Some approximation properties of (p, q)-Bernstein operators

Shin Min Kang ${ }^{1}$, Arif Rafiq ${ }^{2}$, Ana-Maria Acu ${ }^{3}$, Faisal Ali 4 and Young Chel Kwun ${ }^{\text {* }}$

"Correspondence:
yckwun@dau.ac.kr
${ }^{5}$ Department of Mathematics, Dong-A University, Busan, 49315, Korea
Full list of author information is available at the end of the article

Abstract

This paper is concerned with the (p, q)-analog of Bernstein operators. It is proved that, when the function is convex, the (p, q)-Bernstein operators are monotonic decreasing, as in the classical case. Also, some numerical examples based on Maple algorithms that verify these properties are considered. A global approximation theorem by means of the Ditzian-Totik modulus of smoothness and a Voronovskaja type theorem are proved.

MSC: 41A10; 41A25; 41A35
Keywords: (p, q)-Bernstein operators; (p, q)-calculus; Voronovskaja type theorem; K-functional; Ditzian-Totik first order modulus of smoothness

1 Introduction and preliminaries

During the last decade, the applications of q-calculus in the field of approximation theory has led to the discovery of new generalizations of classical operators. Lupaş [1] was first to observe the possibility of using q-calculus in this context. For more comprehensive details the reader should consult monograph of Aral et al. [2] and the recent references [3-9].

Nowadays, the generalizations of several operators in post-quantum calculus, namely the (p, q)-calculus have been studied intensively. The (p, q)-calculus has been used in many areas of sciences, such as oscillator algebra, Lie group theory, field theory, differential equations, hypergeometric series, physical sciences (see [10, 11]). Recently, Mursaleen et al. [12] defined (p, q)-analog of Bernstein operators. The approximation properties for these operators based on Korovkin's theorem and some direct theorems were considered. Also, many well-known approximation operators have been introduced using these techniques, such as Bleimann-Butzer-Hahn operators [13] and Szász-Mirakyan operators [14].

In the present paper, we prove new approximation properties of (p, q)-analog of Bernstein operators. First of all, we recall some notations and definitions from the (p, q) calculus. Let $0<q<p \leq 1$. For each non-negative integer $n \geq k \geq 0$, the (p, q)-integer $[k]_{p, q},(p, q)$-factorial $[k]_{p, q}$!, and (p, q)-binomial are defined by

$$
\begin{aligned}
& {[k]_{p, q}:=\frac{p^{k}-q^{k}}{p-q},} \\
& {[k]_{p, q}:= \begin{cases}{[k]_{p, q}[k-1]_{p, q} \cdots[1]_{p, q},} & k \geq 1, \\
1, & k=0,\end{cases} }
\end{aligned}
$$

and

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{p, q}:=\frac{[n]_{p, q}!}{[n-k]_{p, q}![k]_{p, q}!}
$$

As a special case when $p=1$, the above notations reduce to q-analogs.
The (p, q)-power basis is defined as

$$
(x \ominus a)_{p, q}^{n}=(x-a)(p x-q a)\left(p^{2} x-q^{2} a\right) \cdots\left(p^{n-1} x-q^{n-1} a\right) .
$$

The (p, q)-derivative of the function f is defined as

$$
D_{p, q} f(x)=\frac{f(p x)-f(q x)}{(p-q) x}, \quad x \neq 0 .
$$

Let f be an arbitrary function and $a \in \mathbb{R}$. The (p, q)-integral of f on $[0, a]$ is defined as

$$
\begin{aligned}
& \int_{0}^{a} f(t) d_{p, q} t=(q-p) a \sum_{k=0}^{\infty} f\left(\frac{p^{k}}{q^{k+1}} a\right) \frac{p^{k}}{q^{k+1}}, \quad \text { if }\left|\frac{p}{q}\right|<1, \\
& \int_{0}^{a} f(t) d_{p, q} t=(p-q) a \sum_{k=0}^{\infty} f\left(\frac{q^{k}}{p^{k+1}} a\right) \frac{q^{k}}{p^{k+1}}, \quad \text { if }\left|\frac{q}{p}\right|<1 .
\end{aligned}
$$

The (p, q)-analog of Bernstein operators for $x \in[0,1]$ and $0<q<p \leq 1$ are introduced as follows:

$$
B_{n}^{p, q}(f ; x)=\sum_{k=0}^{n} b_{n, k}^{p, q}(x) f\left(\frac{p^{n-k}[k]_{p, q}}{[n]_{p, q}}\right),
$$

where the (p, q)-Bernstein basis is defined as

$$
b_{n, k}^{p, q}(x)=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{p, q} p^{[k(k-1)-n(n-1)] / 2} x^{k}(1 \ominus x)_{p, q}^{n-k} .
$$

Lemma 1.1 For $x \in[0,1], 0<q<p \leq 1$, we have

$$
\begin{aligned}
& B_{n}^{p, q}\left(e_{0} ; x\right)=1, \quad B_{n}^{p, q}\left(e_{1} ; x\right)=x, \\
& B_{n}^{p, q}\left(e_{2} ; x\right)=\frac{p^{n-1}}{[n]_{p, q}} x+\frac{q[n-1]_{p, q}}{[n]_{p, q}} x^{2},
\end{aligned}
$$

where $e_{i}(x)=x^{i}$ and $i \in\{0,1,2\}$.

Lemma 1.2 Let n be a given natural number, then

$$
B_{n}^{p, q}\left((t-x)^{2} ; x\right)=\frac{p^{n-1}}{[n]_{p, q}} \phi^{2}(x) \leq \frac{1}{[n]_{p, q}} \phi^{2}(x),
$$

where $\phi(x)=\sqrt{x(1-x)}$ and $x \in[0,1]$.

2 Monotonicity for convex functions

Oru and Phillips [15] proved that when the function f is convex on [0,1], its q-Bernstein operators are monotonic decreasing. In this section we will study the monotonicity of (p, q)-Bernstein operators.

Theorem 2.1 Iff is convex function on $[0,1]$, then

$$
B_{n}^{p, q}(f ; x) \geq f(x), \quad 0 \leq x \leq 1,
$$

for all $n \geq 1$ and $0<q<p \leq 1$.
Proof We consider the knots $x_{k}=\frac{p^{n-k}[k]_{p, q}}{[n]]_{p, q}}, \lambda_{k}=\left[\begin{array}{l}n \\ k\end{array}\right]_{p, q} p^{[k(k-1)-n(n-1)] / 2} x^{k}(1 \ominus x)_{p, q}^{n-k}, 0 \leq k \leq n$.
Using Lemma 1.1, it follows that

$$
\begin{aligned}
& \lambda_{0}+\lambda_{1}+\cdots+\lambda_{n}=1, \\
& x_{0} \lambda_{0}+x_{1}+\lambda_{1}+\cdots+x_{n} \lambda_{n}=x .
\end{aligned}
$$

From the convexity of the function f, we get

$$
B_{n}^{p, q}(f ; x)=\sum_{k=0}^{n} \lambda_{k} f\left(x_{k}\right) \geq f\left(\sum_{k=0}^{n} \lambda_{k} x_{k}\right)=f(x) .
$$

Example 2.2 Let $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x e^{x+1}$. Figure 1 illustrates that $B_{n}^{p, q}(f ; x) \geq f(x)$ for the convex function f and $x \in[0,1]$.

Theorem 2.3 Let f be convex on $[0,1]$. Then $B_{n-1}^{p, q}(f ; x) \geq B_{n}^{p, q}(f ; x)$ for $0<q<p \leq 1,0 \leq$ $x \leq 1$, and $n \geq 2$. Iff $\in C[0,1]$ the inequality holds strictly for $0<x<1$ unless f is linear in each of the intervals between consecutive knots $\frac{p^{n-1-k}[k]_{p, q}}{[n-1]_{p, q}}, 0 \leq k \leq n-1$, in which case we have the equality.

Figure 1 Approximation process by $B_{n}^{p, q}(f ; x)$ for $f(x)=x e^{x+1}$.

Proof For $0<q<p \leq 1$ we begin by writing

$$
\begin{aligned}
& \prod_{s=0}^{n-1}\left(p^{s}-q^{s} x\right)^{-1}\left[B_{n-1}^{p, q}(f ; x)-B_{n}^{p, q}(f ; x)\right] \\
& = \\
& \quad \prod_{s=0}^{n-1}\left(p^{s}-q^{s} x\right)^{-1}\left[\sum_{k=0}^{n-1}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{p, q} p^{[k(k-1)-(n-2)(n-1)] / 2} x^{k}(1 \ominus x)_{p, q}^{n-k-1} f\left(\frac{p^{n-1-k}[k]}{[n-1]}\right)\right. \\
& \left.\quad-\sum_{k=0}^{n-1}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{p, q} p^{[k(k-1)-n(n-1)] / 2} x^{k}(1 \ominus x)_{p, q}^{n-k} f\left(\frac{p^{n-k}[k]}{[n]}\right)\right] \\
& = \\
& \quad \sum_{k=0}^{n-1}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{p, q} p^{[k(k-1)-(n-2)(n-1)] / 2} x^{k} \prod_{s=n-k-1}^{n-1}\left(p^{s}-q^{s} x\right)^{-1} f\left(\frac{p^{n-1-k}[k]}{[n-1]}\right) \\
& \quad-\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{p, q} p^{[k(k-1)-n(n-1)] / 2} x^{k} \prod_{s=n-k}^{n-1}\left(p^{s}-q^{s} x\right)^{-1} f\left(\frac{p^{n-k}[k]}{[n]}\right) .
\end{aligned}
$$

Denote

$$
\begin{equation*}
\Psi_{k}(x)=p^{\frac{k(k-1)}{2}} x^{k} \prod_{s=n-k}^{n-1}\left(p^{s}-q^{s} x\right)^{-1} \tag{2.1}
\end{equation*}
$$

and using the following relation:

$$
p^{n-1} p^{\frac{k(k-1)}{2}} x^{k} \prod_{s=n-k-1}^{n-1}\left(p^{s}-q^{s} x\right)^{-1}=p^{k} \Psi_{k}(x)+q^{n-k-1} \Psi_{k+1}(x),
$$

we find

$$
\begin{aligned}
& \prod_{s=0}^{n-1}\left(p^{s}-q^{s} x\right)^{-1}\left[B_{n-1}^{p, q}(f ; x)-B_{n}^{p, q}(f ; x)\right] \\
& =\sum_{k=0}^{n-1}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{p, q} p^{-\frac{(n-1)(n-2)}{2}} p^{-(n-1)}\left\{p^{k} \Psi_{k}(x)+q^{n-k-1} \Psi_{k+1}(x)\right\} f\left(\frac{p^{n-1-k}[k]_{p, q}}{[n-1]_{p, q}}\right) \\
& -\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{p, q} p^{-\frac{n(n-1)}{2}} \Psi_{k}(x) f\left(\frac{p^{n-k}[k]_{p, q}}{[n]_{p, q}}\right) \\
& =p^{-\frac{n(n-1)}{2}}\left\{\sum_{k=0}^{n-1}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{p, q} p^{k} \Psi_{k}(x) f\left(\frac{p^{n-1-k}[k]_{p, q}}{[n-1]_{p, q}}\right)\right. \\
& \left.+\sum_{k=1}^{n}\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{p, q} q^{n-k} \Psi_{k}(x) f\left(\frac{p^{n-k}[k-1]_{p, q}}{[n-1]_{p, q}}\right)-\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] \Psi_{k}(x) f\left(\frac{p^{n-k}[k]_{p, q}}{[n]_{p, q}}\right)\right\} \\
& =p^{-\frac{n(n-1)}{2}} \sum_{k=1}^{n-1}\left\{\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{p, q} p^{k} f\left(\frac{p^{n-1-k}[k]_{p, q}}{[n-1]_{p, q}}\right)+\left[\begin{array}{c}
n-1 \\
k-1
\end{array}\right]_{p, q} q^{n-k} f\left(\frac{p^{n-k}[k-1]_{p, q}}{[n-1]_{p, q}}\right)\right. \\
& \left.-\left[\begin{array}{l}
n \\
k
\end{array}\right]_{p, q} f\left(\frac{p^{n-k}[k]_{p, q}}{[n]_{p, q}}\right)\right\} \Psi_{k}(x)
\end{aligned}
$$

$$
\begin{aligned}
= & p^{-\frac{n(n-1)}{2}} \sum_{k=1}^{n-1}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{p, q}\left\{\frac{[n-k]_{p, q}}{[n]_{p, q}} p^{k} f\left(\frac{p^{n-1-k}[k]_{p, q}}{[n-1]_{p, q}}\right)\right. \\
& \left.+\frac{[k]_{p, q}}{[n]_{p, q}} q^{n-k} f\left(\frac{p^{n-k}[k-1]_{p, q}}{[n-1]_{p, q}}\right)-f\left(\frac{p^{n-k}[k]_{p, q}}{[n]_{p, q}}\right)\right\} \Psi_{k}(x) \\
= & p^{-\frac{n(n-1)}{2}} \sum_{k=1}^{n-1}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{p, q} a_{k} \Psi_{k}(x),
\end{aligned}
$$

where

$$
a_{k}=\frac{[n-k]_{p, q}}{[n]_{p, q}} p^{k} f\left(\frac{p^{n-1-k}[k]_{p, q}}{[n-1]_{p, q}}\right)+\frac{[k]_{p, q}}{[n]_{p, q}} q^{n-k} f\left(\frac{p^{n-k}[k-1]_{p, q}}{[n-1]_{p, q}}\right)-f\left(\frac{p^{n-k}[k]_{p, q}}{[n]_{p, q}}\right) .
$$

From (2.1) it is clear that each $\Psi_{k}(x)$ is non-negative on $[0,1]$ for $0<q<p \leq 1$ and, thus, it suffices to show that each a_{k} is non-negative.
Since f is convex on $[0,1]$, then for any $t_{0}, t_{1} \in[0,1]$ and $\lambda \in[0,1]$, it follows that

$$
f\left(\lambda t_{0}+(1-\lambda) t_{1}\right) \leq \lambda f\left(t_{0}\right)+(1-\lambda) f\left(t_{1}\right)
$$

If we choose $t_{0}=\frac{p^{n-k}[k-1]_{p, q}}{[n-1]_{p, q}}, t_{1}=\frac{p^{n-1-k}[k]_{p, q}}{[n-1]_{p, q}}$, and $\lambda=\frac{[k]_{p, q}}{[n]_{p, q}} q^{n-k}$, then $t_{0}, t_{1} \in[0,1]$ and $\lambda \in$ $(0,1)$ for $1 \leq k \leq n-1$, and we deduce that

$$
a_{k}=\lambda f\left(t_{0}\right)+(1-\lambda) f\left(t_{1}\right)-f\left(\lambda t_{0}+(1-\lambda) t_{1}\right) \geq 0 .
$$

Thus $B_{n-1}^{p, q}(f ; x) \geq B_{n}^{p, q}(f ; x)$.
We have equality for $x=0$ and $x=1$, since the Bernstein polynomials interpolate f on these end-points. The inequality will be strict for $0<x<1$ unless when f is linear in each of the intervals between consecutive knots $\frac{p^{n-1-k}[k]_{p, q}}{[n-1]_{p, q}}, 0 \leq k \leq n-1$, then we have $B_{n-1}^{p, q}(f ; x)=$ $B_{n}^{p, q}(f ; x)$ for $0 \leq x \leq 1$.

Example 2.4 Let $f(x)=\sin (2 \pi x), x \in[0,1]$. Figure 2 illustrates the monotonicity of (p, q) Bernstein operators for $p=0.95$ and $q=0.9$. We note that if f is increasing (decreasing) on $[0,1]$, then the operators is also increasing (decreasing) on $[0,1]$.

Figure 2 Monotonicity of (p, q)-Bernstein operators.

3 A global approximation theorem

In the following we establish a global approximation theorem by means of Ditzian-Totik modulus of smoothness. In order to prove our next result, we recall the definitions of the Ditzian-Totik first order modulus of smoothness and the K-functional [16]. Let $\phi(x)=$ $\sqrt{x(1-x)}$ and $f \in C[0,1]$. The first order modulus of smoothness is given by

$$
\begin{equation*}
\omega_{\phi}(f ; t)=\sup _{0<h \leq t}\left\{\left|f\left(x+\frac{h \phi(x)}{2}\right)-f\left(x-\frac{h \phi(x)}{2}\right)\right|, x \pm \frac{h \phi(x)}{2} \in[0,1]\right\} . \tag{3.1}
\end{equation*}
$$

The corresponding K-functional to (3.1) is defined by

$$
K_{\phi}(f ; t)=\inf _{g \in W_{\phi}[0,1]}\left\{\|f-g\|+t\left\|\phi g^{\prime}\right\|\right\} \quad(t>0)
$$

where $W_{\phi}[0,1]=\left\{g: g \in A C_{\text {loc }}[0,1],\left\|\phi g^{\prime}\right\|<\infty\right\}$ and $g \in A C_{\text {loc }}[0,1]$ means that g is absolutely continuous on every interval $[a, b] \subset[0,1]$. It is well known ([16], p.11) that there exists a constant $C>0$ such that

$$
\begin{equation*}
K_{\phi}(f ; t) \leq C \omega_{\phi}(f ; t) \tag{3.2}
\end{equation*}
$$

Theorem 3.1 Let $f \in C[0,1]$ and $\phi(x)=\sqrt{x(1-x)}$, then for every $x \in[0,1]$, we have

$$
\left|B_{n}^{p, q}(f ; x)-f(x)\right| \leq C \omega_{\phi}\left(f ; \frac{1}{\sqrt{[n]_{p, q}}}\right)
$$

where C is a constant independent of n and x.

Proof Using the representation

$$
g(t)=g(x)+\int_{x}^{t} g^{\prime}(u) d u,
$$

we get

$$
\begin{equation*}
\left|B_{n}^{p, q}(g ; x)-g(x)\right|=\left|B_{n}^{p, q}\left(\int_{x}^{t} g^{\prime}(u) d u ; x\right)\right| \tag{3.3}
\end{equation*}
$$

For any $x \in(0,1)$ and $t \in[0,1]$ we find that

$$
\begin{equation*}
\left|\int_{x}^{t} g^{\prime}(u) d u\right| \leq\left\|\phi g^{\prime}\right\|\left|\int_{x}^{t} \frac{1}{\phi(u)} d u\right| \tag{3.4}
\end{equation*}
$$

Further,

$$
\begin{aligned}
\left|\int_{x}^{t} \frac{1}{\phi(u)} d u\right| & =\left|\int_{x}^{t} \frac{1}{\sqrt{u(1-u)}} d u\right| \\
& \leq\left|\int_{x}^{t}\left(\frac{1}{\sqrt{u}}+\frac{1}{\sqrt{1-u}}\right) d u\right| \\
& \leq 2(|\sqrt{t}-\sqrt{x}|+|\sqrt{1-t}-\sqrt{1-x}|)
\end{aligned}
$$

$$
\begin{align*}
& =2|t-x|\left(\frac{1}{\sqrt{t}+\sqrt{x}}+\frac{1}{\sqrt{1-t}+\sqrt{1-x}}\right) \\
& <2|t-x|\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{1-x}}\right) \leq \frac{2 \sqrt{2}|t-x|}{\phi(x)} \tag{3.5}
\end{align*}
$$

From (3.3)-(3.5) and using the Cauchy-Schwarz inequality, we obtain

$$
\begin{aligned}
\left|B_{n}^{p, q}(g ; x)-g(x)\right| & <2 \sqrt{2}\left\|\phi g^{\prime}\right\| \phi^{-1}(x) B_{n}^{p, q}(|t-x| ; x) \\
& \leq 2 \sqrt{2}\left\|\phi g^{\prime}\right\| \phi^{-1}(x)\left(B_{n}^{p, q}\left((t-x)^{2} ; x\right)\right)^{1 / 2}
\end{aligned}
$$

Using Lemma 1.2, we get

$$
\left|B_{n}^{p, q}(g ; x)-g(x)\right| \leq \frac{2 \sqrt{2}}{\sqrt{[n]_{p, q}}}\left\|\phi g^{\prime}\right\|
$$

Now, using the above inequality we can write

$$
\begin{aligned}
\left|B_{n}^{p, q}(f ; x)-f(x)\right| & \leq\left|B_{n}^{p, q}(f-g ; x)\right|+|f(x)-g(x)|+\left|B_{n}^{p, q}(g ; x)-g(x)\right| \\
& \leq 2 \sqrt{2}\left(\|f-g\|+\frac{1}{\sqrt{[n]_{p, q}}}\left\|\phi g^{\prime}\right\|\right) .
\end{aligned}
$$

Taking the infimum on the right-hand side of the above inequality over all $g \in W_{\phi}[0,1]$, we get

$$
\left|B_{n}^{p, q}(f ; x)-f(x)\right| \leq C K_{\phi}\left(f ; \frac{1}{\sqrt{[n]_{p, q}}}\right)
$$

Using equation (3.2) this theorem is proven.

4 Voronovskaja type theorem

Using the first order Ditzian-Totik modulus of smoothness, we prove a quantitative Voronovskaja type theorem for the (p, q)-Bernstein operators.

Theorem 4.1 For any $f \in C^{2}[0,1]$ the following inequalities hold:
(i) $\left|[n]_{p, q}\left[B_{n}^{p, q}(f ; x)-f(x)\right]-\frac{p^{n-1} \phi^{2}(x)}{2} f^{\prime \prime}(x)\right| \leq C \omega_{\phi}\left(f^{\prime \prime}, \phi(x) n^{-1 / 2}\right)$,
(ii) $\left|[n]_{p, q}\left[B_{n}^{p, q}(f ; x)-f(x)\right]-\frac{p^{n-1} \phi^{2}(x)}{2} f^{\prime \prime}(x)\right| \leq C \phi(x) \omega_{\phi}\left(f^{\prime \prime}, n^{-1 / 2}\right)$,
where C is a positive constant.
Proof Let $f \in C^{2}[0,1]$ be given and $t, x \in[0,1]$. Using Taylor's expansion, we have

$$
f(t)-f(x)=(t-x) f^{\prime}(x)+\int_{x}^{t}(t-u) f^{\prime \prime}(u) d u
$$

Therefore,

$$
\begin{aligned}
f(t)-f(x)-(t-x) f^{\prime}(x)-\frac{1}{2}(t-x)^{2} f^{\prime \prime}(x) & =\int_{x}^{t}(t-u) f^{\prime \prime}(u) d u-\int_{x}^{t}(t-u) f^{\prime \prime}(x) d u \\
& =\int_{x}^{t}(t-u)\left[f^{\prime \prime}(u)-f^{\prime \prime}(x)\right] d u
\end{aligned}
$$

In view of Lemma 1.1 and Lemma 1.2, we get

$$
\begin{equation*}
\left|B_{n}^{p, q}(f ; x)-f(x)-\frac{p^{n-1}}{2[n]_{p, q}} \phi^{2}(x) f^{\prime \prime}(x)\right| \leq B_{n}^{p, q}\left(\left|\int_{x}^{t}\right| t-u| | f^{\prime \prime}(u)-f^{\prime \prime}(x)|d u| ; x\right) . \tag{4.1}
\end{equation*}
$$

The quantity $\left|\int_{x}^{t}\right| f^{\prime \prime}(u)-f^{\prime \prime}(x)| | t-u|d u|$ was estimated in [17], p.337, as follows:

$$
\begin{equation*}
\left|\int_{x}^{t}\right| f^{\prime \prime}(u)-f^{\prime \prime}(x)| | t-u|d u| \leq 2\left\|f^{\prime \prime}-g\right\|(t-x)^{2}+2\left\|\phi g^{\prime}\right\| \phi^{-1}(x)|t-x|^{3} \tag{4.2}
\end{equation*}
$$

where $g \in W_{\phi}[0,1]$. On the other hand, for any $m=1,2, \ldots$ and $0<q<p \leq 1$, there exists a constant $C_{m}>0$ such that

$$
\begin{equation*}
\left|B_{n}^{p, q}\left((t-x)_{p, q}^{m} ; x\right)\right| \leq C_{m} \frac{\phi^{2}(x)}{[n]_{p, q}^{\left\lfloor\frac{m+1}{2}\right\rfloor}}, \tag{4.3}
\end{equation*}
$$

where $x \in[0,1]$ and $\lfloor a\rfloor$ is the integer part of $a \geq 0$.
Throughout this proof, C denotes a constant not necessarily the same at each occurrence.
Now, combining (4.1)-(4.3) and applying Lemma 1.2, the Cauchy-Schwarz inequality, we get

$$
\begin{aligned}
& \left|B_{n}^{p, q}(f ; x)-f(x)-\frac{p^{n-1} \phi^{2}(x)}{2[n]_{p, q}} f^{\prime \prime}(x)\right| \\
& \quad \leq 2\left\|f^{\prime \prime}-g\right\| B_{n}^{p, q}\left((t-x)^{2} ; x\right)+2\left\|\phi g^{\prime}\right\| \phi^{-1}(x) B_{n}^{p, q}\left(|t-x|^{3} ; x\right) \\
& \quad \leq 2\left\|f^{\prime \prime}-g\right\| \frac{\phi^{2}(x)}{[n]_{p, q}}+2\left\|\phi g^{\prime}\right\| \phi^{-1}(x)\left\{B_{n}^{p, q}(t-x)^{2} ; x\right\}^{1 / 2}\left\{B_{n}^{p, q}\left((t-x)^{4} ; x\right)\right\}^{1 / 2} \\
& \quad \leq 2\left\|f^{\prime \prime}-g\right\| \frac{\phi^{2}(x)}{[n]_{p, q}}+2 \frac{C}{[n]_{p, q}}\left\|\phi g^{\prime}\right\| \frac{\phi(x)}{\sqrt{[n]_{p, q}}} \\
& \quad \leq \frac{C}{[n]_{p, q}}\left\{\phi^{2}(x)\left\|f^{\prime \prime}-g\right\|+[n]_{p, q}^{-1 / 2} \phi(x)\left\|\phi g^{\prime}\right\|\right\}
\end{aligned}
$$

Since $\phi^{2}(x) \leq \phi(x) \leq 1, x \in[0,1]$, we obtain

$$
\left|[n]_{p, q}\left[B_{n}^{p, q}(f ; x)-f(x)\right]-\frac{p^{n-1} \phi^{2}(x)}{2} f^{\prime \prime}(x)\right| \leq C\left\{\left\|f^{\prime \prime}-g\right\|+[n]_{p, q}^{-1 / 2} \phi(x)\left\|\phi g^{\prime}\right\|\right\}
$$

Also, the following inequality can be obtained:

$$
\left|[n]_{p, q}\left[B_{n}^{p, q}(f ; x)-f(x)\right]-\frac{p^{n-1} \phi^{2}(x)}{2} f^{\prime \prime}(x)\right| \leq C \phi(x)\left\{\left\|f^{\prime \prime}-g\right\|+[n]_{p, q}^{-1 / 2}\left\|\phi g^{\prime}\right\|\right\}
$$

Taking the infimum on the right-hand side of the above relations over $g \in W_{\phi}[0,1]$, we get

$$
\left|[n]_{p, q}\left[B_{n}^{p, q}(f ; x)-f(x)\right]-\frac{p^{n-1} \phi^{2}(x)}{2} f^{\prime \prime}(x)\right| \leq\left\{\begin{array}{l}
C K_{\phi}\left(f^{\prime \prime} ; \phi(x)[n]_{p, q}^{-1 / 2}\right) \tag{4.4}\\
C \phi(x) K_{\phi}\left(f^{\prime \prime} ;[n]_{p, q}^{-1 / 2}\right)
\end{array}\right.
$$

Using (4.4) and (3.2) the theorem is proved.

5 Better approximation

In 2003, King [18] proposed a technique to obtain a better approximation for the wellknown Bernstein operators as follows:

$$
\begin{equation*}
\left(\left(B_{n} f\right) \circ r_{n}\right)(x)=\sum_{k=0}^{n} f\binom{k}{n}\binom{n}{k}\left(r_{n}(x)\right)^{k}\left(1-r_{n}(x)\right)^{n-k} \tag{5.1}
\end{equation*}
$$

where r_{n} is a sequence of continuous functions defined on [0,1] with $0 \leq r_{n}(x) \leq 1$ for each $x \in[0,1]$ and $n \in\{1,2, \ldots\}$. The modified Bernstein operators (5.1) preserve e_{0} and e_{2} and present a degree of approximation at least as good. In [19], the authors consider the sequence of linear Bernstein-type operators defined for $f \in C[0,1]$ by $B_{n}\left(f \circ \tau^{-1}\right) \circ \tau, \tau$ being any function that is continuously differentiable ∞ times on $[0,1]$, such that $\tau(0)=0$, $\tau(1)=1$, and $\tau^{\prime}(x)>0$ for $x \in[0,1]$.
So, using the technique proposed in [19], we modify the (p, q)-Bernstein operators as follows:

$$
\bar{B}_{n}^{p, q}(f ; x)=\sum_{k=0}^{n} \bar{b}_{n, k}^{p, q}(x)\left(f \circ \tau^{-1}\right)\left(\frac{p^{n-k}[k]_{p, q}}{[n]_{p, q}}\right),
$$

where

$$
\bar{b}_{n}^{p, q}(x)=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{p, q} p^{[k(k-1)-n(n-1)] / 2} \tau(x)^{k}(1 \ominus \tau(x))_{p, q}^{n-k} .
$$

Then we have

$$
\begin{aligned}
& \bar{B}_{n}^{p, q}\left(e_{0} ; x\right)=1, \quad \bar{B}_{n}^{p, q}(\tau(t) ; x)=\tau(x), \\
& \bar{B}_{n}^{p, q}\left(\tau^{2}(t) ; x\right)=\frac{p^{n-1}}{[n]_{p, q}} \tau(x)+\frac{q[n-1]_{p, q}}{[n]_{p, q}} \tau^{2}(x), \\
& \bar{B}_{n}^{p, q}\left((\tau(t)-\tau(x))^{2} ; x\right)=\frac{p^{n-1}}{[n]_{p, q}} \phi_{\tau}^{2}(x),
\end{aligned}
$$

where $\phi_{\tau}^{2}(x):=\tau(x)(1-\tau(x))$.

$$
\begin{aligned}
& \text { Figure } 3 \text { Approximation process by } B_{n}^{p, q} \\
& \text { and } \bar{B}_{n}^{p, q} \text {. }
\end{aligned}
$$

Example 5.1 We compare the convergence of (p, q)-analog of Bernstein operators $B_{n}^{p, q} f$ with the modified operators $\bar{B}_{n}^{p, q} f$. We have considered the function $f(x)=\sin (10 x)$ and $\tau(x)=\frac{x^{2}+x}{2}$. For $x \in\left[\frac{1}{2}, 1\right], p=0.95, q=0.9, n=100$, the convergence of the operators $B_{n}^{p, q}$ and $\bar{B}_{n}^{p, q}$ to the function f is illustrated in Figure 3. Note that the approximation by $\bar{B}_{n}^{p, q} f$ is better than using (p, q)-Bernstein operators $B_{n}^{p, q} f$.

Competing interests

The authors declare that they have no competing interests

Authors' contributions

All authors read and approved the final manuscript.

Author details

${ }^{1}$ Department of Mathematics and RINS, Gyeongsang National University, Jinju, 52828, Korea. ${ }^{2}$ Department of Mathematics and Statistics, Virtual University of Pakistan, Lahore, 54000, Pakistan. ${ }^{3}$ Department of Mathematics and Informatics, Lucian Blaga University of Sibiu, Str. Dr. I. Ratiu, No. 5-7, Sibiu, 550012, Romania. ${ }^{4}$ Center for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan, 60800, Pakistan. ${ }^{5}$ Department of Mathematics, Dong-A University, Busan, 49315, Korea.

Acknowledgements

The authors would like to thank the editor and the referees for useful comments and suggestions. This work was supported by the Dong-A University research fund.

Received: 26 February 2016 Accepted: 19 June 2016 Published online: 30 June 2016

References

1. Lupaş, A: A q-analogue of the Bernstein operator. In: Seminar on Numerical and Statistical Calculus, vol. 9, pp. 85-92. University of Cluj-Napoca, Cluj-Napoca (1987)
2. Aral, A, Gupta, V, Agarwal, RP: Applications of q-Calculus in Operator Theory. Springer, New York (2013)
3. Acu, AM: Stancu-Schurer-Kantorovich operators based on q-integers. Appl. Math. Comput. 259, 896-907 (2015) doi:10.1016/j.amc.2015.03.032
4. Acar, T, Aral, A: On pointwise convergence of q-Bernstein operators and their q-derivatives. Numer. Funct. Anal. Optim. 36(3), 287-304 (2015). doi:10.1080/01630563.2014.970646
5. Acu, AM, Muraru, CV: Approximation properties of bivariate extension of q-Bernstein-Schurer-Kantorovich operators. Results Math. 67(3-4), 265-279 (2015). doi:10.1007/s00025-015-0441-7
6. Agratini, O: On a q-analogue of Stancu operators. Cent. Eur. J. Math. 8(1), 191-198 (2010) doi:10.2478/s11533-009-0057-9
7. Kang, SM, Acu, AM, Rafiq, A, Kwun, YC: Approximation properties of q-Kantorovich-Stancu operator. J. Inequal. Appl. 2015, 211 (2015). doi:10.1186/s13660-015-0729-x
8. Kang, SM, Acu, AM, Rafiq, A, Kwun, YC: On q-analogue of Stancu-Schurer-Kantorovich operators based on q-Riemann integral. J. Comput. Anal. Appl. 21(3), 564-577 (2016)
9. Ulusoy, G, Acar, T: q-Voronovskaya type theorems for q-Baskakov operators. Math. Methods Appl. Sci. (2015). doi:10.1002/mma. 3784
10. Burban, I: Two-parameter deformation of the oscillator algebra and (p, q)-analog of two-dimensional conformal field theory. J. Nonlinear Math. Phys. 2(3-4), 384-391 (1995). doi:10.2991/jnmp.1995.2.3-4.18
11. Sahai, V, Yadav, S: Representations of two parameter quantum algebras and p, q-special functions. J. Math. Anal. Appl. 335, 268-279 (2007). doi:10.1016/j.jmaa.2007.01.072
12. Mursaleen, M, Ansari, KJ, Khan, A: Erratum to 'On (p, q)-analogue of Bernstein operators' [Appl. Math. Comput. 266 (2015) 874-882]. Appl. Math. Comput. 278, 70-71 (2016). doi:10.1016/j/amc.2015.04.090
13. Mursaleen, M, Nasiruzzaman, M, Khan, A, Ansari, KJ: Some approximation results on Bleimann-Butzer-Hahn operators defined by (p,q)-integers. Filomat 30(3), 639-648 (2016). doi:10.2298/FIL1603639M
14. Acar, T: (p,q)-Generalization of Szász-Mirakyan operators. Math. Methods Appl. Sci. (2015). doi:10.1002/mma. 3721
15. Oru, H, Phillips, GM: A generalization of the Bernstein polynomials. Proc. Edinb. Math. Soc. 42, 403-413 (1999). doi:10.1017/S0013091500020332
16. Ditzian, Z, Totik, V: Moduli of Smoothness. Springer, New York (1987)
17. Finta, Z: Remark on Voronovskaja theorem for q-Bernstein operators. Stud. Univ. Babeş-Bolyai, Math. 56(2), 335-339 (2011)
18. King, JP: Positive linear operators which preserve x^{2}. Acta Math. Hung. 99, 203-208 (2003). doi:10.1023/A:1024571126455
19. Cárdenas-Morales, D, Garrancho, P, Raşa, I: Bernstein-type operators which preserve polynomials. Comput. Math. Appl. 62(1), 158-163 (2011). doi:10.1016/j.camwa.2011.04.063
