362 8 32 8 48 8 49 13 25 16 135
6,500 13 48 10 51 12 121 14 32 69 796
11,400 11 43 15 107 30 328 15 32 188 976
17,000 7 26 11 52 58 702 15 30 381 1,616
33,200 12 55 13 85 231 2,500 16 43 - -
42,250 13 52 10 61 381 2,950 16 43 - -
45,000 8 39 10 61 433 3,584 15 33 - -

Diagonal 8 70 9 18 4 9 3 7 3 5 4 33
180 9 18 4 9 3 7 3 5 4 33
863 10 20 4 10 4 9 3 5 4 33

1,362 10 20 4 12 4 10 3 5 4 33
6,500 10 20 4 10 4 8 3 5 4 33
11,400 10 20 4 10 4 8 3 5 4 33
17,000 10 20 4 12 4 8 3 5 4 33
33,200 13 24 4 11 4 8 3 5 4 33
42,250 23 36 4 10 4 8 3 5 4 33
45,000 23 36 4 10 4 8 3 5 4 33

Extended Tridigonal 2 70 44 155 13 25 19 24 18 23 17 68
180 45 157 20 22 20 25 18 23 20 84
863 42 146 21 43 21 26 17 21 20 84

1,362 42 146 20 27 21 26 17 21 20 84
6,500 42 146 22 26 23 28 17 22 21 97
11,400 42 146 20 27 23 28 17 22 21 97
17,000 42 146 23 27 23 28 17 22 21 97
33,200 41 143 23 25 24 29 17 22 21 97
42,250 41 143 24 51 24 29 17 22 21 97
45,000 41 143 25 50 24 29 17 22 21 97
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