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Abstract
In this paper, we propose a method to smooth the general lower-order exact penalty
function for inequality constrained optimization. We prove that an approximation
global solution of the original problem can be obtained by searching a global
solution of the smoothed penalty problem. We develop an algorithm based on the
smoothed penalty function. It is shown that the algorithm is convergent under some
mild conditions. The efficiency of the algorithm is illustrated with some numerical
examples.
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1 Introduction
We consider the following nonlinear constrained optimization problem:

[P]
min f (x)
s.t. gi(x) ≤ , i = , , . . . , m,

where f : Rn → R and gi : Rn → R, i ∈ I = {, , . . . , m} are twice continuously differentiable
functions. Let

G =
{

x ∈ Rn|gi(x) ≤ , i = , , . . . , m
}

.

The penalty function methods have been proposed to solve problem [P] in much of the
literature. In Zangwill [], the classical l exact penalty function is defined as follows:

p(x, q) = f (x) + q
m∑

i=

max
{

gi(x), 
}

, (.)

where q >  is a penalty parameter, but it is not a smooth function. Differentiable approxi-
mations to the exact penalty function have been obtained in various places in the literature,
such as [–].
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Recently lower-order penalty functions have been proposed in some literature. In [],
Luo gave a global exact penalty result for a lower-order penalty function of the form

f (x) + α

( m∑

i=

max
{

gi(x), 
}
)/γ

, (.)

where α > ,γ ≥  are the penalty parameters. Obviously, it is the l penalty function when
γ = .

The nonlinear penalty function has been investigated in [] and [] as follows:

Lk(x, d) =

[

f (x)k +
m∑

i=

di
(
max

{
gi(x), 

})k
]/k

, (.)

where f (x) is assumed to be positive, k >  is a given number, and d = (d, d, . . . , dm) ∈ Rm
+

is the penalty parameter. It was shown in [] that the exact penalty parameter correspond-
ing to k ∈ (, ] is substantially smaller than that of the classical l exact penalty function.

In [], the lower-order penalty functions

ϕq,k(x) = f (x) + q
m∑

i=

(
max

{
gi(x), 

})k , k ∈ (, ), (.)

have been introduced and shown to be exact under some conditions, but its smoothing
does not discussed for k ∈ (, ). When k = 

 , we have the following function:

ϕq(x) = f (x) + q
m∑

i=

√
max

{
gi(x), 

}
. (.)

Its smoothing has been investigated in [, ] and []. The smoothing of the lower-order
exact penalty function (.) has been investigated in [] and [].

In this paper, we aim to smooth the lower-order penalty function (.). The rest of this
paper is organized as follows. In Section , a new smoothing function to the lower-order
penalty function (.) is introduced. The error estimates are obtained among the opti-
mal objective function values of the smoothed penalty problem, the nonsmooth penalty
problem and the original problem. In Section , we present an algorithm to compute an
approximate solution to [P] based on the smooth penalty function and show that it is glob-
ally convergent. In Section , three numerical examples are given to show the efficiency
of the algorithm. In Section , we conclude the paper.

2 Smoothing exact lower-order penalty function
We consider the following lower-order penalty problem:

[LOP]k min
x∈Rn

ϕq,k(x).

In order to establish the exact penalization property, we need the following assumptions
as given in [].
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Assumption  f (x) satisfies the following coercive condition:

lim‖x‖→+∞ f (x) = +∞.

Under Assumption , there exists a box X such that G([P]) ⊂ int(X), where G([P]) is the
set of global minima of problem [P], int(X) denotes the interior of the set X. Consider the
following problem:

[
P′]

min f (x)
s.t. gi(x) ≤ , i = , , . . . , m,

x ∈ X.

Let G([P′]) denote the set of global minima of problem [P′]. Then G([P′]) = G([P]).

Assumption  The set G([P]) is a finite set.

Then for any k ∈ (, ), we consider the penalty problem of the form

[
LOP′]

k min
x∈X

ϕq,k(x).

We know that the lower-order penalty function ϕq,k(x)(k ∈ (, )) is an exact penalty func-
tion in [] under Assumption  and Assumption . But the lower-order exact penalty
function ϕq,k(x) (k ∈ (, )) is a nondifferentiable function. Now we consider its smooth-
ing.

Let pk(u) = (max{u, })k , that is,

pk(u) =

{
uk if u > ,
 otherwise,

(.)

then

ϕq,k(x) = f (x) + q
m∑

i=

pk
(
gi(x)

)
. (.)

For any ε > , let

pε,k(u) =

⎧
⎪⎨

⎪⎩

 if u ≤ ,

ε–kuk if  < u ≤ ε,
uk – εk

 if u > ε.
(.)

It is easy to see that pε,k(u) is continuously differentiable on R. Furthermore, we see that
pε,k(u) → pk(u) as ε →.

Figure  shows the behavior of p/(u) (represented by the solid line), p.,/(u) (repre-
sented by the dot line), p.,/(u) (represented by the broken line) and p.,/(u) (repre-
sented by the dash and dot line).

Let

ϕq,ε,k(x) = f (x) + q
m∑

i=

pε,k
(
gi(x)

)
. (.)
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Figure 1 The behavior of pε,2/3(u) and p2/3(u).

Then ϕq,ε,k(x) is continuously differentiable on Rn. Consider the following smoothed op-
timization problem:

[SP] min
x∈X

ϕq,ε,k(x).

Lemma . For any x ∈ X, ε > , we see that

 ≤ ϕq,k(x) – ϕq,ε,k(x) ≤ 


mqεk .

Proof Note that

pk
(
gi(x)

)
– pε,k

(
gi(x)

)
=

⎧
⎪⎨

⎪⎩

 if gi(x) ≤ ,
(gi(x))k – 

ε–k(gi(x))k if  < gi(x) ≤ ε,
εk

 if gi(x) > ε.

Let

F(u) = uk –


ε–kuk .

We get

F ′(u) = kuk– – kε–kuk– = kε–kuk–(εk – uk).

When u ∈ (, ε), F ′(u) ≥ . It is easy to see that F(u) is monotone increasing in [, ε].
When gi(x) ∈ [, ε], we can get

 ≤ pk
(
gi(x)

)
– pε,k

(
gi(x)

)
<



εk .
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Thus we see that

 ≤ ϕq,k(x) – ϕq,ε,k(x) ≤ 


mqεk .

This completes the proof. �

Theorem . Let {εj} → + be a sequence of positive numbers and assume that xj is a
solution to minx∈X ϕq,εj ,k(x) for some q > , k ∈ (, ). Let x̄ be an accumulation point of the
sequence {xj}. Then x̄ is an optimal solution to minx∈X ϕq,k(x).

Proof Because xj is a solution to minx∈X ϕq,εj ,k(x), we see that

ϕq,εj ,k(xj) ≤ ϕq,εj ,k(x), ∀x ∈ X.

By Lemma ., we see that

ϕq,εj ,k(x) ≤ ϕq,k(x)

and

ϕq,k(x) ≤ ϕq,εj ,k(x) +



mqεk
j .

It follows that

ϕq,k(xj) ≤ ϕq,εj ,k(xj) +



mqεk
j ≤ ϕq,εj ,k(x) +




mqεk
j ≤ ϕq,k(x) +




mqεk
j .

Let j → ∞, we see that

ϕq,k(x̄) ≤ ϕq,k(x).

This completes the proof. �

Theorem . Let x∗
q,k ∈ X be an optimal solution of problem [LOP′]k and x̄q,ε,k ∈ X be an

optimal solution of problem [SP] for some q > , k ∈ (, ) and ε > . Then we see that

 ≤ ϕq,k
(
x∗

q,k
)

– ϕq,ε,k(x̄q,ε,k) ≤ 


mqεk .

Proof By Lemma ., we see that

 ≤ ϕq,k
(
x∗

q,k
)

– ϕq,ε,k
(
x∗

q,k
)

≤ ϕq,k
(
x∗

q,k
)

– ϕq,ε,k(x̄q,ε,k)

≤ ϕq,k(x̄q,ε,k) – ϕq,ε,k(x̄q,ε,k)

≤ 


mqεk .

This completes the proof. �
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Theorem . and Theorem . mean that an approximately optimal solution to [SP] is
also an approximately optimal solution to [LOP′]k when the error ε is sufficiently small.

Definition . For ε > , a point x ∈ X is an ε-feasible solution or an ε-solution of prob-
lem [P], if

gi(x) ≤ ε, i = , , . . . , m.

We say that the pair (x∗,λ∗) satisfies the second-order sufficiency condition in [] if

∇xL
(
x∗,λ∗) = ,

gi
(
x∗) ≤ , i = , , . . . , m,

λ∗
i ≥ , i = , , . . . , m,

λ∗
i gi

(
x∗) = , i = , , . . . , m,

yT∇L
(
x∗,λ∗)y > , for any y ∈ V

(
x∗),

(.)

where L(x,λ) = f (x) +
∑m

i= λigi(x), and

V
(
x∗) =

{
y ∈ Rn|∇T gi

(
x∗)y = , i ∈ A

(
x∗);∇T gi

(
x∗)y ≤ , i ∈ B

(
x∗)},

A
(
x∗) =

{
i ∈ {, , . . . , m}|gi

(
x∗) = ,λ∗ > 

}
,

B
(
x∗) =

{
i ∈ {, , . . . , m}|gi

(
x∗) = ,λ∗ = 

}
.

Theorem . Suppose that Assumptions  and  hold, and that for any x∗ ∈ G([P]), there
exists a λ∗ ∈ Rm

+ such that the pair (x∗,λ∗) satisfies the second-order sufficiency condition
(.). Then for ∀k ∈ (, ), let x∗ ∈ X be a global solution of problem [P] and x̄q,ε,k ∈ X be
a global solution of problem [SP] for k ∈ (, ), ε > . Then there exists q∗ >  such that for
any q > q∗,

 ≤ f
(
x∗) – ϕq,ε,k(x̄q,ε,k) ≤ 


mqεk . (.)

Furthermore, if x̄q,ε,k be an ε-feasible solution of problem [P], then we see that

 ≤ f
(
x∗

q,k
)

– f (x̄q,ε,k) ≤ mqεk ,

where q∗ >  is defined in Corollary . in [].

Proof By Corollary . in [], we see that x∗ ∈ X is a global solution of problem [LOP′]k .
Then by Theorem ., we see that

 ≤ ϕq,k
(
x∗) – ϕq,ε,k(x̄q,ε,k) ≤ 


mqεk . (.)

Since
∑m

i= pk(gi(x∗)) = , we have

ϕq,k
(
x∗) = f

(
x∗) + q

m∑

i=

pk
(
gi

(
x∗)) = f

(
x∗). (.)
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By (.) and (.), we see that (.) holds.
Furthermore, it follows from (.) and (.) that

 ≤ f
(
x∗) –

(

f (x̄q,ε,k) + q
m∑

i=

pε,k
(
gi(x̄q,ε,k)

)
)

≤ 


mqεk .

It follows that

q
m∑

i=

pε,k
(
gi(x̄q,ε,k)

) ≤ f
(
x∗) – f (x̄q,ε,k) ≤ 


mqεk + q

m∑

i=

pε,k
(
gi(x̄q,ε,k)

)
. (.)

From (.) and the fact that x̄q,ε,k is an ε-feasible solution of problem [P], we see that

 ≤
m∑

i=

pε,k
(
gi(x̄q,ε,k)

) ≤ 


mεk . (.)

Then it follows from (.) and (.) that

 ≤ f
(
x∗) – f (x̄q,ε,k) ≤ mqεk .

This completes the proof. �

Theorem . means that an approximately optimal solution to [SP] is an approximately
optimal solution to [P] if the solution to [SP] is ε-feasible.

3 A smoothing method
We propose the following algorithm to solve [P].

Algorithm .
Step  Choose an initial point x, and a stoping tolerance ε > . Given ε > , q > ,  <

η < , and σ > , let j =  and go to Step .
Step  Use xj as the starting point to solve minx∈Rn ϕqj ,εj ,k(x). Let x∗

j be the optimal solution
obtained (x∗

j is obtained by a quasi-Newton method and a finite difference gradient).
Step  If x∗

j is ε-feasible to [P], then stop and we have obtained an approximately optimal
solution x∗

j of the original problem [P]. Otherwise, let qj+ = σqj, εj+ = ηεj, xj+ = x∗
j , and

j = j + , then go to Step .
From  < η <  and σ > , we can easily see that the sequence {εj} is decreasing to  and

the sequence {qj} is increasing to +∞ as j −→ +∞.

Now we prove the convergence of the algorithm under some mild conditions.

Theorem . Suppose that Assumption  holds and for any q ∈ [q, +∞), ε ∈ (, ε], the
set

arg min
x∈Rn

ϕq,ε,k(x) = ∅.

Let {x∗
j } be the sequence generated by Algorithm .. If the sequence {ϕqj ,εj ,k(x∗

j )} is bounded,
then {x∗

j } is bounded and any limit point of {x∗
j } is the solution of [P].
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Proof First we show that {x∗
j } is bounded. Note that

ϕqj ,εj ,k
(
x∗

j
)

= f
(
x∗

j
)

+ qj

m∑

i=

pεj ,k
(
gi

(
x∗

j
))

, j = , , , . . . .

By the assumptions, there is some number L such that

L > ϕqj ,εj ,k
(
x∗

j
)
, j = , , , . . . .

Suppose to the contrary that {x∗
j } is unbounded. Without loss of generality, we assume

that ‖x∗
j ‖ → ∞ as j → ∞. Then we get

L > f
(
x∗

j
)
, j = , , , . . . ,

which results in a contradiction since f is coercive.
We show next that any limit point of {x∗

j } is the optimal solution of [P]. Let x̄ be any limit
point of {x∗

j }. Then there exists a natural number set J ⊆ N , such that x∗
j → x̄, j ∈ J . If we

can prove that (i) x̄ ∈ G and (ii) f (x̄) ≤ infx∈G f (x) hold, then x̄ is the optimal solution of
[P].

(i) Suppose to the contrary that x̄ /∈ G, then there exist δ > , i ∈ I and the subset J ⊂ J
such that

gi
(
x∗

j
) ≥ δ > εj

for any j ∈ J.
And by step  in Algorithm . and (.), we see that

f
(
x∗

j
)

+



qjδ
k
 ≤ f

(
x∗

j
)

+ qj

((
gi

(
x∗

j
))k –



εk

j

)
≤ ϕqj ,εj ,k

(
x∗

j
) ≤ ϕqj ,εj ,k(x) = f (x)

for any x ∈ G, which contradicts with qj → +∞. Then we see that x̄ ∈ G.
(ii) For any x ∈ G, we have

f
(
x∗

j
) ≤ ϕqj ,εj ,k

(
x∗

j
) ≤ ϕqj ,εj ,k(x) = f (x),

then f (x̄) ≤ infx∈G f (x) holds.
This completes the proof. �

4 Numerical examples
In this section, we solve three numerical examples to show the applicability of Algo-
rithm ..

Example . (Example . in [], Example . in [] and Example . in [])

min f (x) = x
 + x

 – cos(x) – cos(x) + ,

s.t. g(x) = (x – ) + x
 – . ≤ ,
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Table 1 Numerical results for Example 4.1 with k = 1/3

j x∗
j qj εj g1(x∗

j ) g2(x∗
j ) f (x∗

j )

0
(–0.362270
0.366667

)
1 0.1 3.154764 –0.224317 1.277367

1
(0.724975
0.399152

)
2 0.01 –0.774989 –0.000000 1.837569

Table 2 Numerical results for Example 4.1 with k = 2/3

j x∗
j qj εj g1(x∗

j ) g2(x∗
j ) f (x∗

j )

0
(0.725362
0.399226

)
10 0.1 0.775917 0.000175 1.715609

1
(0.725353
0.399257

)
20 0.01 –0.775869 0.000000 1.837547

g(x) = x
 + (x – ) – . ≤ ,

 ≤ x ≤ ,

 ≤ x ≤ .

Let k = /, x = (., .), q = ., ε = .,η = .,σ = , ε = –, we obtain the results
by Algorithm . shown in Table .

Let k = /, x = (., .), q = , ε = .,η = .,σ = , ε = –, we obtain the results
by Algorithm . shown in Table .

When k = / and k = /, numerical results are given in Table  and Table , respectively.
It is clear from Table  and Table  that the obtained approximate solutions are similar. In
[], the given solution for Example . is (., .) with objective function value
. when k = /. In [], the given solution for Example . is (., .)
with objective function value . when k = /. The given solution for Example .
is (., .) with objective function value . when k = /. In [],
the given solution for Example . is (., .) with objective function value ..
Numerical results are similar to the results of [] and [], and they are better than the
results of [] in this example.

Example . (Test Problem  in Section . in [])

min f (x) = –x – y,

s.t. g(x, y) = y – x + x – x –  ≤ ,

g(x, y) = y – x + x – x + x –  ≤ ,

 ≤ x ≤ ,

 ≤ y ≤ .

Let k = /, x = (., ), q = , ε = .,η = .,σ = , ε = –, the results by Algo-
rithm . are shown in Table .

Let k = /, x = (, ), q = , ε = .,η = .,σ = , ε = –, the results by Algo-
rithm . are shown in Table .
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Table 3 Numerical results for Example 4.2 with x0 = (2.5, 0)

k x∗
k qk εk g1(x∗

k ) g2(x∗
k ) f (x∗

k )

0
(2.329720,
3.177613)

5 0.1 –0.002508 0.000057 –5.507333

1
(2.329648,
3.177624)

10 0.01 –0.001917 –0.000266 –5.507273

2
(2.329674,
3.177610)

20 0.001 –0.002136 –0.000163 –5.507283

Table 4 Numerical results for Example 4.2 with x0 = (0, 4)

k x∗
k qk εk g1(x∗

k ) g2(x∗
k ) f (x∗

k )

0
(2.329741,
3.177865)

5 0.1 –0.002428 0.000408 –5.507606

1
(2.329649,
3.177847)

10 0.01 –0.001698 –0.000041 –5.507496

Table 5 Numerical results for Example 4.2 with x0 = (1.0, 1.5)

k x∗
k qk εk g1(x∗

k ) g2(x∗
k ) f (x∗

k )

0
(2.329625,
3.178285)

5 0.1 –0.001067 0.000286 –5.507911

1
(2.329538,
3.178429)

10 0.01 –0.000208 0.000019 –5.507967

2
(2.329517,
3.178421)

20 0.001 –0.000049 –0.000085 –5.507938

Let k = /, x = (., .), q = , ε = .,η = .,σ = , ε = –, the results by Algo-
rithm . are shown in Table .

With different starting points x = (., ), x = (, ), and x = (., .), numerical re-
sults are given in Table , Table  and Table , respectively. One can see that the numerical
results in Tables - are similar. This means that Algorithm . does not completely de-
pend on how to choose a starting point in this example. In [], the given solution for
Example . is (., .) with objective function value –.. Numerical results
are similar to the result of [] in this example.

For the jth iteration of the algorithm, we define a constraint error ej by

ej =
m∑

i=

max
{

gi
(
x∗

j
)
, 

}
.

It is clear that x∗
j is ε-feasible to (P) when ej < ε.

Example . (Example . in [] and Example . in [])

min f (x) = x + x + x + x + x,

s.t. g(x) = x + x –  = ,

g(x) = –x + x + x + x = ,

g(x) = –x – x + x + x = ,

g(x) = x – x + x – x –  ≤ ,
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Table 6 Numerical results for Example 4.3

j x∗
j qj εj ej f (x∗

j )

0
(1.620510, 8.377264,
0.013437, 0.606651
1.000285, 7.390398)

100 0.5 –0.000017 116.968612

1
(1.620468, 8.379530,
0.013229, 0.607246
0.999994, 7.392764)

200 0.005 0.000000 117.000044

g(x) = x + x + x –  ≤ ,

 ≤ x ≤ ,

 ≤ x ≤ ,

 ≤ x ≤ ,

 ≤ x ≤ ,

 ≤ x ≤ ,

 ≤ x ≤ .

Let k = /, x = (, , , , , ), q = , ε = .,η = .,σ = , ε = –, the results by
Algorithm . are shown in Table .

It is clear from Table  that the obtained approximately optimal solution is x∗ =
(., ., ., ., ., .) with corresponding ob-
jective function value .. In [], the obtained approximately optimal solution
is x∗ = (., ., ., ., ., .) with correspond-
ing objective function value .. In [], the given solution for Example . is
(., ., ., ., ., .) with objective function
value . when k = /. Numerical results are better than the results of [] and []
in this example.

5 Concluding remarks
In this paper, we propose a method for smoothing the nonsmooth lower-order exact
penalty function for inequality constrained optimization. We prove that the algorithm
based on the smoothed penalty functions is convergent under mild conditions.

According to the numerical results given in Section , we can obtain an approximately
optimal solution of the original problem [P] by Algorithm ..

Finally, we give some advices on how to choose parameter in the algorithm. Usually, the
initial value of q may be , , , ,  or , and σ = , ,  or . The initial
value of ε may be , ., . or ., and η = ., ., . or ..
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