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Abstract
Probabilistic frames have some properties which are similar to those of frames in
Hilbert space. Some equalities and inequalities have been established for traditional
frames. In this paper, we give some equalities and inequalities for probabilistic frames.
Our results generalize and improve the remarkable results which have been obtained.
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1 Introduction
Frames are redundant systems of vectors for a Hilbert space, which can yield many dif-
ferent and stable representations for a given vector []. The frame was first introduced
by Duffin and Schaeffer in the context of nonharmonic Fourier series []. To date, frame
theory has broad applications in pure mathematics, for instance, the Kadison-Singer prob-
lem [] and statistics [], as well as in applied mathematics, computer science, and emerg-
ing applications.

Due to the redundancy of frames, the frame has become an essential tool in signal pro-
cessing such as wireless communication [, ], image processing [], coding theory [],
and sampling theory []. These applications led to resilience to additive noise and quan-
tization [, ], resilience to erasures [–], and numerical stability of reconstructions
[, ].

By viewing the frame vectors as discrete mass distributions on R
N , being the genera-

tion of frames, probabilistic frames were developed by Ehler [] and further expanded
in []. Due to the connections between probability measures and frame theory, prob-
abilistic frames are tightly related to various notions that appeared in areas such as the
theory of t-designs [], positive operator valued measures encountered in quantum com-
puting [, ], and isometric measures used in the study of convex bodies []. Now, some
excellent results of class frames have been obtained and applied successfully. It is necessary
to extend some important results of conventional frames to the probabilistic frames.

In this paper, we mainly research the equalities and inequalities of probabilistic frames.
Balan et al. obtained an identity when studying the optimal decomposition of Parseval
frames [], and they discovered a surprising identity for Parseval frames when working
on reconstructing signal without noisy phase or its estimation in []. Subsequently, some
authors found and improved some equalities or inequalities of the traditional frames based
on the work of Balan et al.
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First we will recall the definition and some properties of probabilistic frames in Hilbert
spaces.

Throughout this paper H will always denote a Hilbert space, I denotes a countable in-
dexing set and IH denotes the identity operator on H. A system {fi}i∈I is called a frame for
H if there exist the constants  < A ≤ B < ∞ such that

A‖f ‖ ≤
∑

i∈I

∣∣〈f , fi〉
∣∣ ≤ B‖f ‖

for all f ∈H. The constants A and B are called lower and upper frame bounds, respectively.
If A = B, then the frame is called an A-tight frame, and if A = B = , then it is called a
Parseval frame. A Bessel sequence {fi}i∈I is only required to fulfill the upper frame bound
estimate but not necessarily the lower estimate.

For more details on conventional frames we refer to [, ].
Let I be a nonempty subset of RN and let M(B, I) denote the collection of probability

measures on I with respect to the Borel σ -algebra B.

Definition  A probability measure μ ∈ M(B, I) is called a probabilistic frame for H if
there are constants  < A ≤ B < ∞ such that

A‖x‖ ≤
∫

I

∣∣〈x, y〉∣∣ dμ(y) ≤ B‖x‖ for all f ∈H.

The constants A and B are called lower and upper probabilistic frame bounds, respec-
tively. If A = B, then the frame is called a probabilistic A-tight frame for H, and if A = B = ,
then it is called a probabilistic Parseval frame. If only the upper inequality holds, then we
call μ a Bessel measure.

Let μ ∈M(B, I) be a probabilistic frame. The probabilistic analysis operator is given by

T : H → L(I,μ), x 	→ 〈x, · 〉.

The adjoint operator T∗ of T is called the probabilistic synthesis operator which is given
by

T∗ : L(I,μ) →H, f 	→
∫

I
f (x)x dμ(x).

The probabilistic frame operator of μ is S = T∗T , and one easily verifies that

S : H →H, S(x) =
∫

I
〈x, y〉y dμ(y)

is positive, self-adjoint, and invertible.
For any J ⊂ I , we define a bounded linear operator SJ as

SJ (x) =
∫

J
〈x, y〉y dμ(y) for all x ∈H,

and denote Jc = I \ J .
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Moreover, for μ̃ = μ ◦ S, we have
∫

I
f
(
S–(y)

)
dμ(y) =

∫

I
f (y) dμ̃.

Using the fact that S–S = SS– = IH, the reconstruction formula is given by

x =
∫

I
〈x, y〉Sy dμ̃(y) =

∫

I

〈
x, S–y

〉
y dμ(y)

for all x ∈H.

Definition  If μ ∈ M(B, I) is a probabilistic frame, then μ̃ = μ ◦ S is called the proba-
bilistic canonical dual frame of μ.

Proposition  If μ ∈ M(B, I) is a probabilistic frame, then μ̃ = μ ◦ S/ is a probabilistic
Parseval frame for H.

We refer to [, , ] for more details on probabilistic frames.
In order to compare with our result, we list some important equalities as follows.

Theorem  [] Let {fi}i∈I be a frame for H with canonical dual frame {gi}gi . Then for all
J ⊂ I and all f ∈H we have

∑

i∈J

∣∣〈f , fi〉
∣∣ –

∑

i∈I

∣∣〈SJ f , gi〉
∣∣ =

∑

i∈Jc

∣∣〈f , fi〉
∣∣ –

∑

i∈I

∣∣〈SJc f , gi〉
∣∣.

In the situation of Parseval frames, the authors of [] gave the new identity which is
given by

∑

i∈J

∣∣〈f , fi〉
∣∣ –

∥∥∥∥
∑

i∈J

〈f , fi〉fi

∥∥∥∥


=
∑

i∈Jc

∣∣〈f , fi〉
∣∣ –

∥∥∥∥
∑

i∈Jc

〈f , fi〉fi

∥∥∥∥


. ()

Then the general result for () was established in [] as follows.

Theorem  Let {fi}i∈I be a frame for H with canonical dual frame {gi}gi . Then for all J ⊂ I
and all f ∈H, we have

Re

(∑

i∈J

〈f , gi〉〈f , fi〉
)

–
∑

i∈I

∣∣〈SJ f , gi〉
∣∣ = Re

(∑

i∈Jc

〈f , gi〉〈f , fi〉
)

–
∑

i∈I

∣∣〈SJc f , gi〉
∣∣.

Note that the above result involves the real parts of some complex number. Zhu and Wu
[] generalized the above equality to a more general form which does not involve the real
parts of the complex numbers.

Theorem  Let {fi}i∈I be a frame for H with canonical dual frame {gi}gi . Then for all J ⊂ I
and all f ∈H, we have

∑

i∈J

〈f , gi〉〈f , fi〉 –
∑

i∈I

∣∣〈SJ f , gi〉
∣∣ =

∑

i∈Jc

〈f , gi〉〈f , fi〉 –
∑

i∈I

∣∣〈SJc f , gi〉
∣∣.

Next, we extend these equalities to probabilistic frames.
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2 The main result for probabilistic Parseval frames
In this section, we continue the work [, ] about probabilistic Parseval frames and
obtain some important equalities and inequalities of these frames.

Lemma  [] Let P and Q be two linear bounded operators on H such that P + Q = IH.
Then

P – P∗P = Q∗ – Q∗Q.

Then we have the following result.

Theorem  If μ ∈ M(B, I) is a probabilistic Parseval frame for H, then for all J ⊂ I and
all x ∈H, we have

∫

J

∣∣〈x, y〉∣∣ dμ(y) –
∥∥∥∥
∫

J
〈x, y〉y dμ(y)

∥∥∥∥


=
∫

Jc

∣∣〈x, y〉∣∣ dμ(y) –
∥∥∥∥
∫

Jc
〈x, y〉y dμ(y)

∥∥∥∥


. ()

Proof Since μ is a Parseval frame, we have S = IH, clearly, SJ + Sjc = IH. Thus, by Lemma ,
we have

∫

J

∣∣〈x, y〉∣∣ dμ(y) –
∥∥∥∥
∫

J
〈x, y〉y dμ(y)

∥∥∥∥


=
∫

J

∣∣〈x, y〉∣∣ dμ(y) – 〈SJ x, SJ x〉

= 〈SJ x, x〉 –
〈
S∗

J SJ x, x
〉

=
〈(

SJ – S∗
J SJ

)
x, x

〉

=
〈(

S∗
Jc – S∗

Jc SJc
)
x, x

〉

=
〈
S∗

Jc x, x
〉
–

〈
S∗

Jc SJc x, x
〉

= 〈x, SJc x〉 – 〈SJc x, SJc x〉

=
∫

Jc

∣∣〈x, y〉∣∣ dμ(y) – 〈SJc x, SJc x〉

=
∫

Jc

∣∣〈x, y〉∣∣ dμ(y) –
∥∥∥∥
∫

Jc
〈x, y〉y dμ(y)

∥∥∥∥


. �

Note that each side of () is non-negative. An overlapping division of () is given as follows.

Proposition  Let μ ∈ M(B, I) be a probabilistic Parseval frame for H. For every J ⊂ I ,
every E ⊂ Jc, and all x ∈H, we have

∥∥∥∥
∫

J∪E
〈x, y〉y dμ(y)

∥∥∥∥


–
∥∥∥∥
∫

Jc\E
〈x, y〉y dμ(y)

∥∥∥∥


=
∥∥∥∥
∫

J
〈x, y〉y dμ(y)

∥∥∥∥


–
∥∥∥∥
∫

Jc
〈x, y〉y dμ(y)

∥∥∥∥


+ 
∫

E

∣∣〈x, y〉∣∣ dμ(y).
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Proof Applying Theorem  twice, then we have

∥∥∥∥
∫

J∪E
〈x, y〉y dμ(y)

∥∥∥∥


–
∥∥∥∥
∫

Jc\E
〈x, y〉y dμ(y)

∥∥∥∥


=
∫

J∪E

∣∣〈x, y〉∣∣ dμ(y) –
∫

Jc\E

∣∣〈x, y〉∣∣ dμ(y)

=
∫

J

∣∣〈x, y〉∣∣ dμ(y) –
∫

Jc

∣∣〈x, y〉∣∣ dμ(y) + 
∫

E

∣∣〈x, y〉∣∣ dμ(y)

=
∥∥∥∥
∫

J
〈x, y〉y dμ(y)

∥∥∥∥


–
∥∥∥∥
∫

Jc
〈x, y〉y dμ(y)

∥∥∥∥


+ 
∫

E

∣∣〈x, y〉∣∣ dμ(y). �

Corollary  Let μ ∈M(B, I) be a probabilistic Parseval frame for H. For every J ⊂ I , every
F ⊂ J , every E ⊂ Jc and all x ∈H, we have

∥∥∥∥
∫

(J∪E)\F
〈x, y〉y dμ(y)

∥∥∥∥


–
∥∥∥∥
∫

(Jc∪F)\E
〈x, y〉y dμ(y)

∥∥∥∥


=
∥∥∥∥
∫

J
〈x, y〉y dμ(y)

∥∥∥∥


–
∥∥∥∥
∫

Jc
〈x, y〉y dμ(y)

∥∥∥∥


+ 
∫

E∪F

∣∣〈x, y〉∣∣ dμ(y).

The proof of Corollary  is immediate.
By Proposition , each probabilistic A-tight frame can be turned into a probabilistic

Parseval frame.

Corollary  Let μ ∈ M(B, I) be a probabilistic tight Parseval frame with bound A for H.
For every J ⊂ I and every x ∈H, we have

A
∫

J

∣∣〈x, y〉∣∣ dμ(y) –
∥∥∥∥
∫

J
〈x, y〉y dμ(y)

∥∥∥∥


= A
∫

Jc

∣∣〈x, y〉∣∣ dμ(y) –
∥∥∥∥
∫

Jc
〈x, y〉y dμ(y)

∥∥∥∥


.

The proof of Corollary  is straightforward.
Next, we give a discussion of Theorem . From Theorem , for every J ⊂ I and every

f ∈H, we have

∫

J

∣∣〈x, y〉∣∣ dμ(y) +
∥∥∥∥
∫

Jc
〈x, y〉y dμ(y)

∥∥∥∥


=
∫

Jc

∣∣〈x, y〉∣∣ dμ(y) +
∥∥∥∥
∫

J
〈x, y〉y dμ(y)

∥∥∥∥


.

The above equality leads us to introduce some notation: ν–(U ; J) and ν+(U ; J). Let μ ∈
M(B, I) be a probabilistic Parseval frame for H. For every J ⊂ I , we define

ν–(U ; J) = inf
x �=

∫
Jc |〈x, y〉| dμ(y) + ‖ ∫

J〈x, y〉y dμ(y)‖

‖x‖ ,

ν+(U ; J) = sup
x �=

∫
Jc |〈x, y〉| dμ(y) + ‖ ∫

J〈x, y〉y dμ(y)‖

‖x‖ .

Some propositions of these notations are given in the following results.

Theorem  The notations ν–(U ; J) and ν+(U ; J) have the following properties:
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(i) 
 ≤ ν–(U ; J) ≤ ν+(U ; J) ≤ ;

(ii) ν–(U ; J) = ν–(U ; Jc) and ν+(U ; J) = ν+(U ; Jc);
(iii) ν–(U ; I) = ν+(U ; I) and ν–(U ;∅) = ν+(U ;∅).

Proof (i) We first proof the first inequality. Since SJ + SJc = IH, then we have

SJ – SJc = SJ – IH = S
J –

(
IH – SJ + S

J
)

= S
J – (IH – SJ ) = S

J – S
Jc .

Hence,

SJ + S
Jc = SJc + S

J

=


(
SJ + SJc + S

J + S
Jc
)

=


(
IH + S

J + S
Jc
)

=



(
IH +

(
S

J –



IH
)

+



IH
)

≥ 


IH,

with equality if and only if S
J = 

 IH. Therefore, for every x ∈H and x �= , we have

ν+(U ; J) ≥ ν–(U ; J) = inf
x �=

∫
Jc |〈x, y〉| dμ(y) + ‖ ∫

J〈x, y〉y dμ(y)‖

‖x‖

= inf
x �=

〈SJc x, x〉 + 〈SJ x, SJ x〉
‖x‖

=



(
IH +

(
S

J –



IH
)

+



IH
)

≥ 


,

with equality if and only if S
J = 

 IH.
Next, we prove the second inequality. Since

∥∥∥∥
∫

J
〈x, y〉y dμ(y)

∥∥∥∥


= sup
‖z‖=

∥∥∥∥

〈∫

J
〈x, y〉y dμ(y), z

〉∥∥∥∥


= sup
‖z‖=

∥∥∥∥
∫

J
〈x, y〉〈y, z〉dμ(y)

∥∥∥∥


≤ sup
‖z‖=

∫

I

∣∣〈z, y〉∣∣ dμ(y)
∫

J

∣∣〈x, y〉∣∣ dμ(y)

= sup
‖z‖=

‖z‖
∫

J

∣∣〈x, y〉∣∣ dμ(y)

=
∫

J

∣∣〈x, y〉∣∣ dμ(y),
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we have

ν–(U ; J) ≤ ν+(U ; J) = sup
x �=

∫
Jc |〈x, y〉| dμ(y) + ‖ ∫

J〈x, y〉y dμ(y)‖

‖x‖

≤ sup
x �=

∫
Jc |〈x, y〉| dμ(y) +

∫
J |〈x, y〉| dμ(y)

‖x‖

= sup
x �=

‖x‖

‖x‖ = ;

(ii) and (iii) follow from Theorem . �

Corollary  Let μ ∈ M(B, I) be a probabilistic Parseval frame for H. For every J ⊂ I and
every x ∈H, ν–(U ; J) = ν+(U ; J) =  if and only if SJ x = S

J x.

Proof From the definition of ν , ν–(U ; J) = ν+(U ; J) =  if and only if

∥∥∥∥
∫

J
〈x, y〉y dμ(y)

∥∥∥∥


=
∫

J

∣∣〈x, y〉∣∣ dμ(y).

And

∥∥∥∥
∫

J
〈x, y〉y dμ(y)

∥∥∥∥


–
∫

J

∣∣〈x, y〉∣∣ dμ(y) =
〈(

SJ – S
J
)
x, x

〉
,

which proves the results. �

3 The main result for probabilistic frames
In this section, we extend some results of conventional frames to general probabilistic
frames.

Theorem  Let μ ∈ M(B, I) be a probabilistic frame for H with probabilistic canonical
dual frame μ̃. For every J ⊂ I and every x ∈H, we have

∫

J

∣∣〈x, y〉∣∣ dμ(y) +
∫

I

∣∣〈SJc x, y〉∣∣ dμ̃(y) =
∫

Jc

∣∣〈x, y〉∣∣ dμ(y) +
∫

I

∣∣〈SJ x, y〉∣∣ dμ̃(y).

Proof The equality in Theorem  can be written as

∫

J

∣∣〈x, y〉∣∣ dμ(y) –
∫

I

∣∣〈SJ x, y〉∣∣ dμ̃(y) =
∫

Jc

∣∣〈x, y〉∣∣ dμ(y) –
∫

I

∣∣〈SJc x, y〉∣∣ dμ̃(y).

Also
∫

J

∣∣〈x, y〉∣∣ dμ(y) –
∫

I

∣∣〈SJ x, y〉∣∣ dμ̃(y) = 〈SJ x, x〉 –
∫

I

∣∣〈SJ x, y〉∣∣ dμ̃(y)

= 〈SJ x, x〉 –
∫

I

∣∣〈SJ x, S–y
〉∣∣ dμ(y)

= 〈SJ x, x〉 –
〈
S–SJ x, SJ x

〉
. ()
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Simultaneously,

∫

Jc

∣∣〈x, y〉∣∣ dμ(y) –
∫

I

∣∣〈SJc x, y〉∣∣ dμ̃(y) = 〈SJc x, x〉 –
〈
S–SJc x, SJc x

〉
. ()

Since S = SJ + SJc , it follows that IH = S–SJ + S–SJc . From the proof of Theorem , we have

S–SJ – S–SJ S–SJ = S–SJc – S–SJc S–SJc .

Moreover, for every x, z ∈H, we have

〈
S–SJ x, z

〉
–

〈
S–SJ S–SJ x, z

〉
=

〈
S–SJc x, z

〉
–

〈
S–SJc S–SJc x, z

〉
. ()

If we choose z to be z = Sx, by the equalities () and (), () is equal to

〈
S–SJ x, z

〉
–

〈
S–SJ S–SJ x, z

〉
=

〈
S–SJc x, z

〉
–

〈
S–SJc S–SJc x, z

〉
,

〈SJ x, x〉 –
〈
S–SJ x, SJ x

〉
= 〈SJc x, x〉 –

〈
S–SJc x, SJc x

〉
,

∫

J

∣∣〈x, y〉∣∣ dμ(y) –
∫

I

∣∣〈SJ x, y〉∣∣ dμ̃(y) =
∫

Jc

∣∣〈x, y〉∣∣ dμ(y) –
∫

I

∣∣〈SJc x, y〉∣∣ dμ̃(y).

Hence, the proof is completed. �

In the case of general probabilistic frames, we define notations as follows:

ν ′
–(U ; J) = inf

x �=

∫
J |〈x, y〉| dμ(y) +

∫
I |〈SJc x, y〉| dμ̃(y)

∫
I |〈x, y〉| dμ(y)

,

ν ′
+(U ; J) = sup

x �=

∫
J |〈x, y〉| dμ(y) +

∫
I |〈SJc x, y〉| dμ̃(y)

∫
I |〈x, y〉| dμ(y)

.

These notations of general probabilistic frames also satisfy the properties (i)-(iii) in The-
orem . We give a detailed proof for the property (i).

Proposition  The notations ν ′
–(U ; J) and ν ′

+(U ; J) satisfy




≤ ν ′
–(U ; J) ≤ ν ′

+(U ; J) ≤ .

Before the proof of Proposition , we need the following lemma.

Lemma  [] If P, Q are self-adjoint operators on H satisfying P + Q = IH, then

〈Px, x〉 + ‖Qx‖ = 〈Qx, x〉 + ‖Px‖ ≥ 


‖x‖,

for all x ∈H.

Proof of Proposition  First, we prove the left inequality. Since S = SJ + SJc , it follows that

IH = S–/SJ S–/ + S–/SJc S–/.
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By Lemma , we get

〈
S–/SJ S–/x, x

〉
+

∥∥S–/SJc S–/x
∥∥ =

〈
S–/SJc S–/x, x

〉
+

∥∥S–/SJ S–/x
∥∥.

Replacing x by S/x for the above equality, then we have

〈
S–/SJ x, S/x

〉
+

∥∥S–/SJc x
∥∥ =

〈
S–/SJc x, S/x

〉
+

∥∥S–/SJ x
∥∥

=
〈
S–SJc x, x

〉
+

∥∥S–/SJ x
∥∥

= 〈SJc x, x〉 +
〈
S–SJ x, SJ x

〉

≥ 


∥∥S/x
∥∥

=



〈Sx, x〉 =



∫

I
〈x, y〉y dμ(y).

Since

〈SJc x, x〉 +
〈
S–SJ x, SJ x

〉
=

∫

Jc

∣∣〈x, y〉∣∣ dμ(y) +
∫

I

∣∣〈SJ x, y〉∣∣ dμ̃,

we have ν ′
+(U ; J) ≥ ν ′

–(U ; J) ≥ 
 .

The right inequality is also true. In fact,

〈Px, x〉 + ‖Qx‖ = 〈Qx, x〉 + ‖Px‖

=
〈(

P – P + IH
)
x, x

〉

=
〈((

P –



IH
)

+



IH
)

x, x
〉
≤ ‖x‖.

It follows ν ′
+(U ; J) ≤ . The proof is completed. �

Next, we give a generalization of the equality from Theorem  for general probabilistic
frames with probabilistic canonical dual frames.

Theorem  Let μ ∈M(B, I) be a probabilistic frame forHwith the probabilistic canonical
dual frame μ̃. Let z = Sy, for every J ⊂ I and every x ∈H, we have

∫

J
〈x, y〉〈x, z〉dμ̃(y) –

∥∥∥∥
∫

J
〈x, y〉z dμ̃(y)

∥∥∥∥


=
∫

Jc
〈x, y〉〈x, z〉dμ̃(y) –

∥∥∥∥
∫

Jc
〈x, y〉z dμ̃(y)

∥∥∥∥


.

Proof Let z = Sy, for every x ∈H, we have

x =
∫

I
〈x, y〉Sy dμ̃(y) =

∫

I
〈x, y〉z dμ̃(y). ()

For every J ⊂ I , we define the operator VJ as follows:

VJ x =
∫

J
〈x, y〉z dμ̃(y).
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It follows that VJ + VJc = IH by (). Thus, by Lemma , we have

∫

J
〈x, y〉〈x, z〉dμ̃(y) –

∥∥∥∥
∫

J
〈x, y〉z dμ̃(y)

∥∥∥∥


= 〈VJ x, x〉 –
〈
V ∗

J VJ x, x
〉

=
〈
V ∗

Jc x, x
〉
–

〈
V ∗

Jc VJc x, x
〉

= 〈x, VJc x〉 – ‖VJc x‖

=
〈
x,

∫

Jc
〈x, y〉z dμ̃(y)

〉
– ‖VJc x‖

=
∫

Jc
〈x, y〉〈x, z〉dμ̃(y) –

∥∥∥∥
∫

Jc
〈x, y〉z dμ̃(y)

∥∥∥∥


. �

If we take the real part on both sides of equality in Theorem , we can get a more general
result.

Theorem  Let μ ∈ M(B, I) be a probabilistic frame for H with probabilistic canonical
dual frame μ̃. Let z = Sy, for every J ⊂ I , every continue bounded sequence {bi}nL(I) and
every x ∈H, we have

∫

J
bi〈x, y〉〈x, z〉dμ̃(y) –

∥∥∥∥
∫

J
bi〈x, y〉z dμ̃(y)

∥∥∥∥


=
∫

Jc
( – bi)〈x, y〉〈x, z〉dμ̃(y) –

∥∥∥∥
∫

Jc
( – bi)〈x, y〉z dμ̃(y)

∥∥∥∥


.

The proof of Theorem  is immediate.
For example, we can take bi =  if i ∈ J and bi =  if i ∈ Jc. As a special case we have the

following result.

Corollary  If μ ∈M(B, I) is a probabilistic A-tight frame for H with probabilistic canon-
ical dual frame μ̃. Let z = Sy, for every J ⊂ I , every continue bounded sequence {bi}nL(I)
and every x ∈H, we have

A
∫

J
bi

∣∣〈x, y〉∣∣ dμ(y) –
∥∥∥∥
∫

J
〈x, y〉y dμ(y)

∥∥∥∥


= A
∫

Jc
( – bi)

∣∣〈x, y〉∣∣ dμ(y) –
∥∥∥∥
∫

Jc
( – bi)〈x, y〉y dμ(y)

∥∥∥∥


.

Applying Corollary  and Theorem  proves the result.

4 Conclusions
In this paper, we mainly study some equalities and inequalities for probabilistic frames.
We extend some good results of frames to probabilistic frames, and we obtain some new
results because not all of properties of probabilistic frames are similar to those of tradi-
tional frames. Our results generalize and improve the remarkable results which have been
established.
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