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Abstract
In this paper, we consider a discrete-time risk model with the claim number following
a Poisson ARCH process. In this model, the mean of the current claim number
depends on the previous observations. We study the large deviations for the
aggregate amount for claims. For a heavy-tailed case, we obtain a precise large
deviation formula, which agrees with existing ones in the literature. In computing the
moderate deviation principle required by the structure of the claim-number process,
our treatment substantially relies on an algorithm specifically designed for the
autoregressive structure of our models.
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1 Introduction
The goal of this paper is studying the precise large deviations for the aggregate claims

Sn =
n∑

t=

Nt∑

j=

Xt,j, (.)

where Nt is the number of claims in period t and {Xt,j, j = , , . . . , t = , , . . . , n} form an
array of independent identically distributed (i.i.d.) claim-size random variables indepen-
dent of Nt with distribution FX =  – FX . Here the claim-number process {Nt , t = , , . . .}
is described by the Poisson first-order Autoregressive Conditional Heteroscedasticity
(ARCH()) process, which is defined as

{
Nt|Ft– ∼ Poisson(λt),
λt = a + aNt–,

(.)

where a > ,  ≤ a < , N ≥  is a deterministic integer, and Ft– = σ (N, N, . . . , Nt–)
is the σ -field generated by {N, N, . . . , Nt–}.

In the last few years, research on the time series models for count data has become
a popular topic in the literature. Cossette et al. [] used two integer-valued time series,
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namely the Poisson moving average (MA) and Poisson autoregressive (AR) processes, to
model the claim frequency in the risk model. Li [] proposed a discrete-time risk model
with the claim number being an integer-valued ARCH (INARCH) process with Poisson
deviates, namely the model (.) and derived some statistical properties and adjustment
coefficient for the risk model.

The Poisson INARCH process was first considered by Rydberg and Shephard [] and
applied to finance to model the number of transactions taking place during a short time
interval. In model (.), it is assumed that the conditional mean of the current claim num-
ber has a linear relationship with the previous values of observations. Streett [] and Fer-
land et al. [] point out that the process Nt in (.) is stationary if  ≤ a < . In particular,
the expectation and variance of Nt are

ENt =
a

 – a
and Var(Nt) =

ENt

 – a


.

We study the precise large deviations for {Sn, n ≥ } in (.). We are only interested in
the case of heavy-tailed claims. Heavy-tailed distributions belong to the core issues in
actuarial science, because they are more in accordance with claims’ reality than light-tailed
ones. A useful heavy-tailed class is the class C of distribution functions with consistent
variation (also called intermediate regular variation), characterized by the relations F(x) >
 for all x ≥  and

lim
y↑

lim sup
x→∞

F(xy)
F(x)

= lim
y↓

lim inf
x→∞

F(xy)
F(x)

= .

Our main result is given below.

Theorem . Consider the aggregate amount of claims (.), assume that FX(x) ∈ C , EX =
μ ∈ (,∞), and N ≥  a deterministic integer. Then, for every fixed γ > , uniformly for
all x ≥ γ n,

P

(
Sn –

a

 – a
nμ > x

)
∼ na

 – a
FX(x), n → ∞. (.)

A precise large deviation is an important study task in applied probability, and it is usu-
ally used to quantitatively characterize the property of extremal events. As is well known,
there is a vast amount of literature studying the asymptotic behavior of the large deviation
of the risk models in the presence of heavy-tailed claim sizes. See, e.g., Klüppelberg and
Mikosch [], Ng et al. [], Leipus and Šiaulys [], Asmussen [], Liu [], Yang et al. [],
Chen and Yuen [], among many others. On the other hand, the precise large deviations
to the risk model with the claim number being a Poisson ARCH process has not been
considered in the literature.

We now comment on the approaches used in this work. Our method is much more
elementary and does not use the classical treatment in the area of precise large devia-
tion. For convenience in application, we first show that the accumulated aggregate claim
Sn in (.) has the same distribution with another random walk. Second, we establish the
moderate deviation principle (MDP) for the partial sum

∑n
t= Nt generated by the Poisson

ARCH() process Nt defined in (.). As a consequence of MDP, we are able to claim the
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genuine exponential decay for the probability that the sample average deviates away from
its mathematical equilibrium value. This property is a crucial step of our proof of Theo-
rem .. Finally, we would like to point out that equation (.) agrees with existing ones in
the literature. This indicates that the dependence structure of Nt defined by (.) does not
affect the asymptotic behavior of the large deviations of {Sn, n ≥ }.

The rest of the paper is organized as follows. Section  recalls various preliminaries and
prepares a few lemmas. Section  presents the proof of the main result by establishing the
corresponding asymptotic lower and upper bounds.

2 Preliminaries
Throughout this paper, for two positive functions f (x) and g(x), we write

f (x) ∼ g(x) if lim
x→∞ f (x)/g(x) = ;

f (x) � g(x) if lim sup
x→∞

f (x)/g(x) ≤  and

f (x) � g(x) if lim inf
x→∞ f (x)/g(x) ≥ .

For two positive bivariate functions f (x, n) and g(x, n), we say that the asymptotic relation
f (x, n) � g(x, n) holds uniformly for x in a nonempty set �n if

lim sup
n→∞

sup
x∈�n

f (x; n)
g(x; n)

≤ .

First, we show that the accumulated aggregate claim Sn in (.) has the same distribution
with another random walk.

Lemma . Let {Y , Yj, j ≥ } be a sequence of i.i.d. non-negative random variables such
that Y and X in (.) are identically distributed, then

Sn
d=

N+N+···+Nn∑

j=

Yj,

where d= denotes the identical distribution.

Proof For any real r, the moment generating function of Sn is expressed as

Ms = E
{
exp{rSn}

}
= E

{
exp

{
r

n∑

i=

Ni∑

j=

Xi,j

}}

= E
{

er
∑N

j= X,j er
∑N

j= X,j · · · er
∑Nn

j= Xk,j ·
∑

n,n,...,nn

I(N=n,N=n,...,Nn=nn)

}

=
∑

n,n,...,nn

E
{

er
∑n

j= X,j er
∑n

j= X,j · · · er
∑nn

j= Xn,j · I(N=n,N=n,...,Nn=nn)
}

=
∑

n,n,...,nn

(
EerX)∑n

i= ni · P{N = n, N = n, . . . , Nn = nn}

= E
{

(MX)N+N+···+Nn
}

.
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On the other hand, we have

E

{
exp

{
r

N+N+···+Nn∑

j=

Yj

}}

= E

{
exp

{
r

N+N+···+Nn∑

j=

Yj

}
·
∑

m
I(N+N+···+Nn=m)

}

=
∑

m
E

{
exp

{
r

m∑

j=

Yj

}
· I(N+N+···+Nn=m)

}

=
∑

m

(
EerY )m · P{N + N + · · · + Nn = m} = E

{
(MY )N+N+···+Nn

}
,

where m = n + n + · · ·+ nn. Hence, by the uniqueness of the moment generating function,
we know that Sk and

∑N+···+Nn
j= Yj have the same distribution. �

Next, the following lemma establishes the MDP for {Nt , t ≥ }.

Lemma . Assume {Nt , t ≥ } defined by (.), and N ≥  be a deterministic integer. Let
bn be a sequence of positive numbers satisfying bn → ∞ and bn/n → , we have

lim sup
n→∞


bn

logP

{
√
nbn

n∑

t=

(
Nt –

a

 – a

)
∈ H

}
≤ – inf

x∈H
IM(x) (.)

for each closed set H ⊂R; and

lim inf
n→∞


bn

logP

{
√
nbn

n∑

t=

(
Nt –

a

 – a

)
∈ G

}
≥ – inf

x∈G
IM(x) (.)

for each open set G ∈ R, where the rate function IM(·) is given as

IM(x) =
x

σ  , x ∈ R, where σ  = E
(
Var(Nt|Ft–)

)
=

a

 – a
.

Proof By the Gärtner-Ellis theorem (Theorem .., p., Dembo and Zeitouni []), all
we need to show is that

lim
n→∞


bn

logE exp

{
β

√
bn

n

n∑

t=

(Nt – EN)

}
=



σ β, β ∈R. (.)

Let β ∈R be fixed but arbitrary and write

ln = a
(
eθn – 

)
,

where θn = β

√
bn
n . Observe that for any t ≥ ,

E
[
exp

{
θn(Nt – EN) – lnNt–

}|Ft–
]

= exp{–lnNt– – θnEN}E
[
exp{θnNt}|Ft–

]
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= exp{–lnNt– – θnEN} exp
{

(a + aNt–)
(
eθn – 

)}

= exp

{
a

 – a

[
( – a)

(
eθn – 

)
– θn

]}
.

Hence,

E exp

{ n+∑

t=

{
θn(Nt – EN) – lnNt–

}
}

=
(

exp

{
a

 – a

[
( – a)

(
eθn – 

)
– θn

]})n+

. (.)

On the other hand,

E exp

{ n+∑

t=

{
θn(Nt – EN) – lnNt–

}
}

= exp
{

–(n + )lnEN
}
E

{
exp

{
θnNn+ – lnN

}
exp

{
(θn – ln)

n∑

t=

(Nt – EN)

}}

= exp
{

–(n + )lnEN
}
E exp

{
θnNn+ + (θn – ln)

n∑

t=

(Nt – EN)

}
. (.)

Combining (.) and (.) and by the definition of ln,

(
exp

{
a

 – a

[
( – a)

(
eθn – 

)
– θn

]})n+(
exp

{
a

(
eθn – 

)
EN

})n+

=
(

exp

{
a

 – a

[
eθn –  – θn

]})n+

= E exp

{
θnNn+ + (θn – ln)

n∑

t=

(Nt – EN)

}
.

By the Taylor expansion eθn =  + θn + 
θ

n + o(θ
n ), the right-hand side is asymptotically

equivalent to

exp

{


σ βbn

}
.

Thus

lim
n→∞


bn

logE exp

{
θnNn+ + (θn – ln)

n∑

t=

(Nt – EN)

}
=



σ β.

By the fact that supt≥ E exp{θNt} < ∞ (∀θ > ) (see Li []) and θn → , a standard argu-
ment of an exponential approximation by the Hölder inequality enables us to remove the
term θnNn+ from the above equation. So we have

lim
n→∞


bn

logE exp

{
(θn – ln)

n∑

t=

(Nt – EN)

}
=



σ β. (.)
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By the Hölder inequality, therefore,

E exp

{
(θn – ln)

n∑

t=

(Nt – EN)

}

≤
(
E exp

{
θn

n∑

t=

(Nt – EN)

}) θn–ln
θn

≤ E exp

{
θn

n∑

t=

(Nt – EN)

}
,

where the second step follows from the fact that

E exp

{
θn

n∑

t=

(Nt – EN)

}
≥ ,

which can be proved by Jensen’s inequality.
By the fact that θn = β

√
bn
n and by (.), we obtain the lower bound

lim inf
n→∞


bn

logE exp

{
β

√
bn

n

n∑

t=

(Nt – EN)

}
≥ 


σ β. (.)

On the other hand, given a small number  < δ < , θn – ln > ( – δ)θn = ( – δ)β
√

bn
n as n

is sufficiently large. By the Hölder inequality

E exp

{
( – δ)β

√
bn

n

n∑

t=

(Nt – EN)

}

≤
(
E exp

{
(θn – ln)

n∑

t=

(Nt – EN)

}) (–δ)θn
θn–ln

≤ E exp

{
(θn – ln)

n∑

t=

(Nt – EN)

}
.

By (.), therefore,

lim sup
n→∞


bn

logE exp

{
( – δ)β

√
bn

n

n∑

t=

(Nt – EN)

}
≤ 


σ β.

Since β ∈R can be arbitrary, replacing it by ( – δ)–β in the above leads to

lim sup
n→∞


bn

logE exp

{
β

√
bn

n

n∑

t=

(Nt – EN)

}
≤ 


σ 

(
β

 – δ

)

.

Letting δ → + on the right-hand side yields the desired upper bound, which, together
with the lower bound (.), leads to (.). �

As a consequence of Lemma ., for every η > , considering the closed set H = {x, |x| ≥
η} and bn =

√
n, we have

P

(

n

∣∣∣∣∣

n∑

t=

(Nt – EN)

∣∣∣∣∣ ≥ η

)
≤ P

(


n/

∣∣∣∣∣

n∑

t=

(Nt – EN)

∣∣∣∣∣ ≥ η

)
≤ exp{–cη

√
n}, (.)
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where cη = η

σ >  is independent of n. This gives the genuine exponential decay for the
probability that the sample average deviates from its expectation.

The last lemma below is a restatement of Theorem . of Ng et al. [].

Lemma . Let {Y , Yj, j ≥ } be a sequence of i.i.d. non-negative random variables with
common distribution function FY ∈ C and finite expectation μ, let Qn =

∑n
j= Yj. Then, for

any fixed γ > ,

P(Qn – nμ > y) ∼ nFY (y) (n → ∞) uniformly for y ≥ γ n.

3 Proof of Theorem 1.1
Throughout this section, unless otherwise stated, every limit relation is understood as
valid uniformly for all x ≥ γ n as n → ∞. Trivially, equation (.) amounts to the conjunc-
tion of

P

(
Sn –

a

 – a
nμ > x

)
� na

 – a
FX(x) and

P

(
Sn –

a

 – a
nμ > x

)
� na

 – a
FX(x),

(.)

which will be proven separately in the following two subsections.

3.1 Proof of the first relation (3.1)
Write ν = EN = a

–a
. For arbitrarily fixed, but small η,  < η < , by Lemma ., we derive

P(Sn – νnμ > x)

= P

(N+···+Nn∑

j=

Yj – νnμ > x

)

= P

{ n∑

t=

Nt < n(ν + η),
N+···+Nn∑

j=

Yj – νnμ > x

}

+ P

{ n∑

t=

Nt ≥ n(ν + η),
N+···+Nn∑

j=

Yj – νnμ > x

}

≤ P

([n(ν+η)]∑

j=

Yj – νnμ > x

)
+ P

{ n∑

t=

Nt ≥ n(ν + η),
N+···+Nn∑

j=

Yj – νnμ > x

}

= � + �, (.)

where [·] denotes the integral part of ·, throughout this paper.
From Lemma ., we see that, for some small η such that γ – ημ > ,

� = P

([n(ν+η)]∑

j=

Yj –
[
n(ν + η)

]
μ > x + nνμ –

[
n(ν + η)

]
μ

)

∼ [
n(ν + η)

]
FY

(
x + nνμ –

[
n(ν + η)

]
μ

)

≤ n(ν + η)FX
(
x( – ημ/γ )

)
. (.)



Yu Journal of Inequalities and Applications  (2016) 2016:140 Page 8 of 10

As for the second term,

� = P

{ n∑

t=

Nt ≥ n(ν + η),
N+···+Nn∑

j=

Yj – nνμ > x

}

=
∑

m≥n(ν+η)

P

{ n∑

t=

Nt = m

}
P

{ m∑

j=

Yj – nνμ > x

}

≤
∑

m≥n(ν+η)

P

{ n∑

t=

Nt = m

}
P

{ m∑

j=

Yj > x

}

≤
∑

m≥n(ν+η)

P

{ n∑

t=

Nt = m

} m∑

j=

P

{
Yj >

x
m

}

≤
∑

m≥n(ν+η)

P

{ n∑

t=

Nt = m

}
mFY

(
x
m

)
.

By the assumption that FY = FX ∈ C there is a constant C >  independent of m, and for
every p > J+

F such that FX( x
m ) ≤ CmpFX(x) for all m and sufficiently large x (see Lemma .,

Ng et al. []), where J+
F is called the upper Matuszewska index. Hence

� ≤ CFX(x)
∑

m≥n(ν+η)

mp+
P

{ n∑

t=

Nt = m

}

≤ CFX(x)E

{( n∑

t=

Nt

)p+

1{∑n
t= Nt≥n(ν+η)}

}
. (.)

We now claim that

lim
n→∞E

{( n∑

t=

Nt

)p+

1{∑n
t= Nt≥n(ν+η)}

}
= . (.)

Indeed, by the Cauchy-Schwarz inequality

E

{( n∑

t=

Nt

)p+

1{∑n
t= Nt≥n(ν+η)}

}

≤
{
E

( n∑

t=

Nt

)(p+)}/{
P

( n∑

t=

Nt ≥ n(ν + η)

)}/

.

Using (.), we have

P

( n∑

t=

Nt ≥ n(ν + η)

)
≤ P

(

n

∣∣∣∣∣

n∑

t=

(Nt – ν)

∣∣∣∣∣ ≥ η

)
≤ exp{–cη

√
n},

where cη = η

σ >  is independent of n. This together with fact that E(
∑n

t= Nt)(p+) =
O(n(p+)) proves (.).
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Hence, by (.) and (.), we have

� ≤ o
(
FX(x)

)
= o

(
nνFX(x)

)
. (.)

Substituting (.) and (.) into (.) yields

P(Sn – nνμ > x) � n(ν + η)FX
(
x( – ημ/γ )

)
+ o

(
nνFX(x)

)
.

By the arbitrariness of η and the condition FX ∈ C , we obtain the first relation (.).

3.2 Proof of the second relation (3.1)
Let  < η <  be arbitrarily fixed with η small. Consider the decomposition

P(Sn – nνμ > x) = P

(N+N+···+Nn∑

j=

Yj – nνμ > x

)

≥ P

( n∑

t=

Nt > n(ν – η),
N+N+···+Nn∑

j=

Yj – nνμ > x

)

≥ P

( n∑

t=

Nt > n(ν – η)

)
· P

([n(ν–η)]∑

j=

Yj – nνμ > x

)
. (.)

Applying (.) we have

P

{ n∑

t=

Nt > n(ν – η)

}
≥ P

{

n

∣∣∣∣∣

n∑

t=

(Nt – ν)

∣∣∣∣∣ < η

}
→ , as n → ∞. (.)

By Lemma ., have

P

([n(ν–η)]∑

j=

Yj – nνμ > x

)
∼ [

n(ν – η)
]
FY

(
x + nνμ –

[
n(ν – η)

]
μ

)

≥ n(ν – η)
[n(ν – η)]
n(ν – η)

FX
(
x( + ημ/γ )

)
. (.)

Finally, substituting (.) and (.) into (.) yields

P(Sn – nνμ > x) � n(ν – η)FX
(
x( + ημ/γ )

)
.

By the arbitrariness of η and the condition FX ∈ C , we obtain the second relation (.).
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