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1 Introduction
Many problems in science and engineering lead to eigenvalue and singular value problems
for matrices. Perturbation bounds of eigenvalues and singular values play an important
role in matrix computations. Let Sn be the set of all n! permutations of {, , . . . , n}. If x =
(x, x, . . . , xn) and π ∈ Sn, then the vector xπ is defined as (xπ (), xπ (), . . . , xπ (n)). A square
matrix is called doubly stochastic if its elements are real nonnegative numbers and if the
sum of the elements in each row and in each column is equal to . Let Cn×n be the set of
n × n complex matrices. Let A = (aij) ∈ C

n×n, we use the notation (see [, ])

‖A‖p =

( n∑
i,j=

|aij|p
) 

p

for p ≥ , (.)

‖A‖q,p =

( n∑
j=

( n∑
k=

|akj|q
) p

q
) 

p

for p > , q > ,

p

+

q

= . (.)

Let T ∈C
n×n and assume that

�(k) = diag
(
λ

(k)
 ,λ(k)

 , . . . ,λ(k)
n

) ∈C
n×n, k = , . . . , ,

are diagonal matrices. In [], the following classical result is given:

∥∥�()T�() – �()T�()∥∥
 ≥ s

n(T)
n∑

i=

∣∣λ()
i λ

()
π (i) – λ

()
i λ

()
π (i)

∣∣ (.)
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for some π ∈ Sn, where sn(T) is the smallest singular value of T . The inequality has many
applications in bounding the (relative) perturbation for eigenvalues and singular values,
such as [–] and the references therein. We generalize (.) in Section .

Let λ(A) denote the spectrum of matrix A. In , Ikramov [] defined the ‘Hölder dis-
tance dp(λ(A),λ(B)) between the spectra’ of the matrices A and B, which have the eigen-
values λ,λ, . . . ,λn and μ,μ, . . . ,μn, respectively, by the equation:

dp
(
λ(A),λ(B)

)
= min

π∈Sn

( n∑
i=

|λi – μπ (i)|p
) 

p

. (.)

If A and B are Hermitian matrices and  ≤ p < , [] obtained

dp
(
λ(A),λ(B)

) ≤ ‖A – B‖p, (.)

which partially generalizes the Hoffman-Wielandt theorem []. However, for normal ma-
trices (.) can no longer be valid. The purpose of this paper is to obtain several inequali-
ties similar to (.) for diagonalizable matrices. We exhibit some upper bounds and lower
bounds for dp(λ(A),λ(B)) of diagonalizable matrices A and B in Section .

Majorization is one of the most powerful techniques for deriving inequalities. We use
majorization to get some perturbation bounds for singular values. For simplicity of the
notations, in most cases in this paper the vectors in R

n are regarded as row vectors, but
when they are multiplied by matrices we regard them as column vectors. Given a real
vector x = (x, x, . . . , xn) ∈R

n, we rearrange its components as x[] ≥ x[] ≥ · · · ≥ x[n].

Definition . ([], p.) For x = (x, x, . . . , xn), y = (y, y, . . . , yn) ∈ R
n, if

k∑
i=

x[i] ≤
k∑

i=

y[i], k = , , . . . , n,

then we say that x is weakly majorized by y and denote x ≺w y. If x ≺w y and
∑n

i= xi =∑n
i= yi, then we say that x is majorized by y and denote x ≺ y.

Let s ≥ s ≥ · · · ≥ sn and δ ≥ δ ≥ · · · ≥ δn be the singular values of the complex ma-
trices A = (aij) ∈ C

n×n and B = (bij) ∈ C
n×n, respectively. In [], p., and [], p., the

following classical result is given:

n∑
i=

|si – δi| ≤
n∑

i,j=

|aij – bij|. (.)

We generalize the inequality (.) in Section .

2 Perturbation bounds for eigenvalues of diagonalizable matrices
Let A ◦ B denote the Hadamard product of matrices A and B. ‖A‖ denotes the spectral
norm of matrix A. AT denotes the transpose of matrix A. For two n-square real matrices A,
B, we write A ≤e B to mean that B–A is (entrywise) nonnegative. For A = (aij) ∈C

n×n and a
real number t > , we denote A|◦|t ≡ (|aij|t) ∈C

n×n. Let sn(A) and s(A) be the smallest and
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the largest singular values of A, respectively. The following entrywise inequalities involve
the smallest and the largest singular values.

Lemma . ([], p.) Let A ∈C
n×n and let p, q be real numbers with  < p ≤  and q ≥ .

Then there exist two doubly stochastic matrices B, C ∈Cn×n such that

sn(A)pB ≤e A|◦|p (.)

and

A|◦|q ≤e s(A)qC. (.)

Theorem . Let T ∈C
n×n and let p, q be real numbers with  < p ≤  and q ≥ . Assume

that �(k) = diag(λ(k)
 ,λ(k)

 , . . . ,λ(k)
n ) ∈C

n×n, k = , . . . , , are diagonal matrices. Then there are
permutations π and ν of Sn such that

∥∥�()T�() – �()T�()∥∥p
p ≥ sp

n(T)
n∑

i=

∣∣λ()
i λ

()
π (i) – λ

()
i λ

()
π (i)

∣∣p (.)

and

∥∥�()T�() – �()T�()∥∥q
q ≤ sq

 (T)
n∑

i=

∣∣λ()
i λ

()
ν(i) – λ

()
i λ

()
ν(i)

∣∣q. (.)

Proof Set T = (tij) ∈C
n×n. Then

∥∥�()T�() – �()T�()∥∥p
p =

n∑
i,j=

|tij|p
∣∣λ()

i λ
()
j – λ

()
i λ

()
j

∣∣p

= eT(
T |◦|p ◦ M

)
e, (.)

where M = (|λ()
i λ

()
j –λ

()
i λ

()
j |p) ∈C

n×n, e = (, , . . . , )T ∈C
n. Applying inequality (.), we

have

T |◦|p ≥ sp
n(T)B,

where B = (bij) is a doubly stochastic matrix. Then

∥∥�()T�() – �()T�()∥∥p
p ≥ eT(

sp
n(T)B ◦ M

)
e = sp

n(T)eT (B ◦ M)e.

Since B is doubly stochastic, by Birkhoff’s theorem ([, ], p.) B is a convex combi-
nation of permutation matrices:

B =
n!∑

i=

τiPi, τi ≥ ,
n!∑

i=

τi = , Pi are permutation matrices.
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Suppose eT (B ◦ Pk)e = min{eT (B ◦ Pi)e |  ≤ i ≤ n!} and Pk corresponds to π ∈ Sn. Then

∥∥�()T�() – �()T�()∥∥p
p ≥ sp

n(T)eT (B ◦ M)e

= sp
n(T)eT

( n!∑
i=

τiPi ◦ M

)
e

≥ sp
n(T)

n!∑
i=

τieT (Pk ◦ M)e

= sp
n(T)eT (Pk ◦ M)e

= sp
n(T)

n∑
i=

∣∣λ()
i λ

()
π (i) – λ

()
i λ

()
π (i)

∣∣p.

Proving (.).
Use (.), (.), and the Birkhoff theorem, we can deduce the inequality (.). �

Remark . If we take p = , we get Theorem . in []. So, the bound in inequality (.)
generalizes the bound of Theorem . in [].

Next, we apply Theorem . to get some perturbation bounds for the eigenvalues of
diagonalizable matrices. Let A = (aij) ∈ C

n×n and B = (bij) ∈ C
n×n. When p > , q > , 

p +

q = , then (see [])

‖AB‖p ≤ ‖A‖p‖B‖q,p, (.)

‖AB‖p ≤ ∥∥AT∥∥
q,p‖B‖p. (.)

If B is nonsingular, then we have

‖A‖p

‖B–‖q,p
≤ ‖AB‖p. (.)

If A is nonsingular, then we have

‖B‖p

‖(A–)T‖q,p
≤ ‖AB‖p. (.)

For normal matrices the statement of Theorem  in [] (inequality (.)) can no longer
be valid. However, we have the following theorem.

Theorem . Assume that both A ∈C
n×n and B ∈C

n×n are diagonalizable and admit the
following decompositions:

A = D�D–
 and B = D�D–

 , (.)
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where D and D are nonsingular, and � = diag(λ,λ, . . . ,λn) and � = diag(μ,μ, . . . ,
μn). Then there are permutations π and ν of Sn such that

( n∑
i=

|λi – μπ (i)|p
) 

p

≤ ∥∥(
D–


)T∥∥

q,p‖D‖q,p
∥∥D–


∥∥‖D‖‖A – B‖p, (.)

( n∑
i=

|λi – μν(i)|p
) 

p

≤ ∥∥(
D–


)T∥∥

q,p‖D‖q,p
∥∥D–


∥∥‖D‖‖A – B‖p, (.)

where  < p ≤  and 
p + 

q = .

Proof Using (.), we have

‖A – B‖p
p =

∥∥D�D–
 – D�D–


∥∥p

p

=
∥∥D

(
�D–

 D – D–
 D�

)
D–


∥∥p

p (.)

and

‖A – B‖p
p =

∥∥D�D–
 – D�D–


∥∥p

p

=
∥∥D

(
D–

 D� – �D–
 D

)
D–


∥∥p

p. (.)

We give a proof of (.) with the help of (.). Similarly one can prove (.) using (.).
Applying (.) and (.) to (.) we obtain

‖A – B‖p
p ≥ ‖�D–

 D – D–
 D�‖p

p

‖(D–
 )T‖p

q,p‖D‖p
q,p

.

Using inequality (.), there is a permutation π of Sn such that

∥∥�D–
 D – D–

 D�
∥∥p

p ≥ sp
n
(
D–

 D
) n∑

i=

|λi – μπ (i)|p.

So we have

n∑
i=

|λi – μπ (i)|p ≤ ‖(D–
 )T‖p

q,p‖D‖p
q,p

sp
n(D–

 D)
‖A – B‖p

p.

We use the relations

s–
n

(
D–

 D
)

=
∥∥(

D–
 D

)–∥∥ ≤ ‖D‖
∥∥D–


∥∥

to get the inequality in (.). �

Theorem . Under the hypotheses of Theorem ., there are permutations π and ν of Sn

such that

( n∑
i=

|λi – μπ (i)|q
) 

q

≥ ‖A – B‖q

‖(D)T‖p,q‖D–
 ‖p,q‖D–

 ‖‖D‖ , (.)
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( n∑
i=

|λi – μν(i)|q
) 

q

≥ ‖A – B‖q

‖(D)T‖p,q‖D–
 ‖p,q‖D‖‖D–

 ‖ , (.)

where q ≥  and 
p + 

q = .

Proof Using (.), we have

‖A – B‖q
q =

∥∥D�D–
 – D�D–


∥∥q

q

=
∥∥D

(
�D–

 D – D–
 D�

)
D–


∥∥q

q (.)

and

‖A – B‖q
q =

∥∥D�D–
 – D�D–


∥∥q

q

=
∥∥D

(
D–

 D� – �D–
 D

)
D–


∥∥q

q. (.)

Applying (.) and (.) to (.) we obtain

‖A – B‖q
q ≤ ∥∥(D)T∥∥q

p,q

∥∥�D–
 D – D–

 D�
∥∥q

q

∥∥D–


∥∥q
p,q.

Using inequality (.), there exists a permutation π of Sn such that

∥∥�D–
 D – D–

 D�
∥∥q

q ≤ sq

(
D–

 D
) n∑

i=

|λi – μπ (i)|q,

so we have

n∑
i=

|λi – μπ (i)|q ≥ ‖A – B‖q
q

‖(D)T‖q
p,q‖D–

 ‖q
p,qsq

 (D–
 D)

.

We use the relations

s
(
D–

 D
)

=
∥∥D–

 D
∥∥ ≤ ∥∥D–


∥∥‖D‖

to get the inequality in (.).
The proof of inequality (.) is similar to the proof of (.) and is omitted here. �

For  ≤ p ≤ , it is well known [] that the scalar function (.) of a matrix A is a sub-
multiplicative matrix norm. However, it is true for  < p ≤ . Actually, according to the
Cauchy-Schwarz inequality, we have

‖AB‖p
p =

n∑
i=

n∑
j=

∣∣∣∣∣
n∑

k=

aikbkj

∣∣∣∣∣
p

≤
n∑

i=

n∑
j=

(( n∑
k=

|aik|
) 


( n∑

k=

|bkj|
) 


)p

.
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Since for fixed vector x = (x, x, . . . , xn), the function p → (|x|p + |x|p + · · · + |xn|p)

p is

decreasing on (,∞),

‖AB‖p
p ≤

n∑
i=

n∑
j=

(( n∑
k=

|aik|p
)( n∑

k=

|bkj|p
))

=

( n∑
i=

n∑
k=

|aik|p
)( n∑

j=

n∑
k=

|bkj|p
)

= ‖A‖p
p‖B‖p

p.

That is,

‖AB‖p ≤ ‖A‖p‖B‖p. (.)

If B is nonsingular, then

‖A‖p =
∥∥ABB–∥∥

p ≤ ‖AB‖p
∥∥B–∥∥

p.

So we have

‖A‖p

‖B–‖p
≤ ‖AB‖p. (.)

Similarly, when A is nonsingular, then

‖B‖p =
∥∥A–AB

∥∥
p ≤ ∥∥A–∥∥

p‖AB‖p.

That is,

‖B‖p

‖A–‖p
≤ ‖AB‖p. (.)

Theorem . Under the assumptions of Theorem ., there are permutations π and ν of
Sn such that

( n∑
i=

|λi – μπ (i)|p
) 

p

≤ ∥∥D–


∥∥
p‖D‖p

∥∥D–


∥∥‖D‖‖A – B‖p, (.)

( n∑
i=

|λi – μν(i)|p
) 

p

≤ ∥∥D–


∥∥
p‖D‖p

∥∥D–


∥∥‖D‖‖A – B‖p, (.)

where  < p ≤ .

Proof The proof is similar to the proof of Theorem . and is omitted here. �

Remark . Since

‖A‖q,p =

( n∑
j=

( n∑
k=

|akj|q
) p

q
) 

p

≤
( n∑

j=

( n∑
k=

|akj|p
) p

p
) 

p

= ‖A‖p
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and

∥∥AT∥∥
q,p ≤ ∥∥AT∥∥

p = ‖A‖p

for  < p ≤  and 
p + 

q = , the bounds in (.) and (.) are always sharper than those
in (.) and (.), respectively.

When p = q = , then ‖AB‖ ≤ min{‖A‖‖B‖,‖A‖‖B‖}. We obtain

( n∑
i=

|λi – μπ (i)|
) 



≤ ∥∥D–


∥∥‖D‖
∥∥D–

 D
∥∥‖A – B‖

≤ ∥∥D–


∥∥‖D‖
∥∥D–


∥∥‖D‖‖A – B‖,

( n∑
i=

|λi – μν(i)|
) 



≤ ∥∥D–


∥∥‖D‖
∥∥D–

 D
∥∥‖A – B‖

≤ ∥∥D–


∥∥‖D‖
∥∥D–


∥∥‖D‖‖A – B‖.

Since

‖A‖p,q =

( n∑
j=

( n∑
k=

|akj|p
) q

p
) 

q

≤
( n∑

j=

( n∑
k=

|akj|p
) p

p
) 

p

= ‖A‖p

and

∥∥AT∥∥
p,q ≤ ∥∥AT∥∥

p = ‖A‖p

for q ≥  and 
p + 

q = , we have the following corollary.

Corollary . Under the same conditions as in Theorem ., there are permutations π

and ν of Sn such that

( n∑
i=

|λi – μπ (i)|q
) 

q

≥ ‖A – B‖q

‖D‖p‖D–
 ‖p‖D–

 ‖‖D‖ ,

( n∑
i=

|λi – μν(i)|q
) 

q

≥ ‖A – B‖q

‖D–
 ‖p‖D‖p‖D‖‖D–

 ‖ ,

where q ≥  and 
p + 

q = .

Remark . When p = q = , we obtain

( n∑
i=

|λi – μπ (i)|
) 



≥ ‖A – B‖

‖D‖‖D–
 ‖‖D–

 D‖ ≥ ‖A – B‖

‖D‖‖D–
 ‖‖D–

 ‖‖D‖ ,

( n∑
i=

|λi – μν(i)|
) 



≥ ‖A – B‖

‖D–
 ‖‖D‖‖D–

 D‖ ≥ ‖A – B‖

‖D–
 ‖‖D‖‖D‖‖D–

 ‖ .
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3 Perturbation bounds for singular values
For brevity we only consider square matrices. The generalizations from square matrices to
rectangular matrices are obvious, and usually problems on singular values of rectangular
matrices can be converted to the case of square matrices by adding zero rows or zero
columns.

For a Hermitian matrix G ∈ C
n×n, we always denote λ(G) = (λ(G),λ(G), . . . ,λn(G)),

where λ(G) ≥ λ(G) ≥ · · · ≥ λn(G) are the eigenvalues of G in decreasing order.

Lemma . (Lidskii [], Lemma . []) If G, H ∈C
n×n are Hermitian matrices, then

λ(G) – λ(H) ≺ λ(G – H).

Lemma . ([], p.) Let f (t) be a convex function, x = (x, x, . . . , xn), y = (y, y, . . . , yn) ∈
R

n. Then

x ≺ y �⇒ (
f (x), f (x), . . . , f (xn)

) ≺w
(
f (y), f (y), . . . , f (yn)

)
.

Theorem . Let σ(A) ≥ σ(A) ≥ · · · ≥ σn(A), σ(B) ≥ σ(B) ≥ · · · ≥ σn(B) and σ(A –
B) ≥ σ(A – B) ≥ · · · ≥ σn(A – B) be the singular values of the complex matrices A = (aij),
B = (bij) and A – B, respectively. Then

n∑
i=

∣∣σi(A) – σi(B)
∣∣p ≤

n∑
i,j=

|aij – bij|p, (.)

n∑
i=

∣∣σi(A) – σi(B)
∣∣q ≥

n∑
i=

σ
q
i (A – B), (.)

where  ≤ p ≤ ,  < q ≤ .

Proof Let ϕ(A) �
(

 A∗
A 

)
, ϕ(B) �

(
 B∗
B 

)
. Then

ϕ(A – B) =

(
 (A – B)∗

A – B 

)
.

ϕ(A), ϕ(B), ϕ(A–B) are three Hermitian matrices. Assume that U∗
 AV = diag(σ(A),σ(A),

. . . ,σn(A)), U∗
 BV = diag(σ(B),σ(B), . . . ,σn(B)) and U∗

 (A – B)V = diag(σ(A – B),σ(A –
B), . . . ,σn(A – B)) are singular value decompositions with U, U, U, V, V, V unitary.
Then

Q �
√


(
V V

U –U

)
, Q �

√


(
V V

U –U

)
and Q �

√


(
V V

U –U

)

are unitary matrices and

Q∗
ϕ(A)Q = diag

(
σ(A),σ(A), . . . ,σn(A), –σ(A), –σ(A), . . . , –σn(A)

)
,

Q∗
ϕ(B)Q = diag

(
σ(B),σ(B), . . . ,σn(B), –σ(B), –σ(B), . . . , –σn(B)

)
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and

Q∗
ϕ(A – B)Q = diag

(
σ(A – B),σ(A – B), . . . ,σn(A – B),

– σ(A – B), –σ(A – B), . . . , –σn(A – B)
)
.

By Lemma ., we have

(
σ(A) – σ(B),σ(A) – σ(B), . . . ,σn(A) – σn(B),

σn(B) – σn(A), . . . ,σ(B) – σ(A),σ(B) – σ(A)
)

≺ (
σ(A – B),σ(A – B), . . . ,σn(A – B),

–σn(A – B), . . . , –σ(A – B), –σ(A – B)
)
. (.)

First consider the case  ≤ p ≤ . Since the function f (t) = |t|p is convex on (–∞, +∞),
applying Lemma . with f (t) to the majorization (.) yields

(∣∣σ(A) – σ(B)
∣∣p,

∣∣σ(A) – σ(B)
∣∣p, . . . ,

∣∣σn(A) – σn(B)
∣∣p,∣∣σn(B) – σn(A)

∣∣p, . . . ,
∣∣σ(B) – σ(A)

∣∣p,
∣∣σ(B) – σ(A)

∣∣p)
≺w

(
σ

p
 (A – B),σ p

 (A – B), . . . ,σ p
n (A – B),σ p

n (A – B), . . . ,σ p
 (A – B),σ p

 (A – B)
)
.

In particular,

(∣∣σ(A) – σ(B)
∣∣p,

∣∣σ(A) – σ(B)
∣∣p, . . . ,

∣∣σn(A) – σn(B)
∣∣p)

≺w
(
σ

p
 (A – B),σ p

 (A – B), . . . ,σ p
n (A – B)

)
. (.)

According to Theorem  of [] or Theorem . of [], we have

n∑
i=

σ
p
i (A – B) ≤

n∑
i,j=

|aij – bij|p (.)

for  ≤ p ≤ . Combining (.) and (.), we obtain (.).
When  < q ≤ , by considering the convex function g(t) = –|t|q, on (–∞, +∞), applying

Lemma . with g(t) to the majorization (.) yields

(
–
∣∣σ(A) – σ(B)

∣∣q, . . . , –
∣∣σn(A) – σn(B)

∣∣q, –
∣∣σn(B) – σn(A)

∣∣q, . . . , –
∣∣σ(B) – σ(A)

∣∣q)
≺w

(
–σ

q
 (A – B), . . . , –σ q

n (A – B), –σ q
n (A – B), . . . , –σ

q
 (A – B)

)
.

In particular,

(
–
∣∣σ(A) – σ(B)

∣∣q, –
∣∣σ(A) – σ(B)

∣∣q, . . . , –
∣∣σn(A) – σn(B)

∣∣q)
≺w

(
–σ

q
 (A – B), –σ

q
 (A – B), . . . , –σ q

n (A – B)
)
. (.)

From (.), we get (.). �

Remark . From inequality (.), if p = , we get the inequality (.). So the inequality
(.) generalizes the inequality (..) of [], p., and Theorem . of [], p..
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